[1] |
肖贤明, 宋之光, 朱炎铭, 等. 北美页岩气研究及对我国下古生界页岩气开发的启示[J]. 煤炭学报, 2013, 38(5): 721-727.
|
[2] |
邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796.
|
[3] |
王玉芳, 冷济高, 李鹏, 等. 黔东北地区下寒武统牛蹄塘组页岩气特征及主控因素分析[J]. 古地理学报, 2016, 18(4): 605-614.
|
[4] |
赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510.
DOI
|
[5] |
翟刚毅, 包书景, 王玉芳, 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017, 38(4): 441-447.
|
[6] |
张同伟, 张亚军, 贾敏, 等. 中国南方寒武系海相页岩含气性主控因素的科学问题[J]. 矿物岩石地球化学通报, 2018, 37(4): 572-579, 794.
|
[7] |
姜振学, 宋岩, 唐相路, 等. 中国南方海相页岩气差异富集的控制因素[J]. 石油勘探与开发, 2020, 47(3): 617-628.
DOI
|
[8] |
梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一): 南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13(2): 1-16.
|
[9] |
李贤庆, 王哲, 郭曼, 等. 黔北地区下古生界页岩气储层孔隙结构特征[J]. 中国矿业大学学报, 2016, 45(6): 1172-1183.
|
[10] |
郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素: 以焦石坝地区五峰组—龙马溪组为例[J]. 中国地质, 2014, 41(3): 893-901.
|
[11] |
邱振, 邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报, 2020, 38(1): 1-29.
|
[12] |
王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1): 1-6.
|
[13] |
腾格尔, 刘文汇, 徐永昌, 等. 高演化海相碳酸盐烃源岩地球化学综合判识: 以鄂尔多斯盆地为例[J]. 中国科学(D辑), 2006(2): 167-176.
|
[14] |
HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
DOI
URL
|
[15] |
JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
DOI
URL
|
[16] |
ALGEO T J, LIU J S. A re-assessment of elemental proxies for palaeoredox analysis[J]. Chemical Geology, 2020, 540: 119549.
DOI
URL
|
[17] |
TRIBOVILLARD N, ALGEO T J, BAUDIN F, et al. Analysis of marine environmental conditions based on molybdenum-uranium covariation: applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324/325: 46-58.
DOI
URL
|
[18] |
ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): PA1016.
|
[19] |
JIANG S Y, ZHAO H X, CHEN Y Q, et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China[J]. Chemical Geology, 2007, 244(3/4): 584-604.
DOI
URL
|
[20] |
WU C J, ZHANG L F, ZHANG T W, et al. Reconstruction of paleoceanic redox conditions of the lower Cambrian Niutitang shales in northern Guizhou, Upper Yangtze region[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109457.
DOI
URL
|
[21] |
ZHANG J P, FAN T L, ALGEO T J, et al. Paleomarine environments of the early Cambrian Yangtze platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443: 66-79.
DOI
URL
|
[22] |
LIU K, FENG Q L, SHEN J, et al. Increased productivity as a primary driver of marine anoxia in the Lower Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 491: 1-9.
DOI
URL
|
[23] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mud rocks and a descriptive classification for matrix-related mud rock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
DOI
URL
|
[24] |
CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
DOI
URL
|
[25] |
陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37(3): 438-444.
|
[26] |
TIAN H, PAN L, XIAO X M, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48: 8-19.
DOI
URL
|
[27] |
HU H Y, ZHANG T W, WIGGINS-CAMACHO J D, et al. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis[J]. Marine and Petroleum Geology, 2015, 59: 114-128.
DOI
URL
|
[28] |
KATZ B J, ARANGO I. Organic porosity: a geochemist’s view of the current state of understanding[J]. Organic Geochemistry, 2018, 123: 1-16.
DOI
URL
|
[29] |
KO L T, LOUCKS R G, ZHANG T W, et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11): 1693-1722.
DOI
URL
|
[30] |
ZOU C N, ZHU R K, CHEN Z Q, et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 2019, 189: 51-78.
DOI
|
[31] |
MA Y, ARDAKANI O H, ZHONG N N, et al. Possible pore structure deformation effects on the shale gas enrichment: an example from the Lower Cambrian shales of the Eastern Upper Yangtze Platform, South China[J]. International Journal of Coal Geology, 2020, 217: 103349.
DOI
URL
|
[32] |
汪泽成, 姜华, 王铜山, 等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发, 2014, 41(3): 305-312.
|
[33] |
马子杰. 上扬子地区寒武系牛蹄塘组页岩有机质孔隙发育特征及主控因素[D]. 北京: 中国地质大学(北京), 2021.
|
[34] |
李海, 刘安, 罗胜元, 等. 鄂西宜昌地区寒武系页岩孔隙结构特征及发育主控因素[J]. 油气地质与采收率, 2018, 25(6): 16-23.
|
[35] |
吴晓智, 柳庄小雪, 王建, 等. 我国油气资源潜力、分布及重点勘探领域[J]. 地学前缘, 2022, 29(6): 146-155.
DOI
|
[36] |
徐旭辉, 陆建林, 王保华, 等. 中国海相盆地油气资源动态评价与有利勘探方向[J]. 地学前缘, 2022, 29(6): 73-83.
DOI
|