地学前缘 ›› 2023, Vol. 30 ›› Issue (3): 110-123.DOI: 10.13745/j.esf.sf.2022.5.36
唐玄1(), 郑逢赞1, 梁国栋1, 马子杰1,2, 张家政3, 王玉芳3, 张同伟4
收稿日期:
2022-02-10
修回日期:
2022-04-20
出版日期:
2023-05-25
发布日期:
2023-04-27
作者简介:
唐 玄(1979—),男,教授,博士生导师,长期从事页岩油气地质研究与资源评价工作。E-mail: Tangxuan@cugb.edu.cn
基金资助:
TANG Xuan1(), ZHENG Fengzan1, LIANG Guodong1, MA Zijie1,2, ZHANG Jiazheng3, WANG Yufang3, ZHANG Tongwei4
Received:
2022-02-10
Revised:
2022-04-20
Online:
2023-05-25
Published:
2023-04-27
摘要:
页岩的孔隙结构是影响页岩气赋存和流动的关键因素,分形维数可以用来定量描述页岩孔隙结构的复杂程度。以黔北地区牛蹄塘组富有机质页岩为例,在扫描电镜、页岩地球化学和矿物组成分析基础上,利用高压压汞和低温氮气吸/脱附法研究了页岩孔隙结构特征参数,利用FHH模型计算了孔隙分形维数,讨论了孔隙结构的影响因素。研究发现:(1)下寒武统牛蹄塘组富有机质页岩石英含量为39.0%~68.4%;黏土矿物含量为11.5%~28.2%;有机碳含量为2.77%~5.81%,平均为3.81%;有机质成熟度高。(2)氮气吸脱附数据显示BET比表面积为11.954~21.744 m2/g,平均为14.572 m2/g;总孔体积为0.018 6~0.025 9 cm3/g,平均为0.021 4 cm3/g;平均孔径范围在4.773~7.025 nm,平均为5.967 nm。微孔对总比表面积贡献大,而中孔和宏孔对孔隙体积贡献大。(3)基于低温氮气吸附数据获得的页岩孔隙分形维数D1和D2分布相对集中(D1为2.65~2.71,D2为2.79~2.85),压汞数据的大孔隙分形维数分布范围宽(DHg为2.21~2.81),分形维数显示牛蹄塘组富有机质页岩具有以微孔为主的复杂孔隙结构和高度非均质性,孔隙发育具有多重分形特征。(4)分形维数D2与有机碳含量和微孔体积有明显的正相关关系,显示分形维数D2可用于有机质孔隙结构表征,而矿物组成对分形维数没有明显影响。研究区牛蹄塘组页岩分形维数与龙马溪组产气页岩较为接近,指示本区页岩具有较好的孔隙结构。
中图分类号:
唐玄, 郑逢赞, 梁国栋, 马子杰, 张家政, 王玉芳, 张同伟. 黔北寒武系牛蹄塘组页岩孔隙分形表征[J]. 地学前缘, 2023, 30(3): 110-123.
TANG Xuan, ZHENG Fengzan, LIANG Guodong, MA Zijie, ZHANG Jiazheng, WANG Yufang, ZHANG Tongwei. Fractal characterization of pore structure in Cambrian Niutitang shale in northern Guizhou, southwestern China[J]. Earth Science Frontiers, 2023, 30(3): 110-123.
样品号 | 深度/m | TOC含量/% | TOS含量/% | 有机质元素比 | δ13CPDB/‰ | 矿物组成含量/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H/C | O/C | 石英 | 钾长石 | 斜长石 | 方解石 | (铁)白云石 | 黄铁矿 | 黏土矿物 | |||||
ZK1 | 1 322.40 | 3.43 | 4.08 | 0.16 | 0.06 | -31.6 | 46.2 | 4.0 | 17.0 | 1.2 | 2.7 | 3.8 | 25.1 |
ZK2 | 1 323.85 | 3.97 | 3.47 | — | — | — | 57.0 | 4.9 | 12.2 | 1.2 | 0 | 3.3 | 21.4 |
ZK 3 | 1 324.35 | 3.13 | 2.95 | 0.22 | 0.04 | -31.6 | 45.9 | — | 16.3 | 1.1 | 5.8 | 3.5 | 27.4 |
ZK 4 | 1 325.58 | 4.26 | 3.17 | — | — | — | 55.7 | 2.6 | 15.6 | 1.4 | 2.0 | 6.1 | 16.6 |
ZK 5 | 1 326.37 | 3.19 | 2.59 | 0.11 | 0.03 | -31.2 | 57.0 | — | 9.2 | — | 1.4 | 2.9 | 29.5 |
ZK 6 | 1 328.45 | 2.8 | 2.74 | — | — | — | 51.3 | 4.6 | 10.6 | 0.8 | — | 5.9 | 26.8 |
ZK 7 | 1 330.82 | 3.22 | 2.77 | 0.14 | 0.04 | -32.2 | 59.9 | 4.3 | 9.9 | 2.2 | — | 3.5 | 20.2 |
ZK 8 | 1 331.65 | 2.85 | 2.47 | — | — | — | 63.9 | 8.5 | 11.6 | 2.0 | — | 2.5 | 11.5 |
ZK 9 | 1 332.45 | 2.77 | 2.04 | 0.16 | 0.03 | -32.1 | 57.9 | 3.9 | 12.1 | 1.4 | — | 2.5 | 22.2 |
ZK 10 | 1 334.38 | 3.00 | 2.29 | — | — | — | 68.4 | — | 11.0 | 1.1 | — | 2.7 | 16.8 |
