地学前缘 ›› 2023, Vol. 30 ›› Issue (6): 371-390.DOI: 10.13745/j.esf.sf.2023.5.80
杨梦凡1(), 邱昆峰1,*(
), 何登洋1, 黄雅琪1, 王玉玺2,3, 付男2, 于皓丞1, 薛宪法1
收稿日期:
2022-10-28
修回日期:
2023-05-22
出版日期:
2023-11-25
发布日期:
2023-11-25
通信作者:
* 邱昆峰(1986—),男,教授,博士生导师,主要从事矿床学研究工作。E-mail: 作者简介:
杨梦凡(2001—),女,硕士研究生,地质学专业。E-mail: ymf_pl@qq.com
基金资助:
YANG Mengfan1(), QIU Kunfeng1,*(
), HE Dengyang1, HUANG Yaqi1, WANG Yuxi2,3, FU Nan2, YU Haocheng1, XUE Xianfa1
Received:
2022-10-28
Revised:
2023-05-22
Online:
2023-11-25
Published:
2023-11-25
摘要:
西秦岭造山带在晚三叠世期间由华北板块和华南板块碰撞拼合而成。其地质演化历史复杂,岩浆活动频繁,矿产资源丰富,区内累计探明黄金储量大于1 200 t。然而,金矿床成因还存在卡林型、造山型、岩浆热液型和与侵入体相关等多种观点。完肯金矿床金资源量约3.5 t,位于西秦岭造山带西南段,赋存于下三叠统隆务河组浅变质沉积岩中,矿体主要受近EW和NW-SE向断裂控制,主要发育浸染状和细脉网脉状矿化,是区域内典型金矿床,也是理想的研究对象。本文通过开展岩石学、矿相学和载金硫化物地球化学研究,拟查明金的赋存状态,并探讨其矿床成因。研究表明完肯金矿床成矿作用可以分为3个阶段:成矿早阶段为黄铁矿(Py1)-石英-绢云母-绿泥石阶段;成矿主阶段为黄铁矿(Py2)-毒砂-石英-绢云母-绿泥石阶段;成矿晚阶段为石英-方解石-闪锌矿-方铅矿-辉锑矿阶段。电子探针分析数据(已检出的样品)显示黄铁矿金的含量(质量分数)为0.11%~0.24%,毒砂和闪锌矿金的含量分别为0.11%~0.28%和0.16%~0.37%。黄铁矿、毒砂样品中的金含量大多低于检测限,闪锌矿样品中金含量相对较高,70%的测点金含量高于0.15%,表明Au在硫化物中分布不均匀。黄铁矿Au/As值为0.007~0.20,均大于0.004,且在扫描电镜下未观察到自然金,表明完肯金矿床金主要以纳米级金颗粒或晶格金的形式赋存。此外,黄铁矿和毒砂中Fe-As、S-As的负相关关系揭示,Au主要是通过进入富As的八面体Fe结构位和化学吸附的方式进入载金硫化物。黄铁矿的Fe含量为45.41%~46.26%,S含量为51.48%~52.79%,其Fe/S(原子个数比)大于0.875,表明其为变质热液成因黄铁矿。成矿主阶段毒砂As含量为42.80%~46.52%,晚阶段闪锌矿Fe、Zn含量分别为1.77%~2.57%和63.75%~64.82%。进而,通过毒砂和闪锌矿温度计估算出成矿主阶段温度大致为(385±40) ℃,硫逸度lgf(S2)为-7.55±1.45,成矿晚阶段温度为(251±7) ℃,表明矿床形成于中高温变质热液流体作用。综合完肯金矿床载金硫化物矿物学、地球化学特征和前人热力学模拟研究揭示,完肯金矿床金的主要络合形式为$\mathrm{Au}(\mathrm{HS})_{2}^{-}$和Au(HS)0。大规模的水岩反应和强烈的围岩硫化作用,诱发成矿流体中HS-浓度降低,从而导致金溶解度降低和金-硫络合物失稳,形成含金硫化物。因此,硫化作用可能是完肯金矿床金沉淀的主导机制。结合矿床地质特征,本文认为完肯金矿床属于造山型金矿床。
中图分类号:
杨梦凡, 邱昆峰, 何登洋, 黄雅琪, 王玉玺, 付男, 于皓丞, 薛宪法. 西秦岭完肯金矿床载金硫化物矿物学和地球化学特征[J]. 地学前缘, 2023, 30(6): 371-390.
YANG Mengfan, QIU Kunfeng, HE Dengyang, HUANG Yaqi, WANG Yuxi, FU Nan, YU Haocheng, XUE Xianfa. Mineralogy and geochemistry of gold-bearing sulfides in the Wanken gold deposit, West Qinling Orogen[J]. Earth Science Frontiers, 2023, 30(6): 371-390.
图4 完肯金矿床矿区EW8勘探线A-A’剖面地质图(据文献[54]修改)
Fig.4 Geological profile A-A’ along survey line EW8 (see Fig.3 for EW8 location) in the Wanken gold deposit. Modified after [54].
