地学前缘 ›› 2021, Vol. 28 ›› Issue (3): 190-207.DOI: 10.13745/j.esf.sf.2021.1.14
收稿日期:
2020-01-05
修回日期:
2020-02-27
出版日期:
2021-05-20
发布日期:
2021-05-23
作者简介:
肖 凡(1985—),男,博士,副教授,博士生导师,主要从事矿产普查与勘探和数学地质方面的教学与科研工作。E-mail: xiaofan3@mail.sysu.edu.cn
基金资助:
XIAO Fan1,2,3,4(), WANG Kaiqi1
Received:
2020-01-05
Revised:
2020-02-27
Online:
2021-05-20
Published:
2021-05-23
摘要:
斑岩矿床的成矿机制是一种典型的力-热-流多物理场耦合的岩浆-热液过程,因而从成矿动力学数值计算模拟的角度研究斑岩矿床成矿作用过程,对揭示斑岩岩浆-热液系统动力学演化机制及其成矿响应情况具有十分重要的意义。德兴铜矿(包括朱砂红、铜厂和富家坞)作为目前中国华南已发现的最大斑岩型铜矿床,是研究(大型/超大型)斑岩矿床成矿作用过程的一个典型的重要窗口。前人已在矿床地质、地球化学、年代学、同位素以及成矿流体等诸多方面开展了大量的研究工作,但从成矿动力学数值模拟的角度对德兴铜矿成矿作用过程进行的研究目前相对较少。为此,本文以德兴斑岩铜矿床为主要研究对象,首先通过总结分析其成矿过程的地质概念模型,进而将侵入体形态(包括长轴及短轴长度)和倾伏角、控矿断裂倾角与宽度作为几何模型中的变量,构建由这些变量组合控制的几何实体模型。在此基础上,进一步分析斑岩矿床成矿过程数值模拟中应力场、流体场以及热力场三者的耦合关系及其数学-物理方程,构建德兴斑岩铜矿床的成矿动力学模型,建立相应的有限元数值模拟模型。最终,设置不同的岩石物理参数、边界条件与初始条件,进行力-热-流三场耦合的数值模拟实验,并根据不同侵入体产状及断裂构造条件下的模拟结果探究德兴铜矿床断裂和侵入体产状对成矿的控制作用。主要结论如下:(1)较小的断裂构造宽度更易造成岩矿石局部破裂,便于流体弥散而形成浸染状或微-细脉状的斑岩矿化;(2)较大体积的岩体以及较小的岩体倾伏角度对斑岩铜矿床的形成相对有利;(3)朱砂红矿床较铜厂和富家坞矿床岩体体积小,而倾伏角相对较大,导致岩体冷却速度快,表面及附近扩容空间小,因而成矿深度大,而金属储量小。揭示了德兴铜矿床斑岩侵入体与断裂构造产状的控矿机制,增进了对德兴铜矿矿床成因和控矿要素的认识。
中图分类号:
肖凡, 王恺其. 德兴斑岩铜矿床断裂与侵入体产状对成矿的控制作用:从力-热-流三场耦合数值模拟结果分析[J]. 地学前缘, 2021, 28(3): 190-207.
XIAO Fan, WANG Kaiqi. Fault and intrusion control on copper mineralization in the Dexing porphyry copper deposit in Jiangxi, China: A perspective from stress deformation-heat transfer-fluid flow coupled numerical modeling[J]. Earth Science Frontiers, 2021, 28(3): 190-207.
