地学前缘 ›› 2024, Vol. 31 ›› Issue (5): 103-116.DOI: 10.13745/j.esf.sf.2024.6.29
刘艳祥1,2,3(), 吕文雅2,3,*(
), 曾联波2,3, 李睿琦4, 董少群2,5, 王兆生1, 李彦录2,3,6, 王磊飞6, 冀春秋2,3
收稿日期:
2023-11-15
修回日期:
2024-05-06
出版日期:
2024-09-25
发布日期:
2024-10-11
通信作者:
* 吕文雅(1990—),女,博士,副教授,从事储层裂缝形成、分布及预测与非常规油气田开发地质研究与教学工作。E-mail: wylvwenwen@163.com作者简介:
刘艳祥(1998—),男,硕士研究生,从事储层裂缝形成、分布及预测方面的研究。E-mail: yanxiangliu202209@163.com
基金资助:
LIU Yanxiang1,2,3(), LÜ Wenya2,3,*(
), ZENG Lianbo2,3, LI Ruiqi4, DONG Shaoqun2,5, WANG Zhaosheng1, LI Yanlu2,3,6, WANG Leifei6, JI Chunqiu2,3
Received:
2023-11-15
Revised:
2024-05-06
Online:
2024-09-25
Published:
2024-10-11
摘要:
页岩油储层普遍发育多尺度天然裂缝,天然裂缝是页岩油储层主要的储集空间和渗流通道,多尺度天然裂缝分布规律制约着页岩油气储层高效开发。本文以鄂尔多斯盆地庆城油田长7页岩油储层为例,结合地表露头、岩心、薄片、测井和地震等资料,在划分多尺度裂缝的基础上,明确了多尺度裂缝的发育特征,形成了多尺度裂缝建模方法,建立了典型区块X井区长71储层多尺度裂缝三维离散网络模型。根据蚂蚁体叠后地震属性明确了大尺度裂缝分布特征,用确定性方法建立了大尺度裂缝地质模型;结合储层地质力学方法和常规测井裂缝解释结果,建立了中、小尺度裂缝发育强度约束体,然后以发育强度约束体为约束,协同中、小尺度裂缝参数,采用随机建模方法分别建立了中、小尺度裂缝地质模型。最终将大、中、小尺度裂缝网络模型融合形成多尺度裂缝网络模型,并建立裂缝等效属性模型。结果表明X井区长71大尺度裂缝发育于该区东北部,中尺度裂缝和小尺度裂缝多发育于该区西部、西南部和东北部大尺度裂缝发育位置。建立的多尺度裂缝模型与单井裂缝发育规律和实际生产动态数据吻合,可为庆城地区X井区页岩油气增储上产提供地质依据。
中图分类号:
刘艳祥, 吕文雅, 曾联波, 李睿琦, 董少群, 王兆生, 李彦录, 王磊飞, 冀春秋. 鄂尔多斯盆地庆城油田长7页岩油储层多尺度裂缝三维地质建模[J]. 地学前缘, 2024, 31(5): 103-116.
LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin[J]. Earth Science Frontiers, 2024, 31(5): 103-116.