ZK 11 | 1 336.55 | 4.19 | 2.78 | 0.11 | 0.03 | -31.8 | 52.5 | 8.8 | 11.4 | — | 1.4 | 6.1 | 19.8 |
ZK 12 | 1 337.35 | 5.65 | 3.33 | — | — | — | 48.0 | 9.0 | 12.9 | — | 1.4 | 3.4 | 25.3 |
ZK 13 | 1 338.86 | 4.53 | 2.12 | 0.16 | 0.03 | -32.1 | 56.3 | — | 12.9 | — | 0 | 2.5 | 28.3 |
ZK 14 | 1 339.03 | 4.32 | 2.66 | — | — | — | 49.4 | 2.5 | 14.7 | — | 3.0 | 3.4 | 27.0 |
ZK 15 | 1 339.48 | 5.81 | 5.40 | 0.21 | 0.05 | -31.8 | 39.0 | 4.1 | 15.2 | 0.5 | 1.9 | 19.9 | 19.4 |
表1 黔北松桃ZK钻孔下寒武统牛蹄塘组页岩样品有机质相关参数与矿物成分表
Table 1 Organic matter parameters and mineral compositions of the Lower Cambrian Liutitang Formation shale samples from Well ZK in Songtao, northern Guizhou
样品号 | 深度/m | TOC含量/% | TOS含量/% | 有机质元素比 | δ13CPDB/‰ | 矿物组成含量/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H/C | O/C | 石英 | 钾长石 | 斜长石 | 方解石 | (铁)白云石 | 黄铁矿 | 黏土矿物 | |||||
ZK1 | 1 322.40 | 3.43 | 4.08 | 0.16 | 0.06 | -31.6 | 46.2 | 4.0 | 17.0 | 1.2 | 2.7 | 3.8 | 25.1 |
ZK2 | 1 323.85 | 3.97 | 3.47 | — | — | — | 57.0 | 4.9 | 12.2 | 1.2 | 0 | 3.3 | 21.4 |
ZK 3 | 1 324.35 | 3.13 | 2.95 | 0.22 | 0.04 | -31.6 | 45.9 | — | 16.3 | 1.1 | 5.8 | 3.5 | 27.4 |
ZK 4 | 1 325.58 | 4.26 | 3.17 | — | — | — | 55.7 | 2.6 | 15.6 | 1.4 | 2.0 | 6.1 | 16.6 |
ZK 5 | 1 326.37 | 3.19 | 2.59 | 0.11 | 0.03 | -31.2 | 57.0 | — | 9.2 | — | 1.4 | 2.9 | 29.5 |
ZK 6 | 1 328.45 | 2.8 | 2.74 | — | — | — | 51.3 | 4.6 | 10.6 | 0.8 | — | 5.9 | 26.8 |
ZK 7 | 1 330.82 | 3.22 | 2.77 | 0.14 | 0.04 | -32.2 | 59.9 | 4.3 | 9.9 | 2.2 | — | 3.5 | 20.2 |
ZK 8 | 1 331.65 | 2.85 | 2.47 | — | — | — | 63.9 | 8.5 | 11.6 | 2.0 | — | 2.5 | 11.5 |
ZK 9 | 1 332.45 | 2.77 | 2.04 | 0.16 | 0.03 | -32.1 | 57.9 | 3.9 | 12.1 | 1.4 | — | 2.5 | 22.2 |
ZK 10 | 1 334.38 | 3.00 | 2.29 | — | — | — | 68.4 | — | 11.0 | 1.1 | — | 2.7 | 16.8 |
ZK 11 | 1 336.55 | 4.19 | 2.78 | 0.11 | 0.03 | -31.8 | 52.5 | 8.8 | 11.4 | — | 1.4 | 6.1 | 19.8 |
ZK 12 | 1 337.35 | 5.65 | 3.33 | — | — | — | 48.0 | 9.0 | 12.9 | — | 1.4 | 3.4 | 25.3 |
ZK 13 | 1 338.86 | 4.53 | 2.12 | 0.16 | 0.03 | -32.1 | 56.3 | — | 12.9 | — | 0 | 2.5 | 28.3 |
ZK 14 | 1 339.03 | 4.32 | 2.66 | — | — | — | 49.4 | 2.5 | 14.7 | — | 3.0 | 3.4 | 27.0 |
ZK 15 | 1 339.48 | 5.81 | 5.40 | 0.21 | 0.05 | -31.8 | 39.0 | 4.1 | 15.2 | 0.5 | 1.9 | 19.9 | 19.4 |
图2 黔北松桃地区牛蹄塘组页岩总有机碳与总硫含量(a)及有机元素构成(b) 图b中Ⅰ~Ⅳ指干酪根类型Ⅰ到Ⅳ型。
Fig.2 (a) Plot of TOC vs. TOS contents at increasing depths showing the variation trends of TOC/TOS ratio with depth, and (b) plot of H/C vs. O/C atomic ratios for thermal maturity assessment of the Liutitang Formation shales in Songtao, northern Guizhou
图3 黔北松桃地区ZK钻孔下寒武统牛蹄塘组页岩孔隙电镜照片 a—深度为1 322 m,有机质孔隙;b—深度为1 330 m,有机质孔隙;c—深度为1 331 m,晶间空隙;d—深度为1 333 m,粒间孔隙;e—深度为1 328 m,溶蚀孔隙;f—深度为1 323 m,有机质边缘微裂缝。
Fig.3 SEM images of shale samples from Well ZK in Songtao, northern Guizhou for pore structural characterization
样品编号 | 比表面积/ (m2·g-1) | 总孔体积/ (cm3·g-1) | 平均孔径/ nm | 孔径/ nm | p/p0<0.45情况下 | p/p0>0.45情况下 | ||||
---|---|---|---|---|---|---|---|---|---|---|
拟合系数 | 分形维数 | 分形维数D | 拟合系数 | 分形维数 | ||||||
ZK1 | 13.650 | 0.021 9 | 6.427 | 281.7 | 0.99 | 2.702 3 | 2.106 9 | 0.99 | 2.808 4 | |
ZK2 | 14.765 | 0.019 0 | 5.148 | 284.8 | 0.99 | 2.703 7 | 2.111 1 | 0.99 | 2.834 2 | |
ZK3 | 13.021 | 0.020 3 | 6.246 | 286.2 | 0.99 | 2.690 0 | 2.070 0 | 0.99 | 2.806 2 | |
ZK4 | 14.715 | 0.019 5 | 5.292 | 289.6 | 0.99 | 2.678 1 | 2.034 3 | 0.99 | 2.822 7 | |
ZK5 | 12.696 | 0.021 0 | 6.604 | 286.5 | 0.99 | 2.650 8 | 1.952 4 | 0.99 | 2.787 8 | |
ZK6 | 12.139 | 0.021 3 | 7.025 | 294.4 | 0.99 | 2.677 6 | 2.032 8 | 0.99 | 2.799 5 | |
ZK7 | 13.195 | 0.021 6 | 6.542 | 284.6 | 0.99 | 2.690 9 | 2.072 7 | 0.99 | 2.809 9 | |
ZK8 | 11.954 | 0.019 8 | 6.631 | 279.4 | 0.99 | 2.691 6 | 2.074 8 | 0.99 | 2.814 1 | |
ZK9 | 12.326 | 0.018 6 | 6.025 | 286.1 | 0.99 | 2.694 6 | 2.083 8 | 0.99 | 2.812 6 | |
ZK10 | 13.041 | 0.020 7 | 6.360 | 283.1 | 0.99 | 2.687 4 | 2.062 2 | 0.99 | 2.804 9 | |
ZK11 | 15.459 | 0.022 8 | 5.891 | 272.7 | 0.99 | 2.698 7 | 2.096 1 | 0.99 | 2.829 4 | |
ZK12 | 14.491 | 0.021 8 | 6.020 | 279.8 | 0.99 | 2.688 3 | 2.064 9 | 0.99 | 2.814 1 | |
ZK13 | 18.034 | 0.025 2 | 5.601 | 273.5 | 0.99 | 2.706 1 | 2.118 3 | 0.99 | 2.832 6 | |
ZK14 | 17.348 | 0.021 4 | 4.923 | 352.1 | 0.99 | 2.700 7 | 2.102 1 | 0.99 | 2.842 7 | |
ZK15 | 21.744 | 0.025 9 | 4.773 | 252.7 | 0.99 | 2.699 8 | 2.099 4 | 0.99 | 2.850 3 |
表2 基于N2吸附数据的页岩孔隙结构参数与分形维数
Table 2 Pore structural parameters and pore fractal dimensions in shale samples based on N2 adsorption experiment
样品编号 | 比表面积/ (m2·g-1) | 总孔体积/ (cm3·g-1) | 平均孔径/ nm | 孔径/ nm | p/p0<0.45情况下 | p/p0>0.45情况下 | ||||
---|---|---|---|---|---|---|---|---|---|---|
拟合系数 | 分形维数 | 分形维数D | 拟合系数 | 分形维数 | ||||||
ZK1 | 13.650 | 0.021 9 | 6.427 | 281.7 | 0.99 | 2.702 3 | 2.106 9 | 0.99 | 2.808 4 | |
ZK2 | 14.765 | 0.019 0 | 5.148 | 284.8 | 0.99 | 2.703 7 | 2.111 1 | 0.99 | 2.834 2 | |
ZK3 | 13.021 | 0.020 3 | 6.246 | 286.2 | 0.99 | 2.690 0 | 2.070 0 | 0.99 | 2.806 2 | |
ZK4 | 14.715 | 0.019 5 | 5.292 | 289.6 | 0.99 | 2.678 1 | 2.034 3 | 0.99 | 2.822 7 | |
ZK5 | 12.696 | 0.021 0 | 6.604 | 286.5 | 0.99 | 2.650 8 | 1.952 4 | 0.99 | 2.787 8 | |
ZK6 | 12.139 | 0.021 3 | 7.025 | 294.4 | 0.99 | 2.677 6 | 2.032 8 | 0.99 | 2.799 5 | |
ZK7 | 13.195 | 0.021 6 | 6.542 | 284.6 | 0.99 | 2.690 9 | 2.072 7 | 0.99 | 2.809 9 | |
ZK8 | 11.954 | 0.019 8 | 6.631 | 279.4 | 0.99 | 2.691 6 | 2.074 8 | 0.99 | 2.814 1 | |
ZK9 | 12.326 | 0.018 6 | 6.025 | 286.1 | 0.99 | 2.694 6 | 2.083 8 | 0.99 | 2.812 6 | |
ZK10 | 13.041 | 0.020 7 | 6.360 | 283.1 | 0.99 | 2.687 4 | 2.062 2 | 0.99 | 2.804 9 | |
ZK11 | 15.459 | 0.022 8 | 5.891 | 272.7 | 0.99 | 2.698 7 | 2.096 1 | 0.99 | 2.829 4 | |
ZK12 | 14.491 | 0.021 8 | 6.020 | 279.8 | 0.99 | 2.688 3 | 2.064 9 | 0.99 | 2.814 1 | |
ZK13 | 18.034 | 0.025 2 | 5.601 | 273.5 | 0.99 | 2.706 1 | 2.118 3 | 0.99 | 2.832 6 | |
ZK14 | 17.348 | 0.021 4 | 4.923 | 352.1 | 0.99 | 2.700 7 | 2.102 1 | 0.99 | 2.842 7 | |
ZK15 | 21.744 | 0.025 9 | 4.773 | 252.7 | 0.99 | 2.699 8 | 2.099 4 | 0.99 | 2.850 3 |
图4 黔北松桃地区牛蹄塘组页岩N2吸脱附等温线 p0—饱和蒸气压,MPa;p—平衡压力,MPa。
Fig.4 Nitrogen adsorption-desorption isotherms for selected Liutitang Formation shale samples in Songtao, northern Guizhou
样品 编号 | 深度/m | 孔体积/(cm3·g-1) | 孔体积比例/% | 孔隙度/ % | 拟合系数 R2 | 分形维数 DHg | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
中孔 (50~200 nm) | 大孔 (>200 nm) | 总孔 | 中孔 (50~200 nm) | 大孔 (>200 nm) | |||||||||
ZK11 | 1 336.55 | 0.000 0 | 0.000 7 | 0.000 7 | 0 | 100 | 0.13 | 0.96 | 2.813 1 | ||||
ZK12 | 1 337.35 | 0.000 0 | 0.000 5 | 0.000 5 | 0 | 100 | 0.12 | 0.95 | 2.474 7 | ||||
ZK13 | 1 338.86 | 0.000 0 | 0.000 5 | 0.000 5 | 0 | 100 | 0.09 | 0.94 | 2.690 2 | ||||
ZK14 | 1 339.03 | 0.000 4 | 0.000 4 | 0.000 8 | 50 | 50 | 0.16 | 0.87 | 2.216 1 | ||||
ZK15 | 1 339.48 | 0.000 9 | 0.000 4 | 0.001 3 | 69 | 31 | 0.31 | 0.96 | 2.506 9 |
表3 基于压汞实验的黔北松桃地区牛蹄塘组页岩孔隙结构参数表
Table 3 Pore structural parameters for selected Liutitang Formation shale samples in Songtao, northern Guizhou based on mercury intrusion experiment
样品 编号 | 深度/m | 孔体积/(cm3·g-1) | 孔体积比例/% | 孔隙度/ % | 拟合系数 R2 | 分形维数 DHg | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
中孔 (50~200 nm) | 大孔 (>200 nm) | 总孔 | 中孔 (50~200 nm) | 大孔 (>200 nm) | |||||||||
ZK11 | 1 336.55 | 0.000 0 | 0.000 7 | 0.000 7 | 0 | 100 | 0.13 | 0.96 | 2.813 1 | ||||
ZK12 | 1 337.35 | 0.000 0 | 0.000 5 | 0.000 5 | 0 | 100 | 0.12 | 0.95 | 2.474 7 | ||||
ZK13 | 1 338.86 | 0.000 0 | 0.000 5 | 0.000 5 | 0 | 100 | 0.09 | 0.94 | 2.690 2 | ||||
ZK14 | 1 339.03 | 0.000 4 | 0.000 4 | 0.000 8 | 50 | 50 | 0.16 | 0.87 | 2.216 1 | ||||
ZK15 | 1 339.48 | 0.000 9 | 0.000 4 | 0.001 3 | 69 | 31 | 0.31 | 0.96 | 2.506 9 |
图5 黔北松桃地区牛蹄塘组页岩孔径分布图(以ZK11-ZK15为例) a—低温氮气吸附数据的孔隙分布;b—基于压汞数据的孔隙分布。
Fig.5 Pore size distribution plots for selected Liutitang Formation shale samples (ZK11-ZK15) in Songtao, northern Guizhou based on low-temperature nitrogen adsorption (a) and mercury injection data (b)
图6 基于氮气吸附的页岩样品孔隙结构的分形特征
