地学前缘 ›› 2022, Vol. 29 ›› Issue (6): 156-174.DOI: 10.13745/j.esf.sf.2022.8.2
贾承造1(), 陈竹新2,3,*(
), 雷永良4, 王丽宁2,3, 任荣2,3, 苏楠2,3, 杨庚2,3
收稿日期:
2022-07-07
修回日期:
2022-07-27
出版日期:
2022-11-25
发布日期:
2022-10-20
通信作者:
陈竹新
作者简介:
贾承造(1948—),男,博士,中国科学院院士,主要从事构造地质学、石油地质学研究和油气勘探工作。E-mail: Jiacz@petrochina.com.cn
基金资助:
JIA Chengzao1(), CHEN Zhuxin2,3,*(
), LEI Yongliang4, WANG Lining2,3, REN Rong2,3, SU Nan2,3, YANG Geng2,3
Received:
2022-07-07
Revised:
2022-07-27
Online:
2022-11-25
Published:
2022-10-20
Contact:
CHEN Zhuxin
摘要:
基于复杂构造解析和实验模拟研究,揭示了中西部前陆褶皱冲断构造带主要表现为受侧向挤压形成的滑脱冲断构造变形过程和结构样式;明确了单层滑脱挤压冲断构造变形存在临界增生和非临界增生两种变形机制,发育脆性拆离型、塑性滑移型和黏性流动型3种作用类型,并受滑脱层强度、地层厚度、底部边界和外动力过程等4种主要因素影响。复杂冲断构造带基本上表现为受多层单滑脱作用控制形成的垂向叠置组合结构,本文提出了复杂滑脱冲断变形结构的可分解性以及受不同性质的滑脱层组合控制形成特征结构模式,并揭示了前陆冲断带前缘多滑脱构造变形结构中由浅层向深层逐渐发育的变形时序;建立了中西部再生前陆冲断带结构模型、构造单元以及基本构造类型;并基于前陆盆地多阶段构造演化过程以及晚期的隆升剥蚀-沉降沉积过程,提出了中西部两种类型冲断带的控油气作用及其勘探领域。
中图分类号:
贾承造, 陈竹新, 雷永良, 王丽宁, 任荣, 苏楠, 杨庚. 中国中西部褶皱冲断带构造变形机制与结构模型[J]. 地学前缘, 2022, 29(6): 156-174.
JIA Chengzao, CHEN Zhuxin, LEI Yongliang, WANG Lining, REN Rong, SU Nan, YANG Geng. Deformation mechanisms and structural models of the fold-thrust belts of central and western China[J]. Earth Science Frontiers, 2022, 29(6): 156-174.
图1 脆性拆离型滑脱冲断构造作用与构造增生过程 a—基本构造样式模型;b—坡角演化模型;c—构造垂向抬升模型。
Fig.1 Brittle detachment-type thrust faults and related structural accretion behaviors (a) Basic structural model. (b) Surface slope angle evolution with increasing shortening. (c) Structural height growth with increasing shortening.
图2 塑性滑移型滑脱冲断构造模型与构造增生过程 a—基本构造样式模型;b—坡角演化模型;c—构造垂向抬升模型。
Fig.2 Ductile sliding-type thrust faults and related structural accretion behaviors. (a) Basic structural model. (b) Surface slope angle evolution with increasing shortening. (c) Structural height growth with increasing shortening.
图3 滑脱层厚度变化下的黏性流动型构造模型(据文献[33]修改)
Fig.3 Viscous flow-style thrust faults under variable salt thickness in a gravity-driven contractional system. Modified from [33].
图6 变形层厚度影响下的冲断构造三维空间分布结构(左:鳞片状;右:排带状)
Fig.6 Three-dimensional spatial distribution of thrust blocks affected by competent-layer thickness. Left: Scale-like structure model. Right: Belted structure model.
图8 双塑性层变形的外动力地质作用实验模型(左:实验模型;右:地质模型)
Fig.8 Analogue models (left panel) and geological interpretations (right panel) of coupled double weak-layer detachments under influence of different exogenic geological processes
图9 多滑脱层-多阶段物理模拟实验剖面构造变形过程 缩短速率0.005 mm/s,红色线段为活动断层、黑色为静止断层。
Fig.9 Deformation series showing the development and evolution of multi-stage multi-layer detachments under influence of exogenic geological processes. The shortening rate is 0.005 mm/s. Red and black segments indicate active and inactive faults, respectively.
图12 中西部地区典型脆性拆离型-塑性滑移型滑脱冲断组合变形结构 A—库车冲断带[38];B—塔西南冲断带[56];C—米仓山冲断带[57]。
Fig.12 Cross-sections of typical fold-thrust belts of central and western China with combined brittle-ductile detachments. (A) The Kuqa fold-thrust belt (adapted from [38]). (B) The southwestern Tarim fold-thrust belt (adapted from 56). (C) The Michangshan fold-thrust belt (adapted from [57]).
