地学前缘 ›› 2021, Vol. 28 ›› Issue (5): 68-78.DOI: 10.13745/j.esf.sf.2021.2.19
惠淑君1(), 杨冰1,2, 郭华明1,*(
), 连国玺2, 孙娟2
收稿日期:
2020-08-17
修回日期:
2021-01-15
出版日期:
2021-09-25
发布日期:
2021-10-29
通信作者:
郭华明
作者简介:
惠淑君(1994—),女,硕士,主要从事环境科学与工程相关研究。E-mail: 1365235784@qq.com
基金资助:
HUI Shujun1(), YANG Bing1,2, GUO Huaming1,*(
), LIAN Guoxi2, SUN Juan2
Received:
2020-08-17
Revised:
2021-01-15
Online:
2021-09-25
Published:
2021-10-29
Contact:
GUO Huaming
摘要:
铀矿开采过程中及井场退役后,含铀浸出液的扩散会对地下水造成一定影响,该影响范围和程度决定了铀的天然衰减特征。本文以北方某地浸铀矿区砂岩含水介质为研究对象,研究了溶液化学特征和黄铁矿含量对砂岩吸附和转化铀的影响。结果表明,砂岩颗粒对U(VI)的吸附基本在12 h可达平衡。线性等温吸附模型可以很好地描述吸附特征;砂岩颗粒对U(VI)的吸附率总体随着粒径增大而减小,当岩石粒径增大到0.200.25 mm时,吸附率趋于稳定。溶液pH值是影响吸附的主要因素,通过控制溶液中U(VI)的络合形态和岩石颗粒表面带电荷情况,在库仑力的作用下促进或者抑制吸附,在pH=6时,达到最佳吸附状态。共存离子对U(VI)吸附的抑制程度是:
中图分类号:
惠淑君, 杨冰, 郭华明, 连国玺, 孙娟. 不同因素对砂岩含水层介质吸附铀的影响[J]. 地学前缘, 2021, 28(5): 68-78.
HUI Shujun, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Factors affecting uranium adsorption on aquifer sandstone[J]. Earth Science Frontiers, 2021, 28(5): 68-78.
粒径/mm | R2 | Kd/(L·g-1) |
---|---|---|
<0.10 | 0.995 1 | 0.030 |
0.10<0.15 | 0.994 3 | 0.038 |
0.15<0.20 | 0.997 9 | 0.032 |
0.20<0.25 | 0.993 6 | 0.029 |
0.250.50 | 0.997 8 | 0.029 |
表1 不同粒径砂岩样品等温吸附曲线拟合系数和吸附分配系数
Table 1 Fitting coefficients and adsorption partition coefficients of isothermal adsorption curves for sandstone samples with different particle sizes
粒径/mm | R2 | Kd/(L·g-1) |
---|---|---|
<0.10 | 0.995 1 | 0.030 |
0.10<0.15 | 0.994 3 | 0.038 |
0.15<0.20 | 0.997 9 | 0.032 |
0.20<0.25 | 0.993 6 | 0.029 |
0.250.50 | 0.997 8 | 0.029 |
因素 | 不同pH值条件下的影响因素情况 | ||
---|---|---|---|
pH<4 | pH=46 | pH>6 | |
固体表面带电荷情况 | 有正电荷也有负电荷 | 主要带负电荷 | 几乎都带负电荷 |
U的络合形态 | | (UO2)3(OH (UO2)4(OH | UO2CO3、UO2(OH (UO2)3(OH UO2(CO3 |
库仑力 | 引力为主 | 引力 | 斥力增强 |
H+竞争作用 | 较强 | 减弱 | 几乎没有 |
表2 不同pH值条件下影响U(VI)吸附的因素
Table 2 List of factors affecting U(VI) adsorption at different pH
因素 | 不同pH值条件下的影响因素情况 | ||
---|---|---|---|
pH<4 | pH=46 | pH>6 | |
固体表面带电荷情况 | 有正电荷也有负电荷 | 主要带负电荷 | 几乎都带负电荷 |
U的络合形态 | | (UO2)3(OH (UO2)4(OH | UO2CO3、UO2(OH (UO2)3(OH UO2(CO3 |
库仑力 | 引力为主 | 引力 | 斥力增强 |
H+竞争作用 | 较强 | 减弱 | 几乎没有 |
不同试验条件 | U(VI)含量占比/% | U(IV)含量占比/% | Fe(II)含量占比/% | Fe(III)含量占比/% |
---|---|---|---|---|
原始黄铁矿 | 98.9 | 1.1 | ||
近中性pH值 | 68 | 32 | 95.8 | 4.2 |
弱碱性pH值 | 100 | 0 | 98.5 | 1.5 |
表3 不同试验条件下10% FeS2组反应10 d的固体表面U(VI)、U(IV)及Fe(II)、Fe(III)含量占比
Table 3 Percentages of U (VI), U (IV), Fe(II), and Fe(III) on solid sample surface containing 10% FeS2 reacting with U(VI) for 10 d under different experimental conditions
不同试验条件 | U(VI)含量占比/% | U(IV)含量占比/% | Fe(II)含量占比/% | Fe(III)含量占比/% |
---|---|---|---|---|
原始黄铁矿 | 98.9 | 1.1 | ||
近中性pH值 | 68 | 32 | 95.8 | 4.2 |
弱碱性pH值 | 100 | 0 | 98.5 | 1.5 |
图10 不同试验条件下10% FeS2组反应10 d的固体Fe(2p)XPS光谱 a—原始黄铁矿;b—近中性pH值;c—弱碱性pH值。