图5 完肯金矿床主要矿石类型 a—浸染状黄铁矿化板岩矿石;b—浸染状黄铁矿化砂岩矿石;c—浸染状黄铁矿化、毒砂化黑云母花岗斑岩矿石;d—石英-方解石-闪锌矿细脉状矿石。Py—黄铁矿;Sp—闪锌矿;Qz—石英;Cc—方解石。
Fig.5 Mineralization styles at the Wanken gold deposit
图6 完肯金矿床典型围岩蚀变类型 a—石英黄铁矿脉中发育绢云母化、硅化和少量碳酸岩化;b—浸染状砂岩矿石中发育绢云母化、硫化、硅化;c—浸染状黑云母花岗斑岩矿石中发育的绢云母化和硫化;d—石英-方解石-闪锌矿细脉状矿石中发育大量碳酸盐化和浸染状硫化。Py—黄铁矿;Sp—闪锌矿;Gn—方铅矿;Stb—辉锑矿;Qz—石英;Cc—方解石;Bt—黑云母;Ser—绢云母。
Fig.6 Typical wall-rock alteration styles at the Wanken gold deposit
图7 完肯金矿床载金硫化物显微特征 a—成矿早阶段大颗粒它形-半自形溶蚀黄铁矿(Py1);b—具有核边结构的成矿早阶段黄铁矿,边部较为平整光滑,核部发育溶蚀结构;c—成矿主阶段黄铁矿(Py2)与毒砂(Apy)共生,呈交代接触关系;d—成矿主阶段小颗粒它形粒状黄铁矿;e—成矿主阶段放射状毒砂;f—成矿主阶段浸染状小颗粒毒砂;g—成矿晚阶段发育的闪锌矿、方铅矿和辉锑矿;h—成矿晚阶段辉锑矿包裹细粒它形方铅矿;i—成矿晚阶段大颗粒自形-半自形方铅矿。Py—黄铁矿;Apy—毒砂;Sp—闪锌矿;Gn—方铅矿;Stb—辉锑矿;Qz—石英;Cc—方解石。
Fig.7 Micropetrographic characteristics of gold-bearing sulfides in the Wanken gold deposit
样品号 | 测点 | wB/% | As/S | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | S | Fe | Ag | Cu | Sb | Zn | Cd | Au | 总量 | ||||
19WK1-1 | 1 | 44.58 | 20.70 | 34.50 | 0.02 | — | 0.02 | 0.05 | 0.06 | 0.23 | 100.16 | 2.153 6 | |
19WK1-1 | 2 | 43.73 | 21.25 | 34.56 | — | — | — | — | 0.07 | — | 99.61 | 2.057 9 | |
19WK1-1 | 3 | 44.01 | 20.96 | 34.11 | 0.04 | — | 0.04 | — | — | 0.14 | 99.30 | 2.099 7 | |
19WK1-1 | 4 | 43.80 | 20.96 | 34.76 | 0.03 | 0.05 | 0.14 | — | — | — | 99.74 | 2.089 7 | |
19WK1-1 | 5 | 44.73 | 20.80 | 34.30 | — | — | 0.05 | — | — | — | 99.88 | 2.150 5 | |
19WK1-1 | 11 | 43.51 | 20.84 | 34.50 | 0.02 | — | 0.05 | — | — | — | 98.92 | 2.087 8 | |
19WK1-1 | 12 | 44.83 | 20.37 | 34.39 | — | 0.03 | 0.04 | — | — | — | 99.66 | 2.200 8 | |
19WK1-1 | 13 | 45.35 | 20.03 | 34.17 | — | — | — | — | — | 0.23 | 99.78 | 2.264 1 | |
19WK1-1 | 14 | 43.78 | 20.97 | 34.52 | 0.04 | 0.07 | 0.05 | — | 0.05 | — | 99.48 | 2.087 7 | |
19WK1-1 | 15 | 42.80 | 21.49 | 34.72 | 0.06 | — | — | — | — | — | 99.07 | 1.991 6 | |
19WK1-1 | 16 | 43.94 | 20.78 | 34.20 | — | 0.03 | 0.04 | — | — | — | 98.99 | 2.114 5 | |
19WK1-1 | 17 | 45.40 | 19.97 | 34.31 | 0.05 | — | 0.09 | 0.04 | 0.05 | — | 99.91 | 2.273 4 | |
19WK1-1 | 18 | 45.02 | 20.54 | 34.34 | 0.02 | — | 0.09 | — | — | — | 100.01 | 2.191 8 | |
19WK1-1 | 19 | 44.74 | 20.89 | 34.41 | — | — | 0.03 | — | — | — | 100.07 | 2.141 7 | |
19WK1-1 | 20 | 46.52 | 19.55 | 33.98 | — | — | — | — | — | — | 100.05 | 2.379 5 | |
19WK1-1 | 21 | 43.58 | 21.65 | 34.85 | — | — | — | — | — | — | 100.08 | 2.012 9 | |
19WK1-1 | 26 | 44.26 | 20.90 | 34.61 | — | — | — | — | — | — | 99.77 | 2.117 7 | |
19WK1-1 | 27 | 43.38 | 21.32 | 34.53 | — | — | 0.03 | — | — | 0.28 | 99.54 | 2.034 7 | |
19WK1-1 | 28 | 43.61 | 21.14 | 34.52 | 0.02 | — | 0.33 | 0.08 | — | 0.11 | 99.81 | 2.062 9 | |
19WK1-1 | 29 | 43.80 | 20.90 | 34.48 | 0.02 | — | 0.02 | 0.04 | — | — | 99.26 | 2.095 7 | |
19WK1-1 | 30 | 43.21 | 21.35 | 34.65 | — | — | 0.08 | — | — | — | 99.29 | 2.023 9 | |
21WK03 | 1 | 43.64 | 21.23 | 34.77 | 0.02 | — | — | — | — | — | 99.66 | 2.055 6 | |
21WK03 | 2 | 45.55 | 19.53 | 33.93 | — | — | — | — | — | 0.12 | 99.13 | 2.332 3 | |
21WK03 | 3 | 43.76 | 20.58 | 34.45 | — | — | 0.20 | — | — | — | 98.99 | 2.126 3 | |
21WK03 | 4 | 43.77 | 20.42 | 34.15 | — | — | 0.47 | — | — | — | 98.81 | 2.143 5 | |
21WK03 | 5 | 43.67 | 20.94 | 34.53 | — | — | 0.51 | — | — | — | 99.65 | 2.085 5 | |
21WK03 | 6 | 43.81 | 20.85 | 34.47 | — | — | 0.28 | — | — | — | 99.41 | 2.101 2 | |
21WK03 | 7 | 43.21 | 21.18 | 33.64 | — | 0.04 | 0.52 | — | — | — | 98.59 | 2.040 1 | |
21WK03 | 8 | 43.57 | 21.33 | 34.58 | — | — | — | — | — | — | 99.48 | 2.042 7 |
表1 完肯金矿床毒砂电子探针分析结果
Table 1 EMPA data for arsenopyrite from the Wanken gold deposit
样品号 | 测点 | wB/% | As/S | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | S | Fe | Ag | Cu | Sb | Zn | Cd | Au | 总量 | ||||
19WK1-1 | 1 | 44.58 | 20.70 | 34.50 | 0.02 | — | 0.02 | 0.05 | 0.06 | 0.23 | 100.16 | 2.153 6 | |
19WK1-1 | 2 | 43.73 | 21.25 | 34.56 | — | — | — | — | 0.07 | — | 99.61 | 2.057 9 | |
19WK1-1 | 3 | 44.01 | 20.96 | 34.11 | 0.04 | — | 0.04 | — | — | 0.14 | 99.30 | 2.099 7 | |
19WK1-1 | 4 | 43.80 | 20.96 | 34.76 | 0.03 | 0.05 | 0.14 | — | — | — | 99.74 | 2.089 7 | |
19WK1-1 | 5 | 44.73 | 20.80 | 34.30 | — | — | 0.05 | — | — | — | 99.88 | 2.150 5 | |
19WK1-1 | 11 | 43.51 | 20.84 | 34.50 | 0.02 | — | 0.05 | — | — | — | 98.92 | 2.087 8 | |
19WK1-1 | 12 | 44.83 | 20.37 | 34.39 | — | 0.03 | 0.04 | — | — | — | 99.66 | 2.200 8 | |
19WK1-1 | 13 | 45.35 | 20.03 | 34.17 | — | — | — | — | — | 0.23 | 99.78 | 2.264 1 | |
19WK1-1 | 14 | 43.78 | 20.97 | 34.52 | 0.04 | 0.07 | 0.05 | — | 0.05 | — | 99.48 | 2.087 7 | |
19WK1-1 | 15 | 42.80 | 21.49 | 34.72 | 0.06 | — | — | — | — | — | 99.07 | 1.991 6 | |
19WK1-1 | 16 | 43.94 | 20.78 | 34.20 | — | 0.03 | 0.04 | — | — | — | 98.99 | 2.114 5 | |
19WK1-1 | 17 | 45.40 | 19.97 | 34.31 | 0.05 | — | 0.09 | 0.04 | 0.05 | — | 99.91 | 2.273 4 | |
19WK1-1 | 18 | 45.02 | 20.54 | 34.34 | 0.02 | — | 0.09 | — | — | — | 100.01 | 2.191 8 | |
19WK1-1 | 19 | 44.74 | 20.89 | 34.41 | — | — | 0.03 | — | — | — | 100.07 | 2.141 7 | |
19WK1-1 | 20 | 46.52 | 19.55 | 33.98 | — | — | — | — | — | — | 100.05 | 2.379 5 | |
19WK1-1 | 21 | 43.58 | 21.65 | 34.85 | — | — | — | — | — | — | 100.08 | 2.012 9 | |
19WK1-1 | 26 | 44.26 | 20.90 | 34.61 | — | — | — | — | — | — | 99.77 | 2.117 7 | |
19WK1-1 | 27 | 43.38 | 21.32 | 34.53 | — | — | 0.03 | — | — | 0.28 | 99.54 | 2.034 7 | |
19WK1-1 | 28 | 43.61 | 21.14 | 34.52 | 0.02 | — | 0.33 | 0.08 | — | 0.11 | 99.81 | 2.062 9 | |
19WK1-1 | 29 | 43.80 | 20.90 | 34.48 | 0.02 | — | 0.02 | 0.04 | — | — | 99.26 | 2.095 7 | |
19WK1-1 | 30 | 43.21 | 21.35 | 34.65 | — | — | 0.08 | — | — | — | 99.29 | 2.023 9 | |
21WK03 | 1 | 43.64 | 21.23 | 34.77 | 0.02 | — | — | — | — | — | 99.66 | 2.055 6 | |
21WK03 | 2 | 45.55 | 19.53 | 33.93 | — | — | — | — | — | 0.12 | 99.13 | 2.332 3 | |
21WK03 | 3 | 43.76 | 20.58 | 34.45 | — | — | 0.20 | — | — | — | 98.99 | 2.126 3 | |
21WK03 | 4 | 43.77 | 20.42 | 34.15 | — | — | 0.47 | — | — | — | 98.81 | 2.143 5 | |
21WK03 | 5 | 43.67 | 20.94 | 34.53 | — | — | 0.51 | — | — | — | 99.65 | 2.085 5 | |
21WK03 | 6 | 43.81 | 20.85 | 34.47 | — | — | 0.28 | — | — | — | 99.41 | 2.101 2 | |
21WK03 | 7 | 43.21 | 21.18 | 33.64 | — | 0.04 | 0.52 | — | — | — | 98.59 | 2.040 1 | |
21WK03 | 8 | 43.57 | 21.33 | 34.58 | — | — | — | — | — | — | 99.48 | 2.042 7 |
图9 完肯金矿床黄铁矿(Py1, Py2)、毒砂(Apy)电子探针成分剖面图
Fig.9 Element compositional variations in pyrite (Py1, Py2) and arsenopyrite (Apy) from the Wanken gold deposit
样品号 | 测点 | wB/% | Au/As | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | S | Fe | Ag | Cu | Sb | Zn | Cd | Au | 总量 | ||||
Py1 | |||||||||||||
19WK3-1 | 2 | 1.74 | 52.15 | 46.02 | — | — | — | — | — | — | 99.91 | — | |
19WK3-1 | 3 | 1.96 | 52.06 | 46.05 | — | — | — | — | — | — | 100.07 | — | |
19WK3-1 | 4 | 1.64 | 52.34 | 45.86 | — | — | — | — | — | — | 99.84 | — | |
19WK3-1 | 6 | 1.20 | 52.35 | 46.04 | — | — | — | — | — | — | 99.59 | — | |
19WK3-1 | 7 | 1.75 | 51.83 | 45.59 | 0.02 | — | — | — | 0.03 | — | 99.22 | — | |
19WK3-1 | 8 | 2.15 | 51.96 | 45.64 | — | — | — | — | — | — | 99.75 | — | |
19WK3-1 | 9 | 2.07 | 51.88 | 45.58 | 0.03 | — | — | — | — | 0.14 | 99.70 | 0.067 6 | |
19WK3-1 | 10 | 1.70 | 52.05 | 45.75 | — | — | — | — | — | 0.12 | 99.62 | 0.070 6 | |
19WK3-1 | 11 | 2.09 | 51.83 | 45.81 | — | 0.07 | — | — | — | — | 99.80 | — | |
19WK3-1 | 12 | 1.79 | 51.90 | 45.79 | — | 0.04 | — | — | 0.04 | 0.22 | 99.78 | 0.122 9 | |
19WK3-1 | 13 | 1.38 | 52.10 | 45.69 | — | — | — | — | 0.02 | — | 99.19 | — | |
Py2 | |||||||||||||
19WK3-1 | 1 | 1.23 | 52.58 | 46.26 | — | — | — | — | — | 0.24 | 100.31 | 0.195 1 | |