图1 研究区构造单元位置及沉积相简图(a据文献[38]修改;b据文献[45]修改)
Fig.1 Structural setting (a, modified from [38]) and sedimentary facies map (modified from [45]) of the study area
图3 长71储层大尺度裂缝发育特征 a—长71大尺度裂缝分布特征;b—长71大尺度裂缝走向玫瑰花图(N=102);c—长71大尺度裂缝平面延伸长度(N=102)。
Fig.3 Characteristics of macroscale fracture development in Chang 71 reservoir
图5 长71储层中、小尺度裂缝发育特征 a—中尺度裂缝高度(N=77);b—小尺度裂缝倾角分布特征(N=31);c—小尺度裂缝充填性(N=92);d—小尺度裂缝高度(N=93)。
Fig.5 Characteristics of mesoscale/small-scale fracture development in Chang 71 reservoir
裂缝类型 | 裂缝走向/(°) | 走向占比/% | 裂缝倾角/(°) | 裂缝长度/m | 裂缝开度/μm | ||
---|---|---|---|---|---|---|---|
中尺度裂缝 | 235 | 20 | 80 | 均值 | 17.9 | 均值 | 142 |
105 | 52 | 80 | 最大值 | 50.5 | 最大值 | 204 | |
150 | 12 | 80 | 最小值 | 10.1 | 最小值 | 70 | |
195 | 16 | 80 | 方差 | 64.1 | 方差 | 1 937 | |
小尺度裂缝 | 235 | 20 | 80 | 均值 | 4.4 | 均值 | 81 |
105 | 44 | 80 | 最大值 | 9.9 | 最大值 | 114 | |
150 | 19 | 80 | 最小值 | 1.1 | 最小值 | 42 | |
195 | 17 | 80 | 方差 | 4.4 | 方差 | 451 |
表1 研究区中、小尺度裂缝建模输入参数表
Table 1 Modeling parameters for mesoscale/small-scale fractures in the study area
裂缝类型 | 裂缝走向/(°) | 走向占比/% | 裂缝倾角/(°) | 裂缝长度/m | 裂缝开度/μm | ||
---|---|---|---|---|---|---|---|
中尺度裂缝 | 235 | 20 | 80 | 均值 | 17.9 | 均值 | 142 |
105 | 52 | 80 | 最大值 | 50.5 | 最大值 | 204 | |
150 | 12 | 80 | 最小值 | 10.1 | 最小值 | 70 | |
195 | 16 | 80 | 方差 | 64.1 | 方差 | 1 937 | |
小尺度裂缝 | 235 | 20 | 80 | 均值 | 4.4 | 均值 | 81 |
105 | 44 | 80 | 最大值 | 9.9 | 最大值 | 114 | |
150 | 19 | 80 | 最小值 | 1.1 | 最小值 | 42 | |
195 | 17 | 80 | 方差 | 4.4 | 方差 | 451 |
图10 长71井点平均裂缝等效渗透率值与井点开发初期平均日产液量交汇图
Fig.10 Crossplot showing the relationship between the average fracture equivalent permeability value and the average daily liquid production in the early development stage of well Chang 71
[1] | 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. |
[2] |
邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12.
DOI |
[3] | 曾联波, 吕鹏, 屈雪峰, 等. 致密低渗透储层多尺度裂缝及其形成地质条件[J]. 石油与天然气地质, 2020, 41(3): 449-454. |
[4] | 曾联波. 低渗透砂岩油气储层裂缝及其渗流特征[J]. 地质科学, 2004, 39(1): 11-17. |
[5] | 吕文雅, 曾联波, 张俊辉, 等. 川中下侏罗统致密灰岩储层裂缝的主控因素与发育规律[J]. 地质科学, 2017, 52(3): 943-953. |
[6] | 董文娟, 魏钦廉, 易涛, 等. 合水地区Z240井区长71亚段致密储层非均质性研究[J]. 重庆科技学院学报(自然科学版), 2023, 25(3): 14-22. |
[7] |
钟红利, 卓自敏, 张凤奇, 等. 鄂尔多斯盆地甘泉地区长7页岩油储层非均质性及其控油规律[J]. 特种油气藏, 2023, 30(4): 10-18.
DOI |
[8] | 石道涵, 张矿生, 唐梅荣, 等. 长庆油田页岩油水平井体积压裂技术发展与应用[J]. 石油科技论坛, 2022, 41(3): 10-17. |
[9] | 张矿生, 唐梅荣, 陶亮, 等. 庆城油田页岩油水平井压增渗一体化体积压裂技术[J]. 石油钻探技术, 2022, 50(2): 9-15. |
[10] | RIAHI A, PETTITT W, DAMJANAC B, et al. Numerical modeling of discrete fractures in a field-scale FORGE EGS reservoir[J]. Rock Mechanics and Rock Engineering, 2019, 52(12): 5245-5258. |
[11] | 曾联波. 裂缝在吉林两井低渗透砂岩油田开发中的作用[J]. 西安石油学院学报(自然科学版), 2003, 18(2): 18-21, 4. |
[12] |
王珂, 张荣虎, 方晓刚, 等. 超深层裂缝—孔隙型致密砂岩储层特征与属性建模: 以库车坳陷克深8气藏为例[J]. 中国石油勘探, 2018, 23(6): 87-96.
DOI |
[13] | GUO C L, FU G M, LIU J C, et al. Study on fracture development characteristics of low permeability oilfield and its influence on horizontal well pattern deployment[J]. Chemistry and Technology of Fuels and Oils, 2022, 58(2): 360-364. |
[14] | 谭先红, 范廷恩, 范洪军, 等. 渤中19-6气田裂缝性低渗巨厚储层立体井网部署研究[J]. 中国海上油气, 2021, 33(3): 107-113. |
[15] | 王珂, 张荣虎, 李宝刚, 等. 致密砂岩储层构造裂缝特征及地质建模: 以塔里木盆地库车坳陷大北12气藏为例[J]. 海相油气地质, 2023, 28(1): 72-82. |
[16] |
赵春段, 张介辉, 蒋佩, 等. 页岩气地质工程一体化过程中的多尺度裂缝建模及其应用[J]. 石油物探, 2022, 61(4): 719-732.
DOI |
[17] | PANKAJ P, MUKISA H, SOLOVYEVA I, et al. Boosting oil recovery in naturally fractured shale using CO2 huff-n-puff[C]// SPE Argentina Exploration and Production of Unconventional Resources Symposium, Neuquen, Argentina, 2018: SPE-191823-MS. |
[18] | WILLIAMS-STROUD S C, LEE S, ZALUSKI W. Creating simulation model permeability in fractured impermeable rocks using DFN modeling at the Decatur, Illinois CCS site[C]// the 3rd International Discrete Fracture Network Engineering Conference, Santa Fe, New Mexico, 2022: ARMA-DFNE-22-0091. |
[19] | 王建华. DFN模型裂缝建模新技术[J]. 断块油气田, 2008, 15(6): 55-58. |
[20] |
薛艳梅, 夏东领, 苏宗富, 等. 多信息融合分级裂缝建模[J]. 西南石油大学学报(自然科学版), 2014, 36(2): 57-63.
DOI |
[21] | 郎晓玲, 郭召杰. 基于DFN离散裂缝网络模型的裂缝性储层建模方法[J]. 北京大学学报(自然科学版), 2013, 49(6): 964-972. |
[22] | 孙爽, 赵淑霞, 侯加根, 等. 致密砂岩储层多尺度裂缝分级建模方法: 以红河油田92井区长8储层为例[J]. 石油科学通报, 2019, 4(1): 11-26. |
[23] | LIU Y M, SUN S, DOU L X, et al. An improved probability combination scheme based on principal component analysis and permanence of ratios model -an application to a fractured reservoir modeling, Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107123. |
[24] | LI H, LIN C Y, REN L H, et al. An Integrated quantitative modeling approach for fault-related fractures in tight sandstone reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 194: 107552. |
[25] | 邓永辉, 王华, 衡立群, 等. 火成岩复杂岩性潜山“相控” 裂缝建模及质控方法: 以惠州26-6油田潜山油气藏为例[J]. 科学技术与工程, 2023, 23(18): 7671-7677. |
[26] | 董少群, 曾联波, XU C S, 等. 储层裂缝随机建模方法研究进展[J]. 石油地球物理勘探, 2018, 53(3): 625-641, 8. |
[27] | 董少群, 吕文雅, 夏东领, 等. 致密砂岩储层多尺度裂缝三维地质建模方法[J]. 石油与天然气地质, 2020, 41(3): 627-637. |
[28] | LI Y Y, SHANG Y J, YANG P. Modeling fracture connectivity in naturally fractured reservoirs: a case study in the Yanchang Formation, Ordos Basin, China[J]. Fuel, 2018, 211: 789-796. |
[29] | XU C S, DOWD P. A new computer code for discrete fracture network modelling[J]. Computers and Geosciences, 2010, 36(3): 292-301. |