Fig.10 Iron 2p XPS spectra for solid samples containing 10% FeS2 reacting with U(VI) for 10 d under different experimental conditions
图11 不同试验条件下10% FeS2组反应10 d的固体S(2p)XPS光谱 a—原始黄铁矿;b—近中性pH值;c—弱碱性pH值。
Fig.11 Sulphur 2p XPS spectra for solid samples containing 10% FeS2 reacting with U(VI) for 10 d under different experimental conditions
[1] | 张飞凤, 苏学斌, 邢拥国, 等. 地浸采铀新工艺综述[J]. 中国矿业, 2012, 21(增刊):9-12. |
[2] |
SEREDKIN M, ZABOLOTSKY A, JEFFRESS G. In situ recovery, an alternative to conventional methods of mining: exploration, resource estimation, environmental issues, project evaluation and economics[J]. Ore Geology Reviews, 2016, 79:500-514.
DOI URL |
[3] | 苏学斌. 高效绿色发展推进铀矿大基地建设[J]. 中国核工业, 2016(11):16-19. |
[4] | 李衡, 周义朋. 地浸采铀溶质运移研究进展及展望[J]. 稀有金属, 2019, 43(3):319-330. |
[5] | International Atomic Energy Agency. In situ leach uranium mining: an overview of operations[R]. Vienna: IAEA, 2016. |
[6] |
CORLIN L, ROCK T, CORDOVA J, et al. Health effects and environmental justice concerns of exposure to uranium in drinking water[J]. Current Environmental Health Reports, 2016, 3(4):434-442.
DOI URL |
[7] |
DICKINSON M, SCOTT T B. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent[J]. Journal of Hazardous Materials, 2010, 178(1/2/3):171-179.
DOI URL |
[8] |
BORCH T, ROCHE N, JOHNSON T E. Determination of contaminant levels and remediation efficacy in groundwater at a former in situ recovery uranium mine[J]. Journal of Environmental Monitoring, 2012, 14(7):1814-1823.
DOI URL |
[9] |
STANLEY D M, WILKIN R T. Solution equilibria of uranyl minerals:role of the common groundwater ions calcium and carbonate[J]. Journal of Hazardous Materials, 2019, 377:315-320.
DOI URL |
[10] |
BACHMAF S, PLANER-FRIEDRICH B, MERKEL B J. Effect of sulfate, carbonate, and phosphate on the uranium(VI) sorption behavior onto bentonite[J]. Radiochimica Acta, 2008, 96(6):359-366.
DOI URL |
[11] | GAJOWIAK A, MAJDAN M, DROZDZAL K. Sorption of uranium(VI) on clays and clay minerals[J]. Przemysl Chemiczny, 2009, 88(2):190-196. |
[12] |
WEI M, LIAO J L, LIU N, et al. Interaction between uranium and humic acid (I):adsorption behaviors of U(VI) in soil humic acids[J]. Nuclear Science and Techniques, 2007, 18(5):287-293.
DOI URL |
[13] |
XIE S B, ZHANG C, ZHOU X H, et al. Removal of uranium (VI) from aqueous solution by adsorption of hematite[J]. Journal of Environmental Radioactivity, 2009, 100(2):162-166.
DOI URL |
[14] |
AL-HOBAIB A S, AL-SUHYBANI A A. Removal of uranyl ions from aqueous solutions using barium titanate[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(1):559-567.
DOI URL |
[15] | 吴晓朦, 刘洪雪, 王锐, 等. 硝酸铀酰溶液初始浓度与pH值对其水解反应的影响[J]. 辽宁石油化工大学学报, 2015, 35(5):18-21. |
[16] |
FORNASIERO D, EIJT V, RALSTON J. An electrokinetic study of pyrite oxidation[J]. Colloids and Surfaces, 1992, 62(1/2):63-73.