Fig.6 FHH model fitting results for selected shale samples in nitrogen adsorption experiment, revealing the change of pore fractal dimensions in different pore-size ranges
图7 基于高压压汞数据的页岩孔隙分形特征 蓝框区域前面部分代表相对压力较低时汞进入到样品裂隙中,蓝框后半部分为汞进入样品的表面孔隙,该阶段不反映样品内部孔隙结构;红框区域为汞开始进入页岩基质孔隙,对应孔径约3 000 nm,截止点为孔径200 nm;灰色区域表示汞进入孔径为50~200 nm孔隙中;绿色区域表示孔径<50 nm。考虑到高压压汞对小孔隙的测定精确度不高,研究仅针对200 nm以上孔隙的分形维数进行拟合。
Fig.7 Fractal analysis plots for selected shale samples in high-pressure mercury injection experiment, showing the multifractal characteristics
图8 黔北松桃地区牛蹄塘组页岩孔隙结构参数相关关系图 a—氮气吸附比表面积与孔隙体积;b—氮气吸附总孔隙体积与不同孔径孔隙体积;c—氮气吸附比表面积与平均孔径;d—压汞总孔体积与压汞孔隙度。
Fig.8 Correlation relationships between pore structural parameters of the Liutitang Formation shales in Songtao, northern Guizhou
图9 分形维数与孔隙结构参数之间的关系 上面各小图分别显示分形维数D2与D1(a)、孔隙体积(b)和分形维数与平均孔径(c)、比表面积(d)的关系。
Fig.9 Relationship between fractal dimension and pore structural parameters
参数 | 各参数间的相关系数 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
矿物含量 | TOC含量 | D1 | D2 | |||||||
石英 | 钾长石 | 斜长石 | 方解石 | 白云石 | 黄铁矿 | 黏土矿物 | ||||
矿物含量 | ||||||||||
石英 | 1 | |||||||||
钾长石 | -0.102 | 1 | ||||||||
斜长石 | -0.644 | -0.128 | 1 | |||||||
方解石 | 0.423 | 0.085 | -0.029 | 1 | ||||||
白云石 | -0.639 | -0.257 | 0.721 | -0.202 | 1 | |||||
黄铁矿 | -0.609 | 0.106 | 0.296 | -0.157 | 0.14 | 1 | ||||
黏土矿物 | -0.446 | -0.418 | 0.079 | -0.606 | 0.35 | -0.179 | 1 | |||
TOC含量 | -0.58 | 0.244 | 0.368 | -0.555 | 0.156 | 0.573 | 0.076 | 1 | ||
D1 | -0.215 | 0.247 | 0.442 | 0.062 | 0.004 | 0.131 | -0.162 | 0.317 | 1 | |
D2 | -0.371 | 0.188 | 0.412 | -0.247 | 0.05 | 0.521 | -0.185 | 0.696 | 0.713 | 1 |
表4 黔北松桃地区牛蹄塘组页岩矿物含量、TOC含量、分形维数各参数间相关性分析
Table 4 Correlation matrix for mineral components and pore fractal dimensions of the Liutitang Formation shales in Songtao, northern Guizhou
参数 | 各参数间的相关系数 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
矿物含量 | TOC含量 | D1 | D2 | |||||||
石英 | 钾长石 | 斜长石 | 方解石 | 白云石 | 黄铁矿 | 黏土矿物 | ||||
矿物含量 | ||||||||||
石英 | 1 | |||||||||
钾长石 | -0.102 | 1 | ||||||||
斜长石 | -0.644 | -0.128 | 1 | |||||||
方解石 | 0.423 | 0.085 | -0.029 | 1 | ||||||
白云石 | -0.639 | -0.257 | 0.721 | -0.202 | 1 | |||||
黄铁矿 | -0.609 | 0.106 | 0.296 | -0.157 | 0.14 | 1 | ||||
黏土矿物 | -0.446 | -0.418 | 0.079 | -0.606 | 0.35 | -0.179 | 1 | |||
TOC含量 | -0.58 | 0.244 | 0.368 | -0.555 | 0.156 | 0.573 | 0.076 | 1 | ||
D1 | -0.215 | 0.247 | 0.442 | 0.062 | 0.004 | 0.131 | -0.162 | 0.317 | 1 | |
D2 | -0.371 | 0.188 | 0.412 | -0.247 | 0.05 | 0.521 | -0.185 | 0.696 | 0.713 | 1 |
图10 黔北松桃地区牛蹄塘组页岩TOC含量与孔隙结构参数之间的关系 上面各小图分别显示总有机碳(TOC)含量与孔隙比表面积(a)、平均孔径(b)、不同孔径孔隙体积(c)、分形维数(d)的关系。图a和b中焦石坝龙马溪组数据来自文献[21],四川牛蹄塘组数据来自文献[2],宜昌EYY1井数据来自文献[22]。