[30] | 李彦录, 陆诗磊, 夏东领, 等. 鄂尔多斯盆地南部延长组长7油组页岩层系天然裂缝发育特征及主控因素[J]. 地质科学, 2022, 57(1): 73-87. |
[31] | 赵向原, 曾联波, 王晓东, 等. 鄂尔多斯盆地宁县-合水地区长6、 长7、 长8储层裂缝差异性及开发意义[J]. 地质科学, 2015, 50(1): 274-285. |
[32] | 宿晓岑, 巩磊, 高帅, 等. 陇东地区长7段致密储集层裂缝特征及定量预测[J]. 新疆石油地质, 2021, 42(2): 161-167. |
[33] | 杜晓宇, 金之钧, 曾联波, 等. 鄂尔多斯盆地陇东地区长7页岩油储层天然裂缝发育特征与控制因素[J]. 地球科学, 2023, 48(7): 2589-2600. |
[34] | 高金栋. 鄂尔多斯盆地姬塬油田三叠系延长组长7油层组致密砂岩天然裂缝识别与建模[D]. 西安: 西北大学, 2018. |
[35] | 郭惠, 赵红格, 李莹, 等. 鄂尔多斯盆地西部古峰庄地区三叠系延长组长7—长9段裂缝特征及油气意义[J]. 石油实验地质, 2023, 45(1): 109-121. |
[36] | 王晓东, 祖克威, 李向平, 等. 宁合地区长7致密储集层天然裂缝发育特征[J]. 新疆石油地质, 2013, 34(4): 394-397. |
[37] | LÜ W Y, ZENG L B, LÜ P, et al. Insights into the mechanical stratigraphy and vertical fracture patterns in tight oil sandstones: the Upper Triassic Yanchang Formation in the eastern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110247. |
[38] |
付金华, 牛小兵, 淡卫东, 等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探, 2019, 24(5): 601-614.
DOI |
[39] | 高胜利, 魏雪珂, 赵军龙, 等. 鄂尔多斯盆地延长期湖盆底面构造定量化演化规律[J]. 西安科技大学学报, 2023, 43(4): 724-732. |
[40] | 王建民, 王佳媛. 鄂尔多斯盆地伊陕斜坡上的低幅度构造与油气富集[J]. 石油勘探与开发, 2013, 40(1): 49-57. |
[41] |
付金华, 牛小兵, 李明瑞, 等. 鄂尔多斯盆地延长组7段3亚段页岩油风险勘探突破与意义[J]. 石油学报, 2022, 43(6): 760-769, 787.
DOI |
[42] | 杨华, 窦伟坦, 刘显阳, 等. 鄂尔多斯盆地三叠系延长组长7沉积相分析[J]. 沉积学报, 2010, 28(2): 254-263. |
[43] | 杨华. 鄂尔多斯盆地三叠系延长组沉积体系及含油性研究[D]. 成都: 成都理工大学, 2004. |
[44] | 时建超, 屈雪峰, 雷启鸿, 等. 陆相湖盆深水重力流沉积特征、 砂体结构研究及油气勘探意义: 以鄂尔多斯盆地上三叠统长7油层组为例[J]. 地质与勘探, 2018, 54(1): 183-192. |
[45] | 陈朝晖. 鄂尔多斯盆地庆城油田西233区块长7油层组沉积构型研究[D]. 北京: 中国石油大学(北京), 2022. |
[46] | 付金华, 喻建, 徐黎明, 等. 鄂尔多斯盆地致密油勘探开发新进展及规模富集可开发主控因素[J]. 中国石油勘探, 2015, 20(5): 9-19. |
[47] | 赵振宇, 郭彦如, 王艳, 等. 鄂尔多斯盆地构造演化及古地理特征研究进展[J]. 特种油气藏, 2012, 19(5): 15-20, 151. |
[48] | WANG L L, WEI J X, HUANG P, et al. Seismic prediction method of multiscale fractured reservoir[J]. Applied Geophysics, 2018, 15(2): 240-252. |
[49] | CHEN S Q, ZENG L B, HUANG P, et al. The application study on the multi-scales integrated prediction method to fractured reservoir description[J]. Applied Geophysics, 2016, 13(1): 80-92. |
[50] | 代瑞雪, 冉崎, 关旭, 等. 多尺度裂缝地震综合预测方法: 以川中地区下寒武统龙王庙组气藏为例[J]. 天然气勘探与开发, 2017, 40(2): 38-44. |
[51] | 彭仕宓, 索重辉, 王晓杰, 等. 整合多尺度信息的裂缝性储层建模方法探讨[J]. 西安石油大学学报(自然科学版), 2011, 26(4): 1-8. |
[52] | 刘俊州, 韩磊, 时磊, 等. 致密砂岩储层多尺度裂缝地震预测技术: 以川西XC地区为例[J]. 石油与天然气地质, 2021, 42(3): 747-754. |
[53] | 刘建军, 吴明洋, 宋睿, 等. 低渗透油藏储层多尺度裂缝的建模方法研究[J]. 西南石油大学学报(自然科学版), 2017, 39(4): 90-103. |
[54] |
苏皓, 雷征东, 李俊超, 等. 储集层多尺度裂缝高效数值模拟模型[J]. 石油学报, 2019, 40(5): 587-593, 634.