图13 初始楔形地层结构双滑脱构造物理模拟实验模型
Fig.13 Deformation process of an analogue model with ductile/ductile double layer and an initial stratum wedge to develop coupled multi-layer detachments. Red and yellow segments indicate inactive and active faults, respectively.
图14 中西部地区典型塑性滑移-塑性滑移型滑脱冲断组合变形结构 A—川西南冲断带;B—川东褶皱带。
Fig.14 Cross-sections of typical fold-thrust belts of central and western China with combined ductile detachments. (A) The Southwestern Sichuan fold-thrust belt. (B) The Eastern Sichuan fold-thrust belt.
图15 准南中段前缘多滑脱冲断变形结构(左:地震剖面,右:构造剖面)
Fig.15 A cross-section of the Southern Junggar fold-thrust belt with multi-layer detachments. Left: Seismic profile. Right: Structural interpretation.
图17 中西部地区典型多滑脱冲断组合变形结构 A—川西北冲断带;B—准南冲断带。
Fig.17 Cross-sections of typical fold-thrust belts of central and western China with combined multi-layer detachments. (A) The Northwestern Sichuan fold-thrust belt. (B) The Southern Junggar fold-thrust belt.
图19 中西部2类特征性再生前陆冲断带 A—两类特征性再生前陆冲断带分布示意图;B—中西部前陆盆地新生代沉积/剥蚀厚度统计图。
Fig.19 (A) Schematic distribution map of the two types of characteristic rejuvenated foreland fold-thrust belts of central and western China, and (B) Cenozoic sedimentary (blue)/denudation (red) thicknesses in the foreland basin.
图20 同沉积冲断型冲断带和抬升改造型冲断带油气聚集模式 A—同沉积冲断型;B—抬升改造型。
Fig.20 Hydrocarbon accumulation patterns in syn-sedimentary (left) and uplifted (right) rejuvenated foreland fold-thrust belts of central and western China
[1] | 贾承造, 李本亮, 雷永良, 等. 环青藏高原盆山体系构造与中国中西部天然气大气区[J]. 中国科学: 地球科学, 2013, 43(10): 1621-1631. |
[2] | 李本亮, 贾承造, 庞雄奇, 等. 环青藏高原盆山体系内前陆冲断构造变形的空间变化规律[J]. 地质学报, 2007, 81(9): 1200-1207. |
[3] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[4] |
何登发, 马永生, 刘波, 等. 中国含油气盆地深层勘探的主要进展与科学问题[J]. 地学前缘, 2019, 26(1): 1-12.
DOI |
[5] | 田军, 王清华, 杨海军, 等. 塔里木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 272-282. |
[6] | 李伟, 陈竹新, 黄平辉, 等. 中国中西部典型前陆盆地超压体系形成机制与大气田关系[J]. 石油勘探与开发, 2021, 48(3): 536-548. |
[7] | 魏学斌, 沙威, 沈晓双, 等. 柴达木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 302-311. |
[8] | 张道伟, 马达德, 陈琰, 等. 柴达木盆地油气地质研究新进展及勘探成果[J]. 新疆石油地质, 2019, 40(5): 505-512. |
[9] | 杜金虎, 支东明, 李建忠, 等. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望[J]. 石油勘探与开发, 2019, 46(2): 1-11. |
[10] | 马新华, 杨雨, 文龙, 等. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发, 2019, 46(1): 1-13. |
[11] | 贾承造, 杨树锋, 陈汉林, 等. 特提斯北缘盆地群构造地质与天然气[M]. 北京: 石油工业出版社, 2001: 1-161. |
[12] | 杨树锋, 贾承造, 陈汉林, 等. 特提斯构造带的演化和北缘盆地群形成及塔里木天然气勘探远景[J]. 科学通报, 2002, 47(增刊1): 36-43. |
[13] | 贾承造, 邹才能, 杨智, 等. 陆相油气地质理论在中国中西部盆地的重大进展[J]. 石油勘探与开发, 2018, 45(4): 546-560. |
[14] |
何登发, 李德生, 何金有, 等. 塔里木盆地库车坳陷和西南坳陷油气地质特征类比及勘探启示[J]. 石油学报, 2013, 34(2): 201-218.