Fig.10 Relationship between TOC and pore structural parameters of the Liutitang Formation shales in Songtao, northern Guizhou
图11 不同类型页岩孔隙分形维数分布对比 数据来源:(1)—文献[33];(2)—文献[21];(3)—文献[27];(4)—文献[29];(5)—文献[23];(6)—文献[11,28];(7)—文献[34];(8)—文献[35];(9)—文献[18];(10)—焦炭,文献[18];(11)—文献[32];(12)—文献[31];(13)—文献[30]。
Fig.11 Comparison of pore fractal dimensions between different shale formations
[1] | KATZ A J, THOMPSON A H. Fractal sandstone pores: implications for conductivity and pore formation[J]. Frontiers in Public Health, 1985, 54(12): 1325-1328. |
[2] |
YANG F, NING Z F, LIU H Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China[J]. Fuel, 2014, 115: 378-384.
DOI URL |
[3] |
KROHN C E. Fractal measurements of sandstones, shales, and carbonates[J]. Journal of Geophysical Research: Atmospheres, 1988, 93(B4): 3297.
DOI URL |
[4] | 谢和平. 岩土介质的分形孔隙和分形粒子[J]. 力学进展, 1993, 23(2): 145-164. |
[5] |
LIU X P, JIN Z J, LAI J, et al. Fractal behaviors of NMR saturated and centrifugal T2 spectra in oil shale reservoirs: the Paleogene Funing Formation in Subei Basin, China[J]. Marine and Petroleum Geology, 2021, 129: 105069.
DOI URL |
[6] |
LIU K Q, OSTADHASSAN M, KONG L Y. Fractal and multifractal characteristics of pore throats in the Bakken shale[J]. Transport in Porous Media, 2019, 126(3): 579-598.
DOI |
[7] |
LIU K, OSTADHASSAN M, JANG H W, et al. Comparison of fractal dimensions from nitrogen adsorption data in shale via different models[J]. RSC Advances, 2021, 11(4): 2298-2306.
DOI URL |
[8] |
HAN S B, ZHANG J C, LI Y X, et al. Evaluation of Lower Cambrian shale in northern Guizhou Province, South China: implications for shale gas potential[J]. Energy and Fuels, 2013, 27(6): 2933-2941.
DOI URL |
[9] |
ZHANG J P, FAN T L, LI J, et al. Characterization of the Lower Cambrian shale in the northwestern Guizhou Province, South China: implications for shale-gas potential[J]. Energy and Fuels, 2015, 29(10): 6383-6393.
DOI URL |
[10] |
何登发. 中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律[J]. 地学前缘, 2022, 29(6): 24-59.
DOI |
[11] |
徐旭辉, 陆建林, 王保华, 等. 中国海相盆地油气资源动态评价与有利勘探方向[J]. 地学前缘, 2022, 29(6): 73-83.
DOI |
[12] |
TIAN H, PAN L, ZHANG T W, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan depression of Guizhou Province, southwestern China[J]. Marine and Petroleum Geology, 2015, 62: 28-43.
DOI URL |
[13] |
GU Y, DING W L, YIN M, et al. Nanoscale pore characteristics and fractal characteristics of organic-rich shale: an example from the Lower Cambrian Niutitang Formation in the Fenggang block in northern Guizhou Province, South China[J]. Energy Exploration and Exploitation, 2019, 37(1): 273-295.
DOI URL |
[14] | 刘特民. 黔中何时隆起: 从黔北奥陶、志留纪各期沉积环境演变探讨黔中隆起何时形成[J]. 贵州地质, 1987, 4(1): 65-71. |
[15] | 李娟, 于炳松, 张金川, 等. 黔北地区下寒武统黑色页岩储层特征及其影响因素[J]. 石油与天然气地质, 2012, 33(3): 364-374. |
[16] | 王濡岳, 丁文龙, 龚大建, 等. 黔北地区海相页岩气保存条件: 以贵州岑巩区块下寒武统牛蹄塘组为例[J]. 石油与天然气地质, 2016, 37(1): 45-55. |
[17] | PFEIFER P, OBERT M, COLE M W. Fractal BET and FHH theories of adsorption: a comparative study[J]. Proceedings of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences, 1989, 423(1864): 169-188. |
[18] |
YAO Y B, LIU D M, TANG D Z, et al. Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals[J]. International Journal of Coal Geology, 2008, 73(1): 27-42.
DOI URL |
[19] |
PFEIFER P, AVNIR D. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces[J]. The Journal of Chemical Physics, 1983, 79(7): 3558-3565.
DOI URL |
[20] |
PENG N, HE S, HU Q H, et al. Organic nanopore structure and fractal characteristics of Wufeng and lower member of Longmaxi shales in southeastern Sichuan, China[J]. Marine and Petroleum Geology, 2019, 103: 456-472.
DOI URL |
[21] |
YANG R, HE S, YI J Z, et al. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: investigations using FE-SEM, gas adsorption and helium pycnometry[J]. Marine and Petroleum Geology, 2016, 70: 27-45.
DOI URL |
[22] | 马子杰, 唐玄, 张金川, 等. 上扬子地区寒武系牛蹄塘组页岩有机质孔隙发育特征及主控因素[J]. 地学前缘, 2023, 30(3): 124-137. |
[23] |
LIU Z X, YAN D T, NIU X. Insights into pore structure and fractal characteristics of the Lower Cambrian Niutitang Formation shale on the Yangtze platform, South China[J]. Journal of Earth Science, 2020, 31(1): 169-180.
DOI |
[24] |
XI Z D, TANG S H, WANG J, et al. Pore structure and fractal characteristics of Niutitang shale from China[J]. Minerals, 2018, 8(4): 163.
DOI URL |
[25] | 邵德勇, 李艳芳, 张六六, 等. 泥岩微观组构对有机质赋存形式和孔隙发育的影响研究: 以白垩系Eagle Ford页岩为例[J]. 地学前缘, 2023, 30(3): 151-164. |
[26] |
TANG X, ZHANG J C, JIN Z J, et al. Experimental investigation of thermal maturation on shale reservoir properties from hydrous pyrolysis of Chang 7 shale, Ordos Basin[J]. Marine and Petroleum Geology, 2015, 64: 165-172.
DOI URL |
[27] |
SHAO X H, PANG X Q, LI Q W, et al. Pore structure and fractal characteristics of organic-rich shales: a case study of the Lower Silurian Longmaxi shales in the Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2017, 80: 192-202.
DOI URL |
[28] |
SUN W J B, ZUO Y J, WU Z H, et al. Fractal analysis of pores and the pore structure of the Lower Cambrian Niutitang shale in northern Guizhou Province: investigations using NMR, SEM and image analyses[J]. Marine and Petroleum Geology, 2019, 99: 416-428.
DOI URL |
[29] |
LI A, DING W L, HE J H, et al. Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: a case study of Lower Cambrian Qiongzhusi Formation in Malong block of eastern Yunnan Province, South China[J]. Marine and Petroleum Geology, 2016, 70: 46-57.
DOI URL |
[30] | JU W, YOU Y, CHEN Y L, et al. Nanoscale pore structure and fractal characteristics of the continental Yanchang Formation Chang 7 shale in the southwestern Ordos Basin, central China[J]. Energy Science and Engineering, 2019, 7(4): 1188-1200. |
[31] | HUANG Y Q, ZHANG P, ZHANG J C, et al. Fractal characteristics of pores in the Longtan shales of Guizhou, Southwest China[J]. Geofluids, 2020, 2020: 1-16. |
[32] |
ZHANG M, FU X H. Influence of reservoir properties on the adsorption capacity and fractal features of shales from Qinshui coalfield[J]. Journal of Petroleum Science and Engineering, 2019, 177: 650-662.
DOI URL |
[33] |
XIE W D, WANG M, WANG X Q, et al. Nano-pore structure and fractal characteristics of shale gas reservoirs: a case study of Longmaxi Formation in southeastern Chongqing, China[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(1): 343-353.
DOI URL |
[34] |
LIU L, TANG S H, XI Z D. Total organic carbon enrichment and its impact on pore characteristics: a case study from the Niutitang Formation shales in northern Guizhou[J]. Energies, 2019, 12(8): 1480.
DOI URL |
[35] | 薛海腾, 李希建, 陈刘瑜, 等. 黔西突出煤的微观孔隙分形特征及其对渗透率的影响[J]. 煤炭科学技术, 2021, 49(3): 118-122. |
[36] |
TIAN Z H, WEI W, ZHOU S W, et al. Experimental and fractal characterization of the microstructure of shales from Sichuan Basin, China[J]. Energy and Fuels, 2021, 35(5): 3899-3914.
DOI URL |
[37] |
TANG L, SONG Y, JIANG Z X, et al. Pore structure and fractal characteristics of distinct thermally mature shales[J]. Energy and Fuels, 2019, 33(6): 5116-5128.
DOI URL |
[38] | LIU S M, TANG S H, HUO T, et al. Pore structure and fractal characteristics of the Upper Carboniferous shale, eastern Qaidam Basin[J]. Natural Gas Geoscience, 2020, 31(8): 1069-1081. |
[1] | 邬忠虎, 孟祥瑞, 蓝宝锋, 刘敬寿, 巩磊, 杨玉翰. 基于CT试验的黔北凤冈地区牛蹄塘组含方解石脉页岩的力学行为研究[J]. 地学前缘, 2024, 31(5): 117-129. |
[2] | 赵圣贤, 李博, 陈鑫, 刘文平, 张成林, 季春海, 刘永旸, 刘东晨, 曹埒焰, 陈玉龙, 李佳峻, 雷越, 谭静强. 川南天宫堂构造带五峰组—龙马溪组页岩不同纹层内部结构差异及其控制机理[J]. 地学前缘, 2024, 31(5): 75-88. |
[3] | 吴陈君, 刘新社, 文志刚, 妥进才. 黔北地区牛蹄塘组页岩有机质富集及有机质孔隙发育机制研究[J]. 地学前缘, 2023, 30(3): 101-109. |
[4] | 马子杰, 唐玄, 张金川, 翟刚毅, 王玉芳, 梁国栋, 罗欢. 上扬子地区寒武系牛蹄塘组页岩有机质孔隙发育特征及主控因素[J]. 地学前缘, 2023, 30(3): 124-137. |
[5] | 张六六, 陈更新, 乐幸福, 张瑜, 邵德勇, 闫建萍, 孟康, 张同伟. 宜昌地区寒武系页岩层段吸水特征、孔隙结构差异性及对页岩储层评价的意义[J]. 地学前缘, 2023, 30(3): 138-150. |
[6] | 刘秀岩, 陈红汉, 肖雪薇, 李培军, 王保忠. 页岩气成气过程的流体包裹体证据——以重庆秀山剖面下寒武统牛蹄塘组为例[J]. 地学前缘, 2023, 30(3): 165-180. |
[7] | 肖雪薇, 陈红汉, 刘秀岩, 彭中勤, 李培军, 王保忠. 湘西吉首斜坡带下寒武统牛蹄塘组页岩气成气过程的流体包裹体证据:以湘吉地1井为例[J]. 地学前缘, 2023, 30(3): 181-194. |
[8] | 朱平平, 成秋明, 周远志, 张雨维, 孙家振. 基于分形理论的板块形态重建[J]. 地学前缘, 2020, 27(4): 150-157. |
[9] | 王艳艳,何雨江. 土壤分形结构对其水力性质的指示作用[J]. 地学前缘, 2019, 26(6): 66-74. |
[10] | 曾维特,丁文龙,张金川,李玉喜,王濡岳,久凯. 渝东南—黔北地区牛蹄塘组页岩微纳米级孔隙发育特征及主控因素分析 [J]. 地学前缘, 2019, 26(3): 220-235. |
[11] | 吴松涛,朱如凯,李勋,金旭,杨智,毛治国. 致密储层孔隙结构表征技术有效性评价与应用[J]. 地学前缘, 2018, 25(2): 191-203. |
[12] | 陈江湛,曹函,孙平贺. 湘西北牛蹄塘组页岩可压裂性评价[J]. 地学前缘, 2017, 24(6): 390-398. |
[13] | 王濡岳,龚大建,冷济高,王兴华,丛森,丁文龙,付福全,杨滔,赖富强. 黔北地区下寒武统牛蹄塘组页岩储层发育特征:以岑巩区块为例[J]. 地学前缘, 2017, 24(6): 286-299. |
[14] | 周翔,何生,刘萍,俱云娟. 鄂尔多斯盆地代家坪地区长6致密油储层孔隙结构特征及分类评价[J]. 地学前缘, 2016, 23(3): 253-265. |
[15] | 唐书恒,范二平,张松航,姜文. 湘西北下古生界海相页岩储层特征与含气性分析[J]. 地学前缘, 2016, 23(2): 135-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||