19WK3-1 | 5 | 1.31 | 52.49 | 46.09 | — | — | — | — | — | — | 99.89 | — | |
19WK1-1 | 6 | 0.82 | 52.79 | 46.16 | — | — | — | — | — | — | 99.77 | — | |
19WK1-1 | 7 | 1.06 | 52.65 | 46.12 | — | — | — | — | — | — | 99.83 | — | |
19WK1-1 | 8 | 0.81 | 52.75 | 46.05 | — | — | — | — | — | — | 99.61 | — | |
19WK1-1 | 9 | 1.30 | 52.41 | 45.91 | — | 0.03 | — | — | — | — | 99.65 | — | |
19WK1-1 | 10 | 1.27 | 52.44 | 45.95 | — | — | 0.02 | — | — | 0.11 | 99.79 | 0.086 6 | |
19WK1-1 | 22 | 1.67 | 51.66 | 45.41 | — | 0.07 | — | 0.05 | — | — | 98.86 | — | |
19WK1-1 | 23 | 1.21 | 52.41 | 46.01 | — | — | — | — | — | — | 99.63 | — | |
19WK1-1 | 24 | 2.33 | 51.48 | 45.47 | 0.02 | — | — | — | — | — | 99.30 | — | |
19WK1-1 | 25 | 2.10 | 51.89 | 45.69 | — | — | — | — | — | — | 99.68 | — |
表2 完肯金矿床黄铁矿电子探针分析结果
Table 2 EMPA data for pyrite from the Wanken gold deposit
样品号 | 测点 | wB/% | Au/As | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | S | Fe | Ag | Cu | Sb | Zn | Cd | Au | 总量 | ||||
Py1 | |||||||||||||
19WK3-1 | 2 | 1.74 | 52.15 | 46.02 | — | — | — | — | — | — | 99.91 | — | |
19WK3-1 | 3 | 1.96 | 52.06 | 46.05 | — | — | — | — | — | — | 100.07 | — | |
19WK3-1 | 4 | 1.64 | 52.34 | 45.86 | — | — | — | — | — | — | 99.84 | — | |
19WK3-1 | 6 | 1.20 | 52.35 | 46.04 | — | — | — | — | — | — | 99.59 | — | |
19WK3-1 | 7 | 1.75 | 51.83 | 45.59 | 0.02 | — | — | — | 0.03 | — | 99.22 | — | |
19WK3-1 | 8 | 2.15 | 51.96 | 45.64 | — | — | — | — | — | — | 99.75 | — | |
19WK3-1 | 9 | 2.07 | 51.88 | 45.58 | 0.03 | — | — | — | — | 0.14 | 99.70 | 0.067 6 | |
19WK3-1 | 10 | 1.70 | 52.05 | 45.75 | — | — | — | — | — | 0.12 | 99.62 | 0.070 6 | |
19WK3-1 | 11 | 2.09 | 51.83 | 45.81 | — | 0.07 | — | — | — | — | 99.80 | — | |
19WK3-1 | 12 | 1.79 | 51.90 | 45.79 | — | 0.04 | — | — | 0.04 | 0.22 | 99.78 | 0.122 9 | |
19WK3-1 | 13 | 1.38 | 52.10 | 45.69 | — | — | — | — | 0.02 | — | 99.19 | — | |
Py2 | |||||||||||||
19WK3-1 | 1 | 1.23 | 52.58 | 46.26 | — | — | — | — | — | 0.24 | 100.31 | 0.195 1 | |
19WK3-1 | 5 | 1.31 | 52.49 | 46.09 | — | — | — | — | — | — | 99.89 | — | |
19WK1-1 | 6 | 0.82 | 52.79 | 46.16 | — | — | — | — | — | — | 99.77 | — | |
19WK1-1 | 7 | 1.06 | 52.65 | 46.12 | — | — | — | — | — | — | 99.83 | — | |
19WK1-1 | 8 | 0.81 | 52.75 | 46.05 | — | — | — | — | — | — | 99.61 | — | |
19WK1-1 | 9 | 1.30 | 52.41 | 45.91 | — | 0.03 | — | — | — | — | 99.65 | — | |
19WK1-1 | 10 | 1.27 | 52.44 | 45.95 | — | — | 0.02 | — | — | 0.11 | 99.79 | 0.086 6 | |
19WK1-1 | 22 | 1.67 | 51.66 | 45.41 | — | 0.07 | — | 0.05 | — | — | 98.86 | — | |
19WK1-1 | 23 | 1.21 | 52.41 | 46.01 | — | — | — | — | — | — | 99.63 | — | |
19WK1-1 | 24 | 2.33 | 51.48 | 45.47 | 0.02 | — | — | — | — | — | 99.30 | — | |
19WK1-1 | 25 | 2.10 | 51.89 | 45.69 | — | — | — | — | — | — | 99.68 | — |
图10 完肯金矿床黄铁矿(a-c)、毒砂(d-f)和闪锌矿(g-i)主微量元素图解
Fig.10 EMPA major element composition of (a-c) pyrite (Py1, Py2), (d-f) arsenopyrite (Apy) and (g-i) sphalerite (Sp) from the Wanken gold deposit
样品号 | 测点 | wB/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
As | S | Fe | Ag | Cu | Sb | Zn | Cd | Au | 总量 | ||
21WK3 | 1 | — | 32.79 | 2.08 | — | — | — | 64.38 | 0.25 | — | 99.50 |
21WK3 | 2 | — | 33.00 | 1.77 | — | — | — | 64.82 | 0.26 | — | 99.85 |
21WK3 | 3 | — | 32.73 | 1.66 | 0.02 | — | — | 64.74 | 0.26 | 0.22 | 99.63 |
21WK3 | 4 | — | 32.65 | 1.79 | 0.03 | — | — | 64.74 | 0.15 | 0.27 | 99.63 |
21WK3 | 5 | — | 32.93 | 1.92 | 0.02 | 0.03 | — | 64.64 | 0.24 | 0.19 | 99.97 |
21WK3 | 6 | — | 32.71 | 1.96 | — | — | — | 64.21 | 0.25 | 0.16 | 99.29 |
21WK3 | 7 | 0.09 | 33.00 | 2.00 | — | 0.08 | 0.05 | 63.75 | 0.23 | 0.31 | 99.51 |
21WK3 | 8 | — | 33.04 | 2.57 | — | — | 0.07 | 64.09 | 0.41 | — | 100.18 |
21WK3 | 9 | — | 32.66 | 2.23 | — | — | 0.03 | 64.49 | 0.33 | 0.36 | 100.10 |