DOI |
[55] | CHUGUNOVA T, CORPEL V, GOMEZ J P. Explicit fracture network modelling: from multiple point statistics to dynamic simulation[J]. Mathematical Geosciences, 2017, 49(4): 541-553. |
[56] |
梁志强. 不同尺度裂缝的叠后地震预测技术研究[J]. 石油物探, 2019, 58(5): 766-772.
DOI |
[57] | 吕文雅, 曾联波, 陈双全, 等. 致密低渗透砂岩储层多尺度天然裂缝表征方法[J]. 地质论评, 2021, 67(2): 543-556. |
[58] | ASHRAF U, ZHANG H C, ANEES A, et al. Application of unconventional seismic attributes and unsupervised machine learning for the identification of fault and fracture network[J]. Applied Sciences, 2020, 10(11): 3864. |
[59] | SOUCHE L, ASTRATTI D, AARRE V, et al. A dual representation of multiscale fracture network modelling: application to a giant UAE carbonate field[J]. First Break, 2012, 30(5): 43-52. |
[60] | 张亚春, 尹太举, 周文. 在蚂蚁属性体约束下的裂缝建模方法研究[J]. 长江大学学报(自科版), 2016, 13(14): 16-21, 2-3. |
[61] | WANG G C, BHATTACHARYA S. Natural fracture mapping and discrete fracture network modeling of Wolfcamp Formation in hydraulic fracturing test site phase 1 area, Midland Basin: fractures from 3D seismic data, image log, and core[J]. Marine and Petroleum Geology, 2023, 157: 106474. |
[62] | BHATTACHARYA S, VERMA S. Application of volumetric seismic attributes for complex fault network characterization on the North Slope, Alaska[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 56-67. |
[63] | LIU B, YASIN Q, SOHAIL G M, et al. Seismic characterization of fault and fractures in deep buried carbonate reservoirs using CNN-LSTM based deep neural networks[J]. Geoenergy Science and Engineering, 2023, 229: 212126. |
[64] | LÜ W Y, ZENG L B, LIU Z Q, et al. Fracture responses of conventional logs in tight-oil sandstones: a case study of the Upper Triassic Yanchang Formation in southwest Ordos Basin, China[J]. AAPG Bulletin, 2016, 100(9): 1399-1417. |
[65] | LI H, LIN C Y, REN L H, et al. Quantitative prediction of multi-period tectonic fractures based on integrated geological-geophysical and geomechanics data in deep carbonate reservoirs of Halahatang oilfield in northern Tarim Basin[J]. Marine and Petroleum Geology, 2021, 134: 105377. |
[66] |
丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74.