图1 华南地块晚中生代构造及岩浆岩分布简图与德兴矿集区地质简图(A: 修改自文献[51];B: 修改自文献[42])
Fig.1 (A) Tectonic sketch map showing the temporal-spatial distribution of the Late Mesozoic magmatic rocks in the South China Craton (modified from [51]) and (B) geological map of the Dexing mineralization district (modified from [42])
图2 德兴矿田地质构造简图及各矿床铜矿体产状形态分布示意图(A: 修改自文献[43];B, C, D: 修改自文献[40])
Fig.2 (A) Geological and tectonic map of the Dexing orefield (modified from [43]) and (B-D) sketch map showing the attitude and morphology of copper orebodies in each deposit (modified from [40])
岩体 | 地表 形态 | 规模 | 产状 | |||
---|---|---|---|---|---|---|
长度/m | 宽度/m | 面积/km2 | 倾伏向/(°) | 倾伏角/(°) | ||
富家坞 | 梯形 | 650 | 300 | 0.2 | 310 | 40 |
铜厂 | 三角形 | 1 300 | 300~800 | 0.7 | 320 | 45~50 |
朱砂红 | 岩枝和 岩脉群 | ≤450 | ≤80 | 0.06 | 340 | 60~70 |
表1 富家坞、铜厂与朱砂红岩体产状参数
Table 1 Geometric parameters of the Fujiawu, Tongchang and Zhushahong intrusions
岩体 | 地表 形态 | 规模 | 产状 | |||
---|---|---|---|---|---|---|
长度/m | 宽度/m | 面积/km2 | 倾伏向/(°) | 倾伏角/(°) | ||
富家坞 | 梯形 | 650 | 300 | 0.2 | 310 | 40 |
铜厂 | 三角形 | 1 300 | 300~800 | 0.7 | 320 | 45~50 |
朱砂红 | 岩枝和 岩脉群 | ≤450 | ≤80 | 0.06 | 340 | 60~70 |
图3 德兴斑岩铜矿床断裂与侵入体产状对成矿的控制作用数值模拟方法流程图
Fig.3 Flowchart of the numerical modeling method for fault and intrusion controls on copper mineralization in the Dexing porphyry copper deposit
模型单元 | 密度/ (kg·m-3) | 杨氏模量/ (1010 Pa) | 泊松比 | 孔隙率 | 渗透率/ (10-12 m2) | 导热系数/ (W·m-1·K-1) | 恒压热容/ (J·kg-1·K-1) |
---|---|---|---|---|---|---|---|
地 层 | 2 650 | 7.0 | 0.25 | 0.25 | 0.40 | 3.1 | 880 |
侵入体 | 2 850 | 8.0 | 0.25 | 0.21 | 0.45 | 2.9 | 680 |
断 裂 | 1 800 | 0.28 | 0.35 | 0.40 | 40.0 | 2.8 | 820 |
表2 数值模型中所使用的岩石物性参数
Table 2 Rock parameters applied in the numerical models
模型单元 | 密度/ (kg·m-3) | 杨氏模量/ (1010 Pa) | 泊松比 | 孔隙率 | 渗透率/ (10-12 m2) | 导热系数/ (W·m-1·K-1) | 恒压热容/ (J·kg-1·K-1) |
---|---|---|---|---|---|---|---|
地 层 | 2 650 | 7.0 | 0.25 | 0.25 | 0.40 | 3.1 | 880 |
侵入体 | 2 850 | 8.0 | 0.25 | 0.21 | 0.45 | 2.9 | 680 |
断 裂 | 1 800 | 0.28 | 0.35 | 0.40 | 40.0 | 2.8 | 820 |
模型 | a/m | b/m | c/m | α/(°) | β/(°) | d/m |
---|---|---|---|---|---|---|
M1 | 650 | 300 | 1 556 | 40 | 70 | 1 |
M2 | 650 | 300 | 1 556 | 40 | 70 | 2 |
M3 | 650 | 300 | 1 556 | 40 | 70 | 5 |
M4 | 650 | 300 | 1 556 | 40 | 70 | 10 |
M5 | 650 | 300 | 1 556 | 50 | 70 | 1 |
M6 | 650 | 300 | 1 556 | 50 | 70 | 2 |
M7 | 650 | 300 | 1 556 | 50 | 70 | 5 |
M8 | 650 | 300 | 1 556 | 50 | 70 | 10 |
M9 | 650 | 300 | 1 556 | 60 | 70 | 1 |
M10 | 650 | 300 | 1 556 | 60 | 70 | 2 |
M11 | 650 | 300 | 1 556 | 60 | 70 | 5 |
M12 | 650 | 300 | 1 556 | 60 | 70 | 10 |
M13 | 1 300 | 800 | 1 556 | 40 | 70 | 1 |
M14 | 1 300 | 800 | 1 556 | 40 | 70 | 2 |
M15 | 1 300 | 800 | 1 556 | 40 | 70 | 5 |
M16 | 1 300 | 800 | 1 556 | 40 | 70 | 10 |
M17 | 1 300 | 800 | 1 556 | 50 | 70 | 1 |
M18 | 1 300 | 800 | 1 556 | 50 | 70 | 2 |