21WK3 | 10 | — | 32.94 | 2.18 | — | — | — | 64.23 | 0.31 | 0.37 | 100.03 |
表3 完肯金矿床闪锌矿电子探针分析结果
Table 3 EMPA data for sphalerite from the Wanken gold deposit
样品号 | 测点 | wB/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
As | S | Fe | Ag | Cu | Sb | Zn | Cd | Au | 总量 | ||
21WK3 | 1 | — | 32.79 | 2.08 | — | — | — | 64.38 | 0.25 | — | 99.50 |
21WK3 | 2 | — | 33.00 | 1.77 | — | — | — | 64.82 | 0.26 | — | 99.85 |
21WK3 | 3 | — | 32.73 | 1.66 | 0.02 | — | — | 64.74 | 0.26 | 0.22 | 99.63 |
21WK3 | 4 | — | 32.65 | 1.79 | 0.03 | — | — | 64.74 | 0.15 | 0.27 | 99.63 |
21WK3 | 5 | — | 32.93 | 1.92 | 0.02 | 0.03 | — | 64.64 | 0.24 | 0.19 | 99.97 |
21WK3 | 6 | — | 32.71 | 1.96 | — | — | — | 64.21 | 0.25 | 0.16 | 99.29 |
21WK3 | 7 | 0.09 | 33.00 | 2.00 | — | 0.08 | 0.05 | 63.75 | 0.23 | 0.31 | 99.51 |
21WK3 | 8 | — | 33.04 | 2.57 | — | — | 0.07 | 64.09 | 0.41 | — | 100.18 |
21WK3 | 9 | — | 32.66 | 2.23 | — | — | 0.03 | 64.49 | 0.33 | 0.36 | 100.10 |
21WK3 | 10 | — | 32.94 | 2.18 | — | — | — | 64.23 | 0.31 | 0.37 | 100.03 |
图11 完肯金矿床毒砂稳定区域硫逸度-温度关系图解(据文献[60-61]修改) Py—黄铁矿;Apy—毒砂;Po—磁黄铁矿;Lo—斜方砷铁矿。
Fig.11 Lgf(S2)-T diagram for arsenopyrite from the Wanken gold deposit. Modified after [60-61].
图12 完肯金矿床黄铁矿和毒砂As-Fe-S成分三角图(底图据[57]) a—黄铁矿As-Fe-S成分三角图;b—毒砂As-Fe-S成分三角图。4种不同趋势的箭头代表含砷黄铁矿的元素置换关系:(1)绿色箭头代表As置换S;(2)蓝色箭头代表As2+置换Fe;(3)黄色箭头代表As3+置换Fe;橙色箭头代表其他二价金属离子Me2+置换Fe。
Fig.12 As-Fe-S ternary diagrams for pyrite and arsenopyrite from the Wanken gold deposits. Modified after [57].
[1] |
QIU K F, TAYLOR R D, SONG Y H, et al. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper-molybdenum deposit, Western Qinling Orogenic Belt, China[J]. Gondwana Research, 2016, 35: 40-58.
DOI URL |
[2] |
CHEN Y J, SANTOSH M. Triassic tectonics and mineral systems in the Qinling Orogen, central China[J]. Geological Journal, 2014, 49(4/5): 338-358.
DOI URL |
[3] |
DENG J, WANG Q F. Gold mineralization in China: metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274.
DOI URL |
[4] |
DONG Y P, SANTOSH M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40.
DOI URL |
[5] |
DENG J, WANG C, BAGAS L, et al. Crustal architecture and metallogenesis in the south-eastern North China Craton[J]. Earth-Science Reviews, 2018, 182: 251-272.
DOI URL |
[6] |
MENG Q R, ZHANG G W. Geologic framework and tectonic evolution of the Qinling Orogen, central China[J]. Tectonophysics, 2000, 323(3/4): 183-196.
DOI URL |
[7] |
ZHANG L, QIU K, HOU Z, et al. Fluid-rock reactions of the Triassic Taiyangshan porphyry Cu-Mo deposit (West Qinling, China) constrained by QEMSCAN and iron isotope[J]. Ore Geology Reviews, 2021, 132: 104068.
DOI URL |
[8] |
QIU K F, DENG J. Petrogenesis of granitoids in the Dewulu skarn copper deposit: implications for the evolution of the Paleotethys Ocean and mineralization in Western Qinling, China[J]. Ore Geology Reviews, 2017, 90: 1078-1098.
DOI URL |
[9] |
DONG Y P, ZHANG G W, NEUBAUER F, et al. Tectonic evolution of the Qinling Orogen, China: review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.
DOI URL |
[10] |
李建威, 隋吉祥, 靳晓野, 等. 西秦岭夏河—合作地区与还原性侵入岩有关的金成矿系统及其动力学背景和勘查意义[J]. 地学前缘, 2019, 26(5): 17-32.
DOI |
[11] |
LIU J J, LIU C H, CARRANZA E J M, et al. Geological characteristics and ore-forming process of the gold deposits in the western Qinling region, China[J]. Journal of Asian Earth Sciences, 2015, 103: 40-69.
DOI URL |
[12] | GOLDFARB R, QIU K F, DENG J, et al. Orogenic gold deposits of China[J]. Society of Economic Geologists Special Publication, 2019, 22: 263-324. |
[13] |
QIU K F, YU H C, DENG J, et al. The giant Zaozigou Au-Sb deposit in West Qinling, China: magmatic- or metamorphic-hydrothermal origin?[J]. Mineralium Deposita, 2020, 55(2): 345-362.
