地学前缘 ›› 2023, Vol. 30 ›› Issue (6): 365-370.DOI: 10.13745/j.esf.sf.2023.2.28

• 海相深层-超深层碳酸盐岩油气藏开采数值模拟 • 上一篇    下一篇

深层离散裂缝油藏多尺度流固耦合数值模拟方法

张允1(), 康志江1, 马郡伟2,*(), 郑欢1, 吴大卫1   

  1. 1.中国石化石油勘探开发研究院, 北京 100083
    2.中国华油集团有限公司 油气资源事业部, 北京 100007
  • 收稿日期:2023-01-15 修回日期:2023-02-25 出版日期:2023-11-25 发布日期:2023-11-25
  • 通讯作者: * 马郡伟(1993—),男,助理工程师,主要从事油气勘探开发研究工作。E-mail: majw02@cnpc.com.cn
  • 作者简介:张允(1978—),男,研究员,主要从事油气田开发工程研究。E-mail: zhangyun.syky@sinopec.com
  • 基金资助:
    国家自然科学基金企业创新发展联合基金项目“海相深层油气富集机理与关键工程技术基础研究(U19B6003)

A numerical simulation method for deep, discrete fractured reservoirs using a multi-scale fluid-rock coupling model

ZHANG Yun1(), KANG Zhijiang1, MA Junwei2,*(), ZHENG Huan1, WU Dawei1   

  1. 1. Research Institute of Petroleum Exploration and Development, SINOPEC, Beijing 100083, China
    2. Oil and Gas Resources Division of China Huayou Group Co., Ltd, Beijing 100007, China
  • Received:2023-01-15 Revised:2023-02-25 Online:2023-11-25 Published:2023-11-25

摘要:

深层离散裂缝油藏介质类型多、尺度变化大,存在离散介质与连续介质,且高压下介质易变形,对压力敏感,现有的油藏数值模拟方法虽然考虑了离散介质,但没有考虑裂缝变形的影响,方法不再适用,为此创建了深层离散裂缝油藏多尺度流固耦合数值模拟方法。首先,提出了基质、微裂缝、中小尺度裂缝和离散裂缝的分尺度模拟方法,建立了多尺度离散裂缝网络流固耦合模型。其次,创建了不同尺度离散裂缝流固耦合数学模型,针对不同尺度裂缝中流体流动和应力敏感特点分别考虑压力敏感或流固耦合:微裂缝存在应力敏感,与基质一起采用压力敏感方法来处理,建立压缩系数计算方法;中小尺度裂缝随油田开发容易闭合,提出采用裂缝开启闭合计算方法,建立裂缝开启闭合的计算模型;离散裂缝控制着流体流动方向和规模,同时裂缝容易填充,需要采用流固耦合处理,建立流固全耦合数学模型。再次,建立了有限体积和有限元数值模型,流动问题采用有限体积法进行离散,应力问题采用有限元法进行离散,并通过收敛性相对较好的全隐式数值求解方法进行求解。最后,通过理论模型与实际油藏模型进行方法验证:采用二维固结模型数值计算结果能够较好吻合理论解,验证了方法的正确性;采用实际油藏模型计算,由于考虑了压力敏感和流固耦合问题,吻合性较好,说明本方法计算准确性更高。因此,针对深层离散裂缝油藏高压、高应力和介质尺度差异大的特点提出了一种新的多尺度流固耦合数值模拟方法,方法新颖且实用性强,为该类油藏高效开发提供了技术支撑。

关键词: 深层油藏, 裂缝油藏, 流固耦合, 数值模拟, 有限元, 有限体积

Abstract:

Deep discrete fractured reservoirs show large variations in porous media type—including both discrete and continuous media—and fracture scale, and the porous media are pressure sensitive and prone to deformation under high pressures. Although the existing numerical simulation methods for oil reservoirs take into account discrete media, they do not consider the impact of fracture deformation and therefore are not applicable for deep, discrete fractured reservoirs. To address this problem we developed a new simulation method using a multi-scale fluid-rock coupling model. First, a subscale model for rock matrix, microfractures, small/medium-sized fractures, and discrete fractures was proposed, and a multi-scale fluid-rock coupling model for discrete fracture network was established. Second, mathematical models for fluid-rock coupling at different fracture scales were created. Pressure sensitivity and fluid-rock coupling were treated separately in consideration of fluid flow and stress sensitivity characteristics in fractures of different scales, while stress-sensitive microfractures and rock matrix were treated together in the pressure sensitivity calculation model to establish a compression coefficient calculation method to describe fluid flow in the fractures. As small/medium-sized fractures are easy to close during oil/gas production, it was proposed to establish a calculation model for fracture opening and closing. Furthermore, as discrete fractures control the direction and scale of fluid flow and are easy to fill, a fully coupled mathematical model was established to treat discrete fractures using the fluid-rock coupling model. Third, finite volume and finite element numerical simulation models were established where fluid flow/ volume were discretized using finite flow/volume methods, and the linear equations were solved by using a fully implicit numerical solution method with relatively good convergence. Finally, the new method was verified by comparing theoretical models with actual reservoir models, which show a good agreement between the numerical calculation results using a two-dimensional consolidation model and the theoretical solution with consideration for pressure sensitivity and fluid-rock coupling. This novel, high accuracy simulation method addresses the issues—such as high-pressure, high-stress, and large variations in fracture scale—associated with deep, discrete fractured reservoirs, and is highly practical and can be used to provide technical support for the efficient development of such reservoirs.

Key words: deep reservoir, fractured reservoir, fluid-solid coupling, numerical simulation, finite element, finite volume

中图分类号: