[1] |
ZHANG S H, JIANG G Q, ZHANG J M, et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in South China: constraints on late Neoproterozoic glaciations[J]. Geology, 2005, 33(6): 473-476.
|
[2] |
CONDON D, ZHU M Y, BOWRING S. U-Pb ages from the Neoproterozoic Doushantuo Formation, China[J]. Science, 2005, 308(5718): 95-98.
PMID
|
[3] |
ZHAO D, TAN X, HU G, et al. Characteristics and primary mineralogy of fibrous marine dolomite cements in the End-Ediacaran Dengying Formation, South China: implications for Aragonite-Dolomite Seas[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 581: 110635.
|
[4] |
鲍志东, 季汉成, 梁婷, 等. 中新元古界原生白云岩: 以中国典型台地区为例[J]. 古地理学报, 2019, 21(6): 869-884.
|
[5] |
金民东, 谭秀成, 李毕松, 等. 四川盆地震旦系灯影组白云岩成因[J]. 沉积学报, 2019, 37(3): 443-454.
|
[6] |
赵文智, 沈安江, 乔占峰, 等. 白云岩成因类型、 识别特征及储集空间成因[J]. 石油勘探与开发, 2018, 45(6): 923-935.
DOI
|
[7] |
王勇. “白云岩问题”与“前寒武纪之谜”研究进展[J]. 地球科学进展, 2006, 21(8): 857-862.
DOI
|
[8] |
梅冥相, 周鹏, 张海, 等. 上扬子区震旦系层序地层格架及其形成的古地理背景[J]. 古地理学报, 2006, 6(2): 219-231.
|
[9] |
雷怀彦, 朱莲芳. 四川盆地震旦系白云岩成因研究[J]. 沉积学报, 1992, 10(2): 69-78.
|
[10] |
张杰, 寿建峰, 张天付, 等. 白云石成因研究新方法: 白云石晶体结构分析[J]. 沉积学报, 2014, 32(3): 550-559.
|
[11] |
WARREN J. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews 2000, 52(1/2/3): 1-81.
|
[12] |
钟倩倩, 黄思静, 邹明亮, 等. 碳酸盐岩中白云石有序度的控制因素: 来自塔河下古生界和川东北三叠系的研究[J]. 岩性油气藏, 2009, 21(3): 50-55.
|
[13] |
MANCHE C J, KACZMAREK S E. A global study of dolomite stoichiometry and cation ordering through the Phanerozoic[J]. Journal of Sedimentary Research, 2021, 91(5): 520-546.
|
[14] |
田春景. 张翔. 沉积地球化学[M]. 北京: 地质出版社, 2016: 41-77.
|
[15] |
ANBAR A D, KNOLL A H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge?[J]. Science, 2002, 297(5584): 1137-1142.
PMID
|
[16] |
张同钢, 储雪蕾, 张启锐, 等. 扬子地台灯影组碳酸盐岩中的硫和碳同位素记录[J]. 岩石学报, 2004(3): 717-724.
|
[17] |
郑剑锋, 刘禹, 朱永进, 等. 塔里木盆地乌什地区上震旦统奇格布拉克组地球化学特征及其地质意义[J]. 古地理学报, 2021, 23(5): 983-998.
|
[18] |
CHERRY L B, GILLEAUDEAU G J, GRAZHDANKIN D V, et al. A diverse Ediacara assemblage survived under low-oxygen conditions[J]. Nature Communications, 2022, 13(1): 1-11.
|
[19] |
张云峰, 唐雨, 唐洪明, 等. 川西北杨坝剖面埃迪卡拉系灯影组核形石组构特征[J]. 沉积学报, 2022, 40(5): 1302-1312.
|
[20] |
魏显贵, 杜思清, 何政伟, 等. 米仓山地区构造演化[J]. 矿物岩石, 1997(增刊1): 110-116.
|
[21] |
ZHU M Y, ZHANG J M, STEINER M, et al. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: an integrated approach[J]. Progress in Natural Science, 2003, 13(12): 951-960.
|
[22] |
武赛军, 魏国齐, 杨威, 等. 四川盆地桐湾运动及其油气地质意义[J]. 天然气地球科学, 2016, 27(1): 60-70.
|
[23] |
李宗银, 姜华, 汪泽成, 等. 构造运动对四川盆地震旦系油气成藏的控制作用[J]. 天然气工业, 2014, 34(3): 23-30.