DOI |
[14] |
YU H C, QIU K F, NASSIF M T, et al. Early orogenic gold mineralization event in the West Qinling related to closure of the Paleo-Tethys Ocean: constraints from the Ludousou gold deposit, central China[J]. Ore Geology Reviews, 2020, 117: 103217.
DOI URL |
[15] |
LUO B J, ZHANG H F, LÜ X B. U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions of Early Indosinian intrusive rocks in West Qinling, central China: petrogenesis and tectonic implications[J]. Contributions to Mineralogy and Petrology, 2012, 164(4): 551-569.
DOI URL |
[16] |
SUI J X, LI J W, JIN X Y, et al. 40Ar/39Ar and U-Pb constraints on the age of the Zaozigou gold deposit, Xiahe-Hezuo district, West Qinling Orogen, China: relation to early Triassic reduced intrusions emplaced during slab rollback[J]. Ore Geology Reviews, 2018, 101: 885-899.
DOI URL |
[17] |
刘家军, 刘冲昊, 王建平, 等. 西秦岭地区金矿类型及其成矿作用[J]. 地学前缘, 2019, 26(5): 1-16.
DOI |
[18] | 于皓丞, 李俊, 邱昆峰, 等. 西秦岭甘南早子沟金锑矿床白云石Sm-Nd同位素地球化学及其意义[J]. 岩石学报, 2019, 35(5): 1519-1531. |
[19] | KERRICH R, GOLDFARB R, GROVES D, et al. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China Series D: Earth Sciences, 2000, 43(1): 1-68. |
[20] | 曹晓峰, MOHAMED L S S, 吕新彪, 等. 甘肃枣子沟金矿床成矿过程分析: 来自矿床地质特征、金的赋存状态及稳定同位素证据[J]. 吉林大学学报(地球科学版), 2012, 42(4): 1039-1054. |
[21] |
QIU K F, YU H C, HETHERINGTON C, et al. Tourmaline composition and boron isotope signature as a tracer of magmatic-hydrothermal processes[J]. American Mineralogist, 2021, 106(7): 1033-1044.
DOI URL |
[22] |
JIN X Y, LI J W, HOFSTRA A H, et al. Magmatic-hydrothermal origin of the early Triassic Laodou lode gold deposit in the Xiahe-Hezuo district, West Qinling orogen, China: implications for gold metallogeny[J]. Mineralium Deposita, 2017, 52(6): 883-902.
DOI URL |
[23] |
KONGC S, SHEN J F, SANTOSH M, et al. Age and genesis of the Gangcha gold deposit, Western Qinling Orogen, China[J]. Geological Journal, 2018, 53(5): 1871-1885.
DOI URL |
[24] |
GOLDFARB R J, TAYLOR R D, COLLINS G S, et al. Phanerozoic continental growth and gold metallogeny of Asia[J]. Gondwana Research, 2014, 25(1): 48-102.
DOI URL |
[25] |
MAO J W, QIU Y M, GOLDFARB R J, et al. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China[J]. Mineralium Deposita, 2002, 37(3/4): 352-377.
DOI URL |
[26] |
ABRAITIS P K, PATTRICK R A D, VAUGHAN D J. Variations in the compositional, textural and electrical properties of natural pyrite: a review[J]. International Journal of Mineral Processing, 2004, 74(1/2/3/4): 41-59.
DOI URL |
[27] | 王英鹏, 祝培刚, 张文, 等. 胶东地区招贤深部金矿床金和载金矿物化学成分及其地质意义[J]. 矿床地质, 2022, 41(2)255-272. |
[28] |
YANG D B, XU W L, WANG Q H, et al. Chronology and geochemistry of Mesozoic granitoids in the Bengbu area, central China: constraints on the tectonic evolution of the eastern North China Craton[J]. Lithos, 2010, 114(1/2): 200-216.
DOI URL |
[29] |
TANG L, SANTOSH M, DONG Y P. Tectonic evolution of a complex orogenic system: evidence from the northern Qinling belt, central China[J]. Journal of Asian Earth Sciences, 2015, 113: 544-559.
DOI URL |
[30] |
WANG F, XING K C, XU W L, et al. Permian ridge subduction in the easternmost Central Asian Orogenic Belt: magmatic record using Sr-Nd-Pb-Hf-Mg isotopes[J]. Lithos, 2021, 384/385: 105966.
DOI URL |
[31] |
WANG F, XU W L, XING K C, et al. Temporal changes in the subduction of the Paleo-Pacific plate beneath Eurasia during the late Mesozoic: geochronological and geochemical evidence from Cretaceous volcanic rocks in eastern NE China[J]. Lithos, 2019, 326/327: 415-434.
DOI URL |
[32] |
DENG J, WANG Q F, LI G J. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China[J]. Gondwana Research, 2017, 50: 216-266.
DOI URL |
[33] |
YU H C, QIU K F, PIRAJNO F, et al. Revisiting Phanerozoic evolution of the Qinling Orogen (East Tethys) with perspectives of detrital zircon[J]. Gondwana Research, 2022, 103: 426-444.
DOI URL |
[34] |
HE D Y, QIU K F, SANTOSH M, et al. Inhomogeneous crust-mantle interaction and Triassic tectonic escape of a Proterozoic microplate: a tale of the Bikou Terrane[J]. Lithos, 2021, 396/397: 106227.
DOI URL |
[35] |
DENG J, YANG L Q, GROVES D I, et al. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China[J]. Earth-Science Reviews, 2020, 208: 103274.
DOI URL |
[36] |
DENG J, WANG Q, SUN X, et al. Tibetan ore deposits: a conjunction of accretionary orogeny and continental collision[J]. Earth-Science Reviews, 2022, 235: 104245.
DOI URL |
[37] |
TANG L, SANTOSH M, DONG Y, et al. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt: evidence from geochemistry, phase equilibrium modeling and geochronology of metamorphosed mafic rocks from the Songshugou ophiolite[J]. Gondwana Research, 2016, 30: 48-64.
DOI URL |
[38] | QIU K F, DENG J, HE D Y, et al. Evidence of vertical slab tearing in thelate Triassic Qinling Orogen (central China) from multiproxy geochemical and isotopic imaging[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(4): e2022JB025514. |
[39] |
DENG J, WANG Q F, GAO L, et al. Differential crustal rotation and its control on giant ore clusters along the eastern margin of Tibet[J]. Geology, 2021, 49(4): 428-432.
DOI URL |
[40] | ZHANG H F, JIN L L, ZHANG L, et al. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: constraints on basement nature and tectonic affinity[J]. Science in China Series D: Earth Sciences, 2007, 50(2): 184-196. |
[41] |
LIU Y, DENG J, ZHANG G B, et al. 40Ar/39Ar dating of Xuebaoding granite in the Songpan-Garzê orogenic belt, southwest China, and its geological significance[J]. Acta Geologica Sinica (English Edition), 2010, 84(2): 345-357.
DOI URL |
[42] | 冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带的演化、构造格局和性质[J]. 西北地质, 2003, 36(1): 1-10. |
[43] | 张国伟, 郭安林, 董云鹏, 等. 关于秦岭造山带[J]. 地质力学学报, 2019, 25(5): 746-768. |
[44] |
LIANG Y Y, DENG J, LIU X F, et al. Major and trace element, and Sr isotope compositions of clinopyroxene phenocrysts in mafic dykes on Jiaodong Peninsula, southeastern North China Craton: insights into magma mixing and source metasomatism[J]. Lithos, 2018, 302/303: 480-495.
DOI URL |
[45] |
LIANG Y Y, XIA R, MA Y, et al. Petrogenesis and tectonic significance of Late Triassic Baishiya granodiorite porphyries in the Dulan area, eastern segment of the East Kunlun Orogenic Belt, China[J]. Geological Journal, 2021, 56(1): 284-297.
DOI URL |
[46] | 陈衍景, 张静, 张复新, 等. 西秦岭地区卡林-类卡林型金矿床及其成矿时间、构造背景和模式[J]. 地质论评, 2004, 50(2): 134-152. |
[47] | ZHENG J P, GRIFFIN W L, SUN M, et al. Tectonic affinity of the West Qinling terrane (central China): North China or Yangtze?[J]. Tectonics, 2010, 29(2): 1-14. |
[48] |
贾儒雅, 王涛, 李康宁, 等. 西秦岭德乌鲁含矿岩体及其包体的岩石学成因和构造意义[J]. 地学前缘, 2019, 26(5): 290-303.
DOI |
[49] | 梁志录, 陈国忠, 麻红顺, 等. 西秦岭早子沟金矿控矿断裂形成演化[J]. 大地构造与成矿学, 2016, 40(2): 354-366. |
[50] | HUANG X, YU X, MO X, et al. The discovery of OIB-type potassic tholeiitic basalts from the Ganjia area in West Qinling: implications for the Late Mesozoic continental rift of West Qinling[J]. Earth Science Frontiers, 2013, 20(3): 204-216. |
[51] |
HU X, DING Z, GONG Y, et al. Ore-hosting igneous rocks in the Xiahe-Hezuo district, West Qinling Orogen, China, and their relationships with gold mineralization[J]. Ore Geology Reviews, 2021, 133: 104127.
DOI URL |
[52] | 骆必继. 西秦岭造山带印支期岩浆作用及深部过程[D]. 武汉: 中国地质大学, 2013. |
[53] |
YU H C, QIU K F, SAI S X, et al. Paleo-tethys late triassic orogenic gold mineralization recorded by the Yidi’nan gold deposit, West Qinling, China[J]. Ore Geology Reviews, 2020, 116: 103211.
DOI URL |
[54] | 甘肃省地矿局第三地质矿产勘察院. 甘肃省夏河县拉古河地区完肯金矿详查报告[R]. 兰州: 甘肃省地矿局第三地质矿产勘察院, 2012: 40-60. |
[55] | COOK N J, CHRYSSOULIS S L. Concentrations of invisible gold in the common sulfides[J]. The Canadian Mineralogist, 1990, 28(1): 1-16. |
[56] | 员媛娇. 内蒙古浩尧尔忽洞金矿床硫化物矿物学特征及成矿过程研究[D]. 北京: 中国地质科学院, 2022: 1-87. |
[57] |
DEDITIUS A P, REICH M, KESLER S E, et al. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica et Cosmochimica Acta, 2014, 140: 644-670.
DOI URL |
[58] |
AREHART G B, CHRYSSOULIS S L, KESLER S E. Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits: implications for depositional processes[J]. Economic Geology, 1993, 88(1): 171-185.
DOI URL |
[59] | 毛世东, 杨荣生, 秦艳, 等. 甘肃阳山金矿田载金矿物特征及金赋存状态研究[J]. 岩石学报, 2009, 25(11): 2776-2790. |
[60] | KRETSCHMAR U, SCOTT S. Phase relations involving arsenopyrite in the system Fe-As-S and their application[J]. Canadian Mineralogist, 1976, 14(3): 364-386. |
[61] | SHARP Z D, ESSENE E J, KELLY W C. A re-examination of the arsenopyrite geothermometer; pressure considerations and applications to natural assemblages[J]. The Canadian Mineralogist, 1985, 23(4): 517-534. |
[62] | 卢焕章. 闪锌矿地质温度计和压力计[J]. 地质地球化学, 1975(2): 6-9. |
[63] | KULLERUD G. The FeS-ZnS system, a geological thermometer[J]. Norsk Geologisk Tidsskrift, 1953, 32: 61-147. |
[64] |
BARTON P B, TOULMIN P. Phase relations involving sphalerite in the Fe-Zn-S system[J]. Economic Geology, 1966, 61(5): 815-849.
DOI URL |
[65] |
KEITH M, HAASE K M, SCHWARZ-SCHAMPERA U, et al. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents[J]. Geology, 2014, 42(8): 699-702.
DOI URL |
[66] | QIU K F, DENG J, SAI S X, et al. Low-temperature thermochronology for defining the tectonic controls on heterogeneous gold endowment across the Jiaodong Peninsula, eastern China[J]. Tectonics, 2023, 42(1): e2022TC007669. |
[67] |
HU X L, DING Z J, GONG Y J, et al. Sediment-hosted disseminated gold deposits in orogenic belts: an example from the giant Jiagantan gold deposit in the West Qinling Orogen, China[J]. Ore Geology Reviews, 2022, 146: 104950.