DOI |
[67] | 高中亮, 李洪博, 张丽丽, 等. 有限元数值模拟技术在潜山裂缝定量预测中的应用: 以珠江口盆地惠州凹陷惠州26构造为例[J]. 地质论评, 2023, 69(2): 591-602. |
[68] | ZHAO W T, HOU G T. Fracture prediction in the tight-oil reservoirs of the Triassic Yanchang Formation in the Ordos Basin, Northern China[J]. Petroleum Science, 2017, 14(1): 141. |
[69] | LIU J S, YANG H M, BAI J P, et al. Numerical simulation to determine the fracture aperture in a typical basin of China[J]. Fuel, 2021, 283: 118952. |
[70] | 赵向原, 游瑜春, 胡向阳, 等. 基于成因机理及主控因素约束的多尺度裂缝“分级-分期-分组” 建模方法: 以四川盆地元坝地区上二叠统长兴组生物礁相碳酸盐岩储层为例[J]. 石油与天然气地质, 2023, 44(1): 213-225. |
[71] | ZAMBRANO M, TONDI E, KORNEVA I, et al. Fracture properties analysis and discrete fracture network modelling of faulted tight limestones, Murge Plateau, Italy[J]. Italian Journal of Geosciences, 2016, 135(1): 55-67. |
[72] | 姜晓宇, 宋涛, 甘利灯, 等. 花岗岩潜山裂缝型储层多尺度建模与应用[J]. 石油地球物理勘探, 2023, 58(2): 403-411. |
[1] | 潘磊, 杜红权, 李雷涛, 龙涛, 殷雪峰. 川东北元坝地区上三叠统须家河组天然裂缝发育特征与主控因素[J]. 地学前缘, 2024, 31(5): 156-165. |
[2] | 高玉巧, 花彩霞, 蔡潇, 白鸾羲, 卢葭. 苏北盆地溱潼凹陷阜宁组二段页岩油储层裂缝形成机制及对烃类赋存的影响[J]. 地学前缘, 2024, 31(5): 35-45. |
[3] | 陈如彪, 王玉满, 黄正良, 李维岭, 闫伟, 梁峰, 郭玮. 鄂尔多斯盆地西北缘海相页岩裂缝孔隙发育特征与页岩气富集模式:以奥陶系乌拉力克组为例[J]. 地学前缘, 2024, 31(5): 46-60. |
[4] | 乔辉, 张永贵, 聂海宽, 彭勇民, 张珂, 苏海琨. 页岩储层多尺度天然裂缝表征与三维地质建模:以四川盆地平桥构造带五峰组-龙马溪组页岩为例[J]. 地学前缘, 2024, 31(5): 89-102. |
[5] | 巩磊, 秦欣楠, 高帅, 付晓飞, 宿晓岑, 王杰. 变质岩潜山多尺度裂缝发育特征及裂缝网络结构模式:以渤中Z变质岩潜山为例[J]. 地学前缘, 2024, 31(5): 332-343. |
[6] | 邱林飞, 李子颖, 张字龙, 王龙辉, 李振成, 韩美芝, 王婷婷. 鄂尔多斯盆地北部下白垩统赋矿砂岩中有机质特征及其与铀成矿的关系[J]. 地学前缘, 2024, 31(4): 281-296. |
[7] | 苏恺明, 徐耀辉, 徐旺林, 张月巧, 白斌, 李阳, 严刚. 鄂尔多斯盆地延长组多油源贡献比例与分布规律:基于机器学习与可解释性研究[J]. 地学前缘, 2024, 31(3): 530-540. |
[8] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[9] | 刘池洋, 张龙, 黄雷, 吴柏林, 王建强, 张东东, 谭成仟, 马艳萍, 赵建社. 砂岩型铀矿形成的新模式:来自深部有机流体的成矿作用[J]. 地学前缘, 2024, 31(1): 368-383. |
[10] | 孙科, 刘慧卿, 王敬, 刘人杰, 冯亚斌, 康志江, 张允. 深层碳酸盐岩缝洞介质应力敏感特性研究[J]. 地学前缘, 2023, 30(6): 351-364. |
[11] | 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区早二叠世构造-沉积环境与原型盆地演化[J]. 地学前缘, 2023, 30(2): 139-153. |
[12] | 刘晓磊, 李伟甲, 陆杨, 李星宇, 张淑玉, 余和雨. 南海北部大陆边缘沉积物波分布特征及形成机制研究进展[J]. 地学前缘, 2023, 30(2): 81-95. |
[13] | 刘震, 朱茂林, 潘高峰, 夏鲁, 卢朝进, 刘明洁, 刘静静, 侯英杰. 鄂尔多斯盆地中南部地区延长组砂岩溶蚀增孔模型的建立与应用[J]. 地学前缘, 2023, 30(2): 96-108. |
[14] | 王香增. 鄂尔多斯盆地延长探区低渗致密油气成藏理论进展及勘探实践[J]. 地学前缘, 2023, 30(1): 143-155. |
[15] | 付金华. 鄂尔多斯盆地太原组致密灰岩天然气成藏地质特征与勘探潜力[J]. 地学前缘, 2023, 30(1): 20-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||