M19 | 1 300 | 800 | 1 556 | 50 | 70 | 5 |
M20 | 1 300 | 800 | 1 556 | 50 | 70 | 10 |
M21 | 1 300 | 800 | 1 556 | 60 | 70 | 1 |
M22 | 1 300 | 800 | 1 556 | 60 | 70 | 2 |
M23 | 1 300 | 800 | 1 556 | 60 | 70 | 5 |
M24 | 1 300 | 800 | 1 556 | 60 | 70 | 10 |
M25 | 450 | 80 | 1 556 | 40 | 70 | 1 |
M26 | 450 | 80 | 1 556 | 40 | 70 | 2 |
M27 | 450 | 80 | 1 556 | 40 | 70 | 5 |
M28 | 450 | 80 | 1 556 | 40 | 70 | 10 |
M29 | 450 | 80 | 1 556 | 50 | 70 | 1 |
M30 | 450 | 80 | 1 556 | 50 | 70 | 2 |
M31 | 450 | 80 | 1 556 | 50 | 70 | 5 |
M32 | 450 | 80 | 1 556 | 50 | 70 | 10 |
M33 | 450 | 80 | 1 556 | 60 | 70 | 1 |
M34 | 450 | 80 | 1 556 | 60 | 70 | 2 |
M35 | 450 | 80 | 1 556 | 60 | 70 | 5 |
M36 | 450 | 80 | 1 556 | 60 | 70 | 10 |
表3 数值实验模型及相应的参数设置
Table 3 List of numerical models with model parameters
模型 | a/m | b/m | c/m | α/(°) | β/(°) | d/m |
---|---|---|---|---|---|---|
M1 | 650 | 300 | 1 556 | 40 | 70 | 1 |
M2 | 650 | 300 | 1 556 | 40 | 70 | 2 |
M3 | 650 | 300 | 1 556 | 40 | 70 | 5 |
M4 | 650 | 300 | 1 556 | 40 | 70 | 10 |
M5 | 650 | 300 | 1 556 | 50 | 70 | 1 |
M6 | 650 | 300 | 1 556 | 50 | 70 | 2 |
M7 | 650 | 300 | 1 556 | 50 | 70 | 5 |
M8 | 650 | 300 | 1 556 | 50 | 70 | 10 |
M9 | 650 | 300 | 1 556 | 60 | 70 | 1 |
M10 | 650 | 300 | 1 556 | 60 | 70 | 2 |
M11 | 650 | 300 | 1 556 | 60 | 70 | 5 |
M12 | 650 | 300 | 1 556 | 60 | 70 | 10 |
M13 | 1 300 | 800 | 1 556 | 40 | 70 | 1 |
M14 | 1 300 | 800 | 1 556 | 40 | 70 | 2 |
M15 | 1 300 | 800 | 1 556 | 40 | 70 | 5 |
M16 | 1 300 | 800 | 1 556 | 40 | 70 | 10 |
M17 | 1 300 | 800 | 1 556 | 50 | 70 | 1 |
M18 | 1 300 | 800 | 1 556 | 50 | 70 | 2 |
M19 | 1 300 | 800 | 1 556 | 50 | 70 | 5 |
M20 | 1 300 | 800 | 1 556 | 50 | 70 | 10 |
M21 | 1 300 | 800 | 1 556 | 60 | 70 | 1 |
M22 | 1 300 | 800 | 1 556 | 60 | 70 | 2 |
M23 | 1 300 | 800 | 1 556 | 60 | 70 | 5 |
M24 | 1 300 | 800 | 1 556 | 60 | 70 | 10 |
M25 | 450 | 80 | 1 556 | 40 | 70 | 1 |
M26 | 450 | 80 | 1 556 | 40 | 70 | 2 |
M27 | 450 | 80 | 1 556 | 40 | 70 | 5 |
M28 | 450 | 80 | 1 556 | 40 | 70 | 10 |
M29 | 450 | 80 | 1 556 | 50 | 70 | 1 |
M30 | 450 | 80 | 1 556 | 50 | 70 | 2 |
M31 | 450 | 80 | 1 556 | 50 | 70 | 5 |
M32 | 450 | 80 | 1 556 | 50 | 70 | 10 |
M33 | 450 | 80 | 1 556 | 60 | 70 | 1 |
M34 | 450 | 80 | 1 556 | 60 | 70 | 2 |
M35 | 450 | 80 | 1 556 | 60 | 70 | 5 |
M36 | 450 | 80 | 1 556 | 60 | 70 | 10 |
图6 断裂宽度变化模拟结果等效应力等值面图(a: M1; b: M2; c: M3; d: M4)
Fig.6 3D contour plots of von Mises stress simulation results for variable fault width using models M1-4 (a-d)
图7 断裂宽度变化模拟结果体积应变等值面图(a: M1; b: M2; c: M3; d: M4)
Fig.7 3D contour plots of bulk strain simulation results for variable fault width using models M1-4 (a-d)
图8 断裂宽度变化模拟结果断裂面达西速度图(a: M1; b: M2; c: M3; d: M4)
Fig.8 3D contour plots of Darcy’s velocity in fault plane simulated for variable fault width using models M1-4 (a-d)
图9 断裂宽度变化模拟结果YZ温度切面图(a: M1; b: M2; c: M3; d: M4)
Fig.9 3D contour plots of temperature simulation results for variable fault width using models M1-4 (a-d)
图10 侵入体倾伏角变化模拟结果等效应力图(a: M1; b: M5; c: M9)
Fig.10 3D contour plots of von Mises stress simulation results for variable dip angle of porphyry intrusion using models M1,5,9 (a-c)
图11 侵入体倾伏角变化模拟结果体积应变图(a: M1; b: M5; c: M9)
Fig.11 3D contour plots of bulk strain simulation results for variable dip angle of porphyry intrusion using models M1,5,9 (a-c)
图12 侵入体倾伏角变化模拟结果断裂面达西速度图(a: M1; b: M5; c: M9)
Fig.12 3D contour plots of Darcy’s velocity in fracture plane simulated for variable dip angle of porphyry intrusion using models M1,5,9 (a-c)
图13 侵入体倾伏角变化模拟结果YZ温度切面图(a: M1; b: M5; c: M9)
Fig.13 3D contour plots of temperature simulation results for variable dip angle of porphyry intrusion using models M1,5,9 (a-c)
图14 侵入体形态变化模拟结果等效应力图(a: M2; b: M14; c: M26)
Fig.14 3D contour plots of von Mises stress simulation results for variable intrusion shape using models M2,14,26 (a-c)
图15 侵入体形态变化模拟结果体积应变图(a: M2; b: M14; c: M26)
Fig.15 3D contour plots of bulk strain simulation results for variable intrusion shape using models M2,14,26 (a-c)
图16 侵入体形态变化模拟结果断裂面达西速度图(a: M2; b: M14; c: M26)
Fig.16 3D contour plots of Darcy’s velocity in fracture plane simulated for variable intrusion shape using models M2,14,26 (a-c)
图17 侵入体形态变化模拟结果YZ温度切面图(a: M2; b: M14; c: M26)
Fig.17 3D contour plots of temperature simulation result for variable intrusion shape using models M2,14,26 (a-c)
[1] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1):3-41.
DOI URL |
[2] |
WILKINSON J J. Triggers for the formation of porphyry ore deposits in magmatic arcs[J]. Nature Geoscience, 2013, 6:917-925.
DOI URL |
[3] | 侯增谦. 斑岩Cu-Mo-Au矿床: 新认识与新进展[J]. 地学前缘, 2004, 11(1):131-144. |
[4] | 芮宗瑶, 张洪涛, 陈仁义, 等. 斑岩铜矿研究中若干问题探讨[J]. 矿床地质, 2006, 25(4):491-500. |
[5] |
SILLITOE R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology, 1972, 67:184-197.
DOI URL |
[6] |
RICHARDS J P, BOYCE A J, PRINGLE M S. Geological evolution of the Escondida area, northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization[J]. Economic Geology, 2001, 96:271-305.
DOI URL |
[7] |
RICHARDS J P. Tectonic-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8):1515-1533.
DOI URL |
[8] |
COOKE D R, HOLLINGS P, WALSHE J L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5):801-818.
DOI URL |
[9] | 侯增谦, 潘小菲, 杨志明, 等. 初论大陆环境斑岩铜矿[J]. 现代地质, 2007, 21(2):332-351. |
[10] | 侯增谦, 杨志明, 王端, 等. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 2020, 27(2):20-44. |
[11] | 杨志明, 侯增谦. 初论碰撞造山环境斑岩矿成矿模型[J]. 矿床地质, 2009, 28(5):515-538. |
[12] |
HOU Z Q, ZHOU Y, WANG R, et al. Recycling of metal-fertilized lower crust: origin of non-arc Au-rich porphyry deposits at cratonic edges[J]. Geology, 2017, 45(6):563-566.