DOI URL |
[17] |
BEBIE J, SCHOONEN M A A, FUHRMANN M, et al. Surface charge development on transition metal sulfides:an electrokinetic study[J]. Geochimica et Cosmochimica Acta, 1998, 62(4):633-642.
DOI URL |
[18] |
LUO M B, LIU S J, LI J Q, et al. Uranium sorption characteristics onto synthesized pyrite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307(1):305-312.
DOI URL |
[19] |
NOUBACTEP C, SONNEFELD J, MERTEN D, et al. Effects of the presence of pyrite and carbonate minerals on the kinetics of the uranium release from a natural rock[J]. Journal of Radioanalytical and Nuclear Chemistry, 2006, 270(2):325-333.
DOI URL |
[20] |
LIU J, ZHAO C S, YUAN G Y, et al. Adsorption of U(VI) on a chitosan/polyaniline composite in the presence of Ca/Mg-U(VI)-CO3 complexes[J]. Hydrometallurgy, 2018, 175:300-311.
DOI URL |
[21] |
AUBRIET H, HUMBERT B, PERDICAKIS M. Interaction of U(VI) with pyrite, galena and their mixtures:a theoretical and multitechnique approach[J]. Radiochimica Acta, 2006, 94(9/10/11):657-663.
DOI URL |
[22] |
EGLIZAUD N, MISERQUE F, SIMONI E, et al. Uranium(VI) interaction with pyrite (FeS2): chemical and spectroscopic studies[J]. Radiochimica Acta, 2006, 94(9/10/11):651-656.
DOI URL |
[23] |
SCOTT T B, RIBA TORT O, ALLEN G C. Aqueous uptake of uranium onto pyrite surfaces: reactivity of fresh versus weathered material[J]. Geochimica et Cosmochimica Acta, 2007, 71(21):5044-5053.
DOI URL |
[24] |
WUNSCH A, NAVARRE-SITCHLER A K, MOORE J, et al. Metal release from limestones at high partial-pressures of CO2[J]. Chemical Geology, 2014, 363:40-55.
DOI URL |
[25] |
RIEGEL M. Sorption of natural uranium on weakly basic anion exchangers[J]. Solvent Extraction and Ion Exchange, 2017, 35(5):363-375.
DOI URL |
[26] |
WU Y, WANG Y X, GUO W. Behavior and fate of geogenic uranium in a shallow groundwater system[J]. Journal of Contaminant Hydrology, 2019, 222:41-55.
DOI URL |
[27] | 张红霞. U(Ⅵ)、Th(Ⅳ)在几种吸附剂上的吸附机理研究[D]. 兰州: 兰州大学, 2011. |
[28] |
LI X L, WU J J, LIAO J L, et al. Adsorption and desorption of uranium (VI) in aerated zone soil[J]. Journal of Environmental Radioactivity, 2013, 115:143-150.
DOI URL |
[29] | GUO Z, SU H Y, WU W S. Sorption and desorption of uranium(VI) on silica:experimental and modeling studies[J]. Radiochimica Acta, 2009, 97(3):133-140. |
[30] |
BARGAR J R, REITMEYER R, DAVIS J A. Spectroscopic confirmation of uranium(VI)- carbonato adsorption complexes on hematite[J]. Environmental Science & Technology, 1999, 33(14):2481-2484.
DOI URL |
[31] |
YANG Z W, KANG M L, MA B, et al. Inhibition of U(VI) reduction by synthetic and natural pyrite[J]. Environmental Science & Technology, 2014, 48(18):10716-10724.
DOI URL |
[32] |
SEDER-COLOMINA M, MANGERET A, STETTEN L, et al. Carbonate facilitated mobilization of uranium from lacustrine sediments under anoxic conditions[J]. Environmental Science & Technology, 2018, 52(17):9615-9624.
DOI URL |
[33] |
DESCOSTES M, SCHLEGEL M L, EGLIZAUD N, et al. Uptake of uranium and trace elements in pyrite (FeS2) suspensions[J]. Geochimica et Cosmochimica Acta, 2010, 74(5):1551-1562.
DOI URL |
[34] |
LIGER E, CHARLET L, VAN CAPPELLEN P. Surface catalysis of uranium(VI) reduction by iron(II)[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20):2939-2955.
DOI URL |
[35] |
JEON B H, DEMPSEY B A, BURGOS W D, et al. Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides[J]. Environmental Science & Technology, 2005, 39(15):5642-5649.
DOI URL |
[36] | 李肃宁, 周丽, 李和平, 等. 黄铁矿吸附-还原金络合物的试验研究进展[J]. 地球与环境, 2013, 41(2):185-192. |
[37] |
WIDLER A M, SEWARD T M. The adsorption of gold(I) hydrosulphide complexes by iron sulphide surfaces[J]. Geochimica et Cosmochimica Acta, 2002, 66(3):383-402.
DOI URL |
[38] | CUI D Q, SPAHIU K. On the Interaction between uranyl carbonate and UO2(s) in anaerobic solution[J]. Journal of Nuclear Science and Technology, 2002, 39(Suppl 3):500-503. |
[39] |
BRUGGEMAN C, MAES N. Uptake of uranium(VI) by pyrite under boom clay conditions:influence of dissolved organic carbon[J]. Environmental Science & Technology, 2010, 44(11):4210-4216.
DOI URL |
[1] | 赵侃, 沈健, 蔡芸, 赵苏民. 砂岩热储回灌难点识别与应对措施探讨[J]. 地学前缘, 2024, 31(6): 196-203. |
[2] | 董姝, 刘海燕, 张一帆, 王振, 郭华明, 孙占学, 周仲魁. 相山铀矿尾矿区植物—根际土壤稀土元素和铀、钍生物富集特征[J]. 地学前缘, 2024, 31(6): 474-489. |
[3] | 董少群, 曾联波, 冀春秋, 张延兵, 郝静茹, 徐小童, 韩高松, 徐辉, 李海明, 李心琦. 超深层致密砂岩裂缝测井识别深度核方法[J]. 地学前缘, 2024, 31(5): 166-176. |
[4] | 邱林飞, 李子颖, 张字龙, 王龙辉, 李振成, 韩美芝, 王婷婷. 鄂尔多斯盆地北部下白垩统赋矿砂岩中有机质特征及其与铀成矿的关系[J]. 地学前缘, 2024, 31(4): 281-296. |
[5] | 贾国栋, 徐胜, 刘丛强. 江西龙南花岗岩风化壳形成和演化的铀系不平衡约束[J]. 地学前缘, 2024, 31(4): 366-379. |
[6] | 尹青青, 唐菊兴, 项新葵, 赵晓彦, 汪方跃, 徐裕敏, 郭虎, 余振东, 谢金玲, 代晶晶, 彭勃. 赣北彭山还原性S型花岗岩成因及其对Sn富集的启示:来自锆石微量元素的证据[J]. 地学前缘, 2024, 31(3): 133-149. |
[7] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
[8] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[9] | 李海东, 田世洪, 刘斌, 胡鹏, 吴建勇, 陈正乐. 粤北地区琶江铀矿床沥青铀矿原位微区年代学和元素分析:对铀成矿作用的启示[J]. 地学前缘, 2024, 31(2): 270-283. |
[10] | 刘超, 付晓飞, 李扬成, 王海学, 孙冰, 郝炎, 胡慧婷, 杨子成, 李依霖, 谷社峰, 周爱红, 马成龙. 烃源岩作为铀源岩的可能性:研究现状与展望[J]. 地学前缘, 2024, 31(2): 284-298. |
[11] | 吕良华, 乔文静, 张晗, 叶淑君, 吴吉春, 王水, 蒋建东. 脱卤杆菌介导的厌氧微生物富集菌群对1,2,4-三氯苯的降解特性[J]. 地学前缘, 2024, 31(2): 472-480. |
[12] | 刘池洋, 张龙, 黄雷, 吴柏林, 王建强, 张东东, 谭成仟, 马艳萍, 赵建社. 砂岩型铀矿形成的新模式:来自深部有机流体的成矿作用[J]. 地学前缘, 2024, 31(1): 368-383. |
[13] | 董海良, 曾强, 刘邓, 盛益之, 刘晓磊, 刘源, 胡景龙, 李扬, 夏庆银, 李润洁, 胡大福, 张冬磊, 张文慧, 郭东毅, 张晓文. 黏土矿物-微生物相互作用机理以及在环境领域中的应用[J]. 地学前缘, 2024, 31(1): 467-485. |
[14] | 陈践发, 许锦, 王杰, 刘鹏, 陈斐然, 黎茂稳. 塔里木盆地西北缘玉尔吐斯组黑色岩系沉积环境演化及其对有机质富集的控制作用[J]. 地学前缘, 2023, 30(6): 150-161. |
[15] | 吴陈君, 刘新社, 文志刚, 妥进才. 黔北地区牛蹄塘组页岩有机质富集及有机质孔隙发育机制研究[J]. 地学前缘, 2023, 30(3): 101-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||