|
[24] |
汪泽成, 姜华, 王铜山, 等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发, 2014, 41(3): 305-312.
|
[25] |
李启桂, 李克胜, 周卓铸, 等. 四川盆地桐湾不整合面古地貌特征与岩溶分布预测[J]. 石油与天然气地质, 2013, 34(4): 516-521.
|
[26] |
梅冥相. 从凝块石概念的演变论微生物碳酸盐岩的研究进展[J]. 地质科技情报, 2007, 26(6): 1-9.
|
[27] |
牟传龙, 王秀平, 梁薇, 等. 上扬子区灯影组白云岩葡萄体特征及成因初探: 以南江杨坝地区灯影组一段为例[J]. 沉积学报, 2015, 33(6): 1097-1110.
|
[28] |
DING Y, CHEN D Z, ZHOU X Q, et al. Cavity-filling dolomite speleothems and submarine cements in the Ediacaran Dengying Microbialites, South China: responses to high-frequency sea-level fluctuations in an ‘Aragonite-Dolomite Sea’[J]. Sedimentology, 2019, 66(6): 2511-2537.
|
[29] |
邢凤存, 侯明才, 林良彪, 等. 四川盆地晚震旦世—早寒武世构造运动记录及动力学成因讨论[J]. 地学前缘, 2015, 22(1): 115-125.
DOI
|
[30] |
RIDING R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47: 179-214.
|
[31] |
冯明友, 伍鹏程, 鄢晓荣, 等. 四川峨边震旦系灯影组三段泥页岩地球化学特征及地质意义[J]. 矿物岩石地球化学通报, 2017, 36(3): 493-501.
|
[32] |
周进高, 张建勇, 邓红婴, 等. 四川盆地震旦系灯影组岩相古地理与沉积模式[J]. 天然气工业, 2017, 37(1): 24-31.
|
[33] |
KAUFMAN A J, KNOLL A H. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
|
[34] |
黄思静. 四川渠县龙门峡三叠系嘉陵江组第三、 四段白云石有序度及其形成条件探讨[J]. 矿物岩石, 1985, 5(4): 57-62, 129.
|
[35] |
李丹秋. 华北地台中元古代高于庄组沉积期古海洋环境条件: 沉积地质与地球化学证据[D]. 北京: 中国地质大学(北京), 2012: 19-22.
|
[36] |
YANG J D, SUN W G, WANG Z Z, et al. Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Neoproterozoic seawater?[J]. Precambrian Research, 1999, 93(23): 215-233.
|
[37] |
JIANG G Q, SHI X Y, ZHANG S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China[J]. Gondwana Research, 2011, 19(4): 831-849.
|
[38] |
LAMBERT L B, WALIER M R, ZANG W L, el al. Palaeoenvironment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yantze Plateform[J]. Nature, 1987, 325: 140-142.
|
[39] |
GAO Y P, ZHANG X L, ZHANG G J, et al. Ediacaran negative C-isotopic excursions associated with phosphogenic events: evidence from South China[J]. Precambrian Research, 2018, 307: 218-228.
|
[40] |
王宗哲, 杨杰东, 孙卫国. 扬子地台震旦纪海水碳同位素的变化[J]. 高校地质学报, 1996, 2(1): 112-120.
|
[41] |
VEIZER J, DEMOVIC R. Environmental and climatic controlled fractionation of elements in the Mesozoic carbonate sequences of the western Carpathians[J]. Journal of Sedimentary Research, 1973, 43(1): 258-271.
|
[42] |
VEIZER J, DEMOVIC R. Strontium as a tool in facies analysis[J]. Journal of Sedimentary Petrology, 1974, 3: 93-115.
|
[43] |
KEITH M L, WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816.
|
[44] |
LOWENSTEIN T K, TIMOFEEFF M N, BRENNAN S T, et al. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions[J]. Science, 2001, 294(5544): 1086-1088.
PMID
|
[45] |
STANLEY S M, HARDIE L A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 144(1/2): 3-19.
|
[46] |
HARDIE L A. Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y.[J]. Geology, 1996, 24(3): 279-283.
|
[47] |
SCHWAB F L. Secular trends in the composition of sedimentary rock assemblages: Archean through Phanerozoic time[J]. Geology, 1978, 6(9): 532-536.
|
[48] |
HOOD A V S, WALLACE M W, DRYSDALE R N. Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes[J]. Geology, 2011, 39(9): 871-874.
|