DOI URL |
[68] |
TOMKINS A G. Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis[J]. Geochimica et Cosmochimica Acta, 2010, 74(11): 3246-3259.
DOI URL |
[69] | LI S S, QIU K F, HERNÁNDEZ-URIBE D, et al. Water recycling in the deep earth: insights from integrated μ-XRF, THz-TDS spectroscopy, TG, and DCS of high-pressure granulite[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(3): e2022JB025915. |
[70] | 张复新, 侯俊富, 张存旺, 等. 甘肃阳山超大型卡林-类卡林型复合式金矿床特征[J]. 中国地质, 2007, 34(6): 1062-1072. |
[71] |
LIU J, DAI H, ZHAI D, et al. Geological and geochemical characteristics and formation mechanisms of the Zhaishang Carlin-like type gold deposit, western Qinling Mountains, China[J]. Ore Geology Reviews, 2015, 64: 273-298.
DOI URL |
[72] |
LARGE R R, HALPIN J A, DANYUSHEVSKY L V, et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution[J]. Earth and Planetary Science Letters, 2014, 389: 209-220.
DOI URL |
[73] | 徐国风, 邵洁涟. 黄铁矿的标型特征及其实际意义[J]. 地质论评, 1980, 26(6): 541-546. |
[74] | 严育通, 李胜荣, 贾宝剑, 等. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 2012, 19(4): 214-226. |
[75] |
CABRI L J, NEWVILLE M, GORDON R A, et al. Chemical speciation of gold in arsenopyrite[J]. The Canadian Mineralogist, 2000, 38(5): 1265-1281.
DOI URL |
[76] |
WU X, DELBOVE F. Hydrothermal synthesis of gold-bearing arsenopyrite[J]. Economic Geology, 1989, 84(7): 2029-2032.
DOI URL |
[77] |
WIDLER A M, SEWARD T M. The adsorption of gold(I) hydrosulphide complexes by iron sulphide surfaces[J]. Geochimica et Cosmochimica Acta, 2002, 66(3): 383-402.
DOI URL |
[78] |
FLEET M E, MUMIN A H. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin trend gold deposits and laboratory synthesis[J]. American Mineralogist, 1997, 82(1/2): 182-193.
DOI URL |
[79] |
POKROVSKI G S, ESCODA C, BLANCHARD M, et al. An arsenic-driven pump for invisible gold in hydrothermal systems[J]. Geochemical Perspectives Letters, 2021, 17: 39-44.
DOI URL |
[80] |
POKROVSKI G S, KOKH M A, PROUX O, et al. The nature and partitioning of invisible gold in the pyrite-fluid system[J]. Ore Geology Reviews, 2019, 109: 545-563.
DOI |
[81] |
李楠, 邓军, 张志超, 等. 阳山金矿带金的赋存状态及其对成矿过程的指示意义[J]. 地学前缘, 2019, 26(5): 84-95.
DOI |
[82] |
YASUHARA H, POLAK A, MITANI Y, et al. Evolution of fracture permeability through fluid-rock reaction under hydrothermal conditions[J]. Earth and Planetary Science Letters, 2006, 244(1/2): 186-200.
DOI URL |
[83] |
BATEMAN R, HAGEMANN S. Gold mineralisation throughout about 45 Ma of Archaean orogenesis: protracted flux of gold in the Golden Mile, Yilgarn Craton, western Australia[J]. Mineralium Deposita, 2004, 39(5/6): 536-559.
DOI URL |
[84] |
DENG J, QIU K F, WANG Q F, et al. In situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold province, eastern China[J]. Economic Geology, 2020, 115(3): 671-685.
DOI URL |
[85] |
MÖLLER P, KERSTEN G. Electrochemical accumulation of visible gold on pyrite and arsenopyrite surfaces[J]. Mineralium Deposita, 1994, 29(5): 404-413.
DOI URL |
[86] |
POKROVSKI G S, KOKH M A, GUILLAUME D, et al. Sulfur radical species form gold deposits on Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44): 13484-13489.
DOI PMID |
[87] |
WILLIAMS-JONES A E, BOWELL R J, MIGDISOV A A. Gold in solution[J]. Elements, 2009, 5(5): 281-287.
DOI URL |
[88] |
POKROVSKI G S, DUBROVINSKY L S. The $\mathrm{S}_{3}^{-}$ ion is stable in geological fluids at elevated temperatures and pressures[J]. Science, 2011, 331(6020): 1052-1054.
DOI URL |
[89] |
POKROVSKI G S, AKINFIEV N N, BORISOVA A Y, et al. Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling[J]. Geological Society, London, Special Publications, 2014, 402(1): 9-70.
DOI URL |
[90] |
POKROVSKI G S, DUBESSY J. Stability and abundance of the trisulfur radical ion $\mathrm{S}_{3}^{-}$in hydrothermal fluids[J]. Earth and Planetary Science Letters, 2015, 411: 298-309.
DOI URL |
[91] |
ZHANG H, ZHU Y. Mechanism of gold precipitation in the Gezigou gold deposit, Xinjiang, NW China: evidence from fluid inclusions and thermodynamic modeling[J]. Journal of Geochemical Exploration, 2019, 199: 60-74.
DOI URL |
[92] |
ZHANG H, ZHU Y. Geology and geochemistry of the Huilvshan gold deposit, Xinjiang, China: implications for mechanism of gold precipitation[J]. Ore Geology Reviews, 2016, 79: 218-240.
DOI URL |
[93] |
YANG L Q, DENG J, GUO L N, et al. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72: 585-602.
DOI URL |
[1] | 董宏坤, 万世明, 刘畅, 赵德博, 曾志刚, 李安春. 南海北部晚中新世红绿韵律层成因的矿物学和地球化学约束[J]. 地学前缘, 2022, 29(4): 42-54. |
[2] | 席伟,夏小洪,吴艳爽,叶甜,李诺. 吉尔吉斯斯坦Taldybulak Levoberezhny(左岸)金矿地质特征及金属矿物学研究[J]. 地学前缘, 2018, 25(5): 135-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||