DOI URL |
[13] |
SHINOHARA H, KAZAHAYA K, LOWENSTERN J B. Volatile transport in a convecting magma column: implications for porphyry Mo mineralization[J]. Geology, 1995, 23:1091-1094.
DOI URL |
[14] |
BLUNDY J, MAVROGENES J, TATTITCH B, et al. Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs[J]. Nature Geoscience, 2015, 8:235-240.
DOI URL |
[15] | 於崇文, 岑况, 鲍征宇, 等. 成矿作用动力学[M]. 北京: 地质出版社, 1998. |
[16] | PHILLIPS O M. Flow and reactions in permeable rocks[M]. Cambridge, UK: Cambridge University Press, 1991. |
[17] | ZHAO C B, HOBBS B E, ORD A. Fundamentals of computational geosciences: numerical methods and algorithms[M]. Berlin: Springer, 2009. |
[18] | 刘亮明. 浅成岩体引发的流体超压与岩石破裂及其对成矿的制约[J]. 地学前缘, 2011, 18(5):78-89. |
[19] | 池国祥, 薛春纪. 成矿流体动力学的原理、研究方法及应用[J]. 地学前缘, 2011, 18(5):1-18. |
[20] |
ZHANG Y H, ROBINSON J, SCHAUBS P M. Numerical modelling of structural controls on fluid flow and mineralization[J]. Geoscience Frontiers, 2011, 2(3):449-461.
DOI URL |
[21] | 贾蔡, 袁峰, 张明明, 等. 宁芜盆地白象山铁矿床成矿作用过程数值模拟[J]. 岩石学报, 2014, 30(4):1031-1040. |
[22] | 林舸, ZHAO C B, 王岳军, 等. 含矿流体混合反应与成矿作用的动力平衡模拟研究[J]. 岩石学报, 2003, 19(2):275-282. |
[23] | 朱江建, 陈广浩, 龚贵伦, 等. 广东河台金矿糜棱岩化过程构造-流体成矿研究[J]. 地学前缘, 2011, 18(5):67-77. |
[24] | 赵崇斌, HOBBS B E, ORD A. 用计算地球科学研究方法探讨地质现象的动力学机制: 以断层中等距成矿分布为例[J]. 中国科学: D辑, 2008, 38(5):646-652. |
[25] | 刘亮明, 周瑞超, 赵崇斌. 构造应力环境对浅成岩体成矿系统的制约: 从安庆月山岩体冷却过程动力学计算模拟结果分析[J]. 岩石学报, 2010, 26(9):2869-2878. |
[26] | 王语, 周永章, 肖凡, 等. 基于成矿条件数值模拟和支持向量机算法的深部成矿预测: 以粤北凡口铅锌矿为例[J]. 大地构造与成矿学, 2020, 44(2):222-230. |
[27] |
HOBBS B E, ZHANG Y, ORD A. Application of coupled deformation, fluid flow, thermal and chemical modelling to predictive mineral exploration[J]. Journal of Geochemical Exploration, 2000, 69/70:505-509.
DOI URL |
[28] |
LAMY-CHAPPUIS B, HEINRICH C A, DRIESNER T, et al. Mechanisms and patterns of magmatic fluid transport in cooling hydrous intrusions[J]. Earth and Planetary Science Letters, 2020, 535. DOI: 10.1016/j.epsl.2020.116111
DOI |
[29] |
SUN T, LIU L. Delineating the complexity of Cu-Mo mineralization in a porphyry intrusion by computational and fractal modeling: a case study of the Chehugou deposit in the Chifeng district, Inner Mongolia, China[J]. Journal of Geochemical Exploration, 2014, 144:128-143.
DOI URL |
[30] |
WEIS P, DRIESNER T, HEINRICH C A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes[J]. Science, 2012, 338:1613-1616.
DOI URL |
[31] |
KORGES M, WEIS P, ANDERSEN C. The role of incremental magma chamber growth on ore formation in porphyry copper systems[J]. Earth and Planetary Science Letters, 2020, 552. DOI: 10.1016/j.epsl.2020.116584
DOI |
[32] | LI J K, ZHANG D H, WANG D H. Numerical simulations of heat and mass transfer for the Tongchang porphyry copper deposit, Dexing, Jiangxi Province, China[M]//MAO J, BIERLEIN F P. Mineral deposit research: meeting the global challenge, Vols 1 and 2. Berlin, Heidelberg: Springer, 2005: 425-428. |
[33] |
GOW P A, UPTON P, ZHAO C B, et al. Copper-gold mineralisation in New Guinea: numerical modelling of collision, fluid flow and intrusion-related hydrothermal systems[J]. Australian Journal of Earth Sciences, 2002, 49:753-771.
DOI URL |
[34] |
GUILLOU-FROTTIER L, BUROV E. The development and fracturing of plutonic apexes: implications for porphyry ore deposits[J]. Earth and Planetary Science Letters, 2003, 214:341-356.
DOI URL |
[35] |
LIU L M, LI J F, ZHOU R C, et al. 3D modeling of the porphyry-related Dawangding gold deposit in south China: Implications for ore genesis and resources evaluation[J]. Journal of Geochemical Exploration, 2016, 164:164-185.
DOI URL |
[36] |
HU X Y, LI X H, YUAN F, et al. Numerical modeling of ore-forming processes within the Chating Cu-Au porphyry-type deposit, China: Implications for the longevity of hydrothermal systems and potential uses in mineral exploration[J]. Ore Geology Reviews, 2020, 116. DOI: 10.1016/j.orefeorev.2019.103230
DOI |
[37] | 毛景文, 张建东, 郭春丽. 斑岩铜矿-浅成低温热液银铅锌-远接触带热液金矿矿床模型: 一个新的矿床模型: 以德兴地区为例[J]. 地球科学与环境学报, 2010, 32(1):1-14. |
[38] | 王国光, 倪培, 赵超, 等. 德兴大型铜金矿集区的研究进展和成矿模式[J]. 岩石学报, 2019, 35(12):3644-3658. |
[39] | 周清, 姜耀辉, 廖世勇, 等. 德兴斑岩铜矿床研究新进展[J]. 地质论评, 2013, 59(5):933-940. |
[40] | 朱训, 黄崇轲, 芮宗瑶. 德兴斑岩铜矿[M]. 北京: 地质出版社, 1983. |
[41] | 芮宗瑶, 黄崇轲, 齐国明. 中国斑岩铜(钼)矿床[M]. 北京: 地质出版社, 1984. |
[42] |
MAO J W, ZHANG J D, PIRAJNO F, et al. Porphyry Cu-Au-Mo-epithermal Ag-Pb-Zn-distal Hydrothermal Au deposits in the Dexing area, Jiangxi province, East China: a linked ore system[J]. Ore Geology Reviews, 2011, 43(1):203-216.
DOI URL |
[43] | WANG Q, XU J F, JIAN P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47(1):110-144. |
[44] |
LIU X, FAN H R, SANTOSH M, et al. Remelting of Neoproterozoic relict volcanic arcs in the Middle Jurassic: implication for the formation of the Dexing porphyry copper deposit, Southeastern China[J]. Lithos, 2012, 150:85-100.
DOI URL |
[45] |
WANG G G, NI P, YAO J, et al. The link between subduction-modified lithosphere and the giant Dexing porphyry copper deposit, South China: constraints from high-Mg adakitic rocks[J]. Ore Geology Reviews, 2015, 67:109-126.
DOI URL |
[46] |
WANG G G, NI P, LI L, et al. Petrogenesis of the Middle Jurassic andesitic dikes in the giant Dexing porphyry copper ore field, South China: implications for mineralization[J]. Journal of Asian Earth Sciences, 2020, 196. DOI: 10.1016/j.jseaes.2020.104375
DOI |
[47] | 芮宗瑶, 张立生, 陈振宇, 等. 斑岩铜矿的源岩或源区探讨[J]. 岩石学报, 2004, 20(2):229-238. |
[48] | 於崇文. 成矿作用动力学: 理论体系和方法论[J]. 地学前缘, 1994, 1(3):54-82. |
[49] | 於崇文. 成矿动力系统在混沌边缘的分形生长: 一种新的成矿理论与方法论[J]. 矿物岩石地球化学通报, 2002, 21(2):31-41. |
[50] | 朱金初, 金章东, 饶冰, 等. 德兴铜厂斑岩铜矿流体过程[J]. 南京大学学报(自然科学版), 2002, 38(3):418-434. |
[51] |
HOU Z Q, PAN X F, LI Q Y, et al. The giant Dexing porphyry Cu-Mo-Au deposit in east China: product of melting of juvenile lower crust in an intracontinental setting[J]. Mineralium Deposita, 2013, 48:1019-1045.
DOI URL |
[52] |
ZHANG D H, YU C W, BAO Z Y, et al. Ore zoning and dynamics of ore-forming processes of Yinshan polymetallic deposit in Dexing, Jiangxi[J]. Chinese Journal of Geochemistry, 1997, 16:123-132.
DOI URL |
[53] | 郭国章, 任启江, 方长泉, 等. 德兴斑岩铜矿成矿过程中地下热水运移的动力学模拟[J]. 地球化学, 1994, 1(4):402-410. |
[54] |
HE W W, BAO Z Y, LI T P. One-dimensional reactive transport models of alteration in the Tongchang porphyry copper deposit, Dexing district, Jiangxi Province, China[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1999, 94(3):307-323.
DOI URL |
[55] | 於崇文. 江西德兴斑岩铜矿田成矿作用的流体动力分形弥散机制[J]. 地质论评, 1995, 41(3):211-220. |
[56] |
ZHOU Q, JIANG Y H, ZHAO P, et al. Origin of the Dexing ore-bearing porphyries, South China: elemental and Sr-Nd-Pb-Hf isotopic constraints[J]. International Geology Review, 2012, 54(5):572-592.
DOI URL |
[57] | 闵康, 高剑峰, 齐有强, 等. LA-ICP-MS/FT方法在矿床保存研究中的应用: 以赣东北德兴铜矿和银山铅锌矿床为例[J]. 大地构造与成矿学, 2020, 44(1):80-91. |
[58] | 毛景文, 胡瑞忠, 陈毓川, 等. 大规模成矿作用与大型矿集[M]. 北京: 地质出版社, 2006. |
[59] | LI L, NI P, WANG G G, et al. Multi-stage fluid boiling and formation of the giant Fujiawu porphyry Cu-Mo deposit in South China[J]. Ore Geology Reviews, 2017(81):898-911. |
[60] | 李利, 倪培, 王国光, 等. 德兴斑岩铜矿田黄铁矿Re-Os同位素定年及其地质意义[J]. 矿床地质, 2018, 37(6):1168-1178. |
[61] | 潘小菲, 宋玉财, 王淑贤, 等. 德兴铜厂斑岩型铜金矿床热液演化过程[J]. 地质学报, 2009, 83(12):1929-1950. |
[62] | GROTE K, ANTONSSON E. Springer handbook of mechanical engineering[M]. Switzerland: Springer International Publishing, 2009. |
[63] | HERTZBERG R. Deformation and fracture mechanics of engineering materials[M]. Hoboken, USA: John Wiley & Sons, 1996. |
[64] | BOWER A F. Applied mechanics of solids[M]. Boca Raton, USA: CRC Press, 2009. |
[65] | BEAR J. Hydraulics of groundwater[M]. New York: Dover Publications, 1979. |
[66] | INGEBRITSEN S E, SANFORD W E. Groundwater in geologic processes[M]. Cambridge, United Kingdom: Cambridge University Press, 1998. |
[67] | SLEEP N H, FUJITA K. Principles of geophysics[M]. Oxford, UK: Blackwell Science, 1997. |
[68] | TURCOTTE D L, SCHUBERT G. Geodynamics[M]. Cambridge, United Kingdom: Cambridge University Press, 2002. |
[69] | BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962(33):1482-1498. |
[70] | BEAR J, BACHMAT Y. Introduction to modeling of transport phenomena in porous media[M]. Dordrecht: Springer, 1990. |
[71] |
POWERS J M. On the necessity of positive semi-definite conductivity and onsager reciprocity in modeling heat conduction in anisotropic media[J]. Journal of Heat Transfer, 2004, 126(5):670-675.
DOI URL |
[72] | NIELD D A, BEJAN A. Convection in porous media[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. |
[73] | SCHON J H. Physical properties of rocks: a workbook[M]. Amsterdam, the Netherlands: Elsevier B. V., 2011. |
[74] | 胡宝群, 吕古贤, 王方正, 等. 岩石圈中热压系数的计算[J]. 地学前缘, 2008, 15(3):123-129. |
[75] |
LIU L M, SUN T, ZHOU R C. Epigenetic genesis and magmatic intrusion’s control on the Dongguashan stratabound Cu-Au deposit, Tongling, China: evidence from field geology and numerical modeling[J]. Journal of Geochemical Exploration, 2014, 144:97-114.
DOI URL |
[76] |
OSSANDÓN G, FRÉRAUT R, GUSTAFSON L B, et al. Geology of the Chuquicamata mine: a progress report[J]. Economic Geology, 2001, 96:249-270.
DOI URL |
[77] |
FRIKKEN P H, COOKE D R, WALSHE J L, et al. Mineralogical and isotopic zonation in the Sur-Sur tourmaline breccia, Río Blanco-Los Bronces Cu-Mo deposit, Chile: implications for ore genesis[J]. Economic Geology, 2005, 100:935-961.
DOI URL |
[78] | VARGAS R, GUSTAFSON L B, VUKASOVIC M, et al. Ore breccias in the Rio Blanco-Los Bronces porphyry copper deposit, Chile[J]. Society of Economic Geologists Special Publication, 1999, 7:281-297. |
[1] | 上官拴通, 田兰兰, 潘苗苗, 杨风良, 岳高凡, 苏野, 齐晓飞. 干热岩开发断层滑动及诱发地震风险研究:以唐山马头营干热岩场地为例[J]. 地学前缘, 2024, 31(6): 252-260. |
[2] | 鞠玮, 杨慧, 侯贵廷, 宁卫科, 李永康, 梁孝柏. 复杂构造变形区断控裂缝发育分布模式[J]. 地学前缘, 2024, 31(5): 130-138. |
[3] | 牛露佳, 石成岳, 王占刚, 周永章. 三维复杂地质结构模型的InterfaceGrid表达方法[J]. 地学前缘, 2024, 31(4): 129-138. |
[4] | 童馗, 李智武, 刘树根, I.Tonguç UYSAL, 施泽进, 李金玺, Andrew TODD, 武文慧, 王自剑, 刘升武, 李轲, 华天. 始新世中期安宁河断裂冲断变形特征及其构造意义:来自断层泥自生伊利石K-Ar定年的证据[J]. 地学前缘, 2024, 31(4): 297-313. |
[5] | 张前龙, 周永章, 郭兰萱, 原桂强, 虞鹏鹏, 王汉雨, 朱彪彪, 韩枫, 龙师尧. 找矿知识图谱的智能化应用:以钦杭成矿带斑岩铜矿为例[J]. 地学前缘, 2024, 31(4): 7-15. |
[6] | 字艳梅, 田世洪, 陈欣阳, 侯增谦, 杨志明, 龚迎莉, 唐清雨. 埃达克岩与热液成矿过程中钾镁同位素分馏及其指示意义:以驱龙斑岩铜矿床为例[J]. 地学前缘, 2024, 31(3): 150-169. |
[7] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
[8] | 张健, 何雨蓓, 范艳霞. 福建沿海地区地热异常热源成因的地球物理分析[J]. 地学前缘, 2024, 31(3): 392-401. |
[9] | 徐继山, 彭建兵, 隋旺华, 安海波, 李作栋, 徐文杰, 董培杰. 郯庐断裂转换段新沂地裂缝成生机理及构造意义[J]. 地学前缘, 2024, 31(3): 470-481. |
[10] | 侯玉松, 胡晓农, 吴吉春. 不同胶结度的多孔介质中溶质横向弥散的孔隙尺度模拟研究[J]. 地学前缘, 2024, 31(3): 59-67. |
[11] | 李玉丹, 游瑜春, 曾大乾, 石志良, 顾少华, 张睿. 底水气藏水侵规律数值模拟研究:以元坝长兴组气藏为例[J]. 地学前缘, 2023, 30(6): 341-350. |
[12] | 张允, 康志江, 马郡伟, 郑欢, 吴大卫. 深层离散裂缝油藏多尺度流固耦合数值模拟方法[J]. 地学前缘, 2023, 30(6): 365-370. |
[13] | NEUPANE Bhupati, ZHAO Junmeng, LIU Chunru, PEI Shunping, MAHARJAN Bishal, DHAKAL Sanjev. 尼泊尔喜马拉雅山脉中央丘里亚冲断层的电子自旋共振测年[J]. 地学前缘, 2023, 30(4): 260-269. |
[14] | 孙哲, 张彬, 陈大伟, 李玉涛, 王汉勋. 花岗岩裂隙岩体油水两相渗流可视化试验及数值模拟研究[J]. 地学前缘, 2023, 30(3): 465-475. |
[15] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||