DOI |
[15] | 漆家福, 雷刚林, 李明刚, 等. 库车坳陷克拉苏构造带的结构模型及其形成机制[J]. 大地构造与成矿学, 2009, 33(1): 49-56. |
[16] | 漆家福, 雷刚林, 李明刚, 等. 库车坳陷—南天山盆山过渡带的收缩构造变形模式[J]. 地学前缘, 2009, 16(3): 120-128. |
[17] | 李本亮, 陈竹新, 雷永良, 等. 天山南缘与北缘前陆冲断带构造地质特征对比及油气勘探建议[J]. 石油学报, 2011, 21(3): 395-403. |
[18] | 管树巍, 张朝军, 何登发, 等. 前陆冲断带复杂构造解析与建模: 以准噶尔盆地南缘第一排背斜带为例[J]. 地质学报, 2006, 80(8): 1131-1140. |
[19] | 管树巍, 李本亮, 何登发, 等. 晚新生代以来天山南、北麓冲断作用的定量分析[J]. 地质学报, 2007, 81(6): 725-744. |
[20] | 管树巍, 陈竹新, 李本亮, 等. 再论库车克拉苏深部构造的性质与解释模型[J]. 石油勘探与开发, 2010, 37(5): 531-536. |
[21] | 程晓敢, 黄智斌, 陈汉林, 等. 西昆仑山前冲断带断裂特征及构造单元划分[J]. 岩石学报, 2012, 28(8): 2591-2601. |
[22] | 汪新, 王招明, 谢会文, 等. 塔里木库车坳陷新生代盐构造解析及其变形模拟[J]. 中国科学: 地球科学, 2010, 40(12): 1655-1668. |
[23] | 能源, 谢会文, 李勇, 等. 塔里木盆地库车坳陷中部构造变形样式及储层分布特征[J]. 地质科学, 2012, 48(3): 629-639. |
[24] | 汪伟, 尹宏伟, 周鹏, 等. 塔里木盆地含盐褶皱冲断带变形特征与变形机制[J]. 新疆石油地质, 2019, 40(1): 68-73. |
[25] | 余海波, 漆家福, 师骏, 等. 库车坳陷盐下构造对盐上盖层变形的影响因素分析[J]. 地质科学, 2015, 50(1): 50-62. |
[26] |
唐鹏程, 饶刚, 李世琴, 等. 库车褶皱-冲断带前缘盐层厚度对滑脱褶皱构造特征及演化的影响[J]. 地学前缘, 2015, 22(1): 312-327.
DOI |
[27] | 汤良杰, 余一欣, 陈书平, 等. 含油气盆地盐构造研究进展[J]. 地学前缘, 2005, 12(4): 375-383. |
[28] |
DAVIS D, SUPPE J, DAHLEN F A. Mechanics of fold-and-thrust belts and accretionary wedges[J]. Journal of Geophysical Research, 1983, 88(B2): 1153-1172.
DOI URL |
[29] | ALLEN P A, ALLEN J R. Basin analysis: principles and applications to petroleum play assessment[M]. 3nd Edition. Oxford: Blackwell Publising Ltd, 2013: 89-152. |
[30] | SMIT J H W, BRUN J P, SOKOUTIS D. Deformation of brittle-ductile thrust wedges in experiments and nature[J]. Journal of Geophysical Research, 2003, 108(B10): 2480. |
[31] | SHAW H J, CONNORS C, SUPPE J. Seismic interpretation of contractional fault-related folds: an AAPG seismic atlas[M]. Tulsa: American Association of Petroleum Geologists, 2005: 1-155. |
[32] | FOSSEN H. Structural geology[M]. Cambridge: Cambridge University Press, 2010: 371-392. |
[33] | HUDEC M R, JACKSON M P A. The salt mine: a digital atlas of salt tectonics[M]. Bath: Geological Society Publishing House, 2011: 141-160. |
[34] | 谢会文, 雷永良, 能源, 等. 挤压作用下盐岩流动的三维物理模拟分析[J]. 地质科学, 2012, 47(3): 824-835. |
[35] | 汪新, 唐鹏程, 谢会文, 等. 库车坳陷西段新生代盐构造特征及演化[J]. 大地构造与成矿学, 2009, 33(1): 57-65. |
[36] | 汪新, 王招明, 谢会文, 等. 塔里木库车坳陷新生代盐构造解析及其变形模拟[J]. 中国科学: 地球科学, 2010, 10(12): 1655-1668. |
[37] |
DAHLEN F A, SUPPE J, DAVIS D. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive coulomb theory[J]. Journal of Geophysical Research, 1984, 89 (B12): 10087-10101.
DOI URL |
[38] | 陈竹新, 雷永良, 贾东, 等. 构造变形物理模拟与构造建模技术及应用[M]. 北京: 科学出版社, 2019: 74-134. |
[39] |
WEIJERMARS R, JACKSON M P A, VENDEVILLE B. Rheological and tectonic modeling of salt provinces[J]. Tectonophysics, 1993, 217: 143-174.
DOI URL |
[40] | DAVIS D M, ENGELDER T. Thin-skinned deformation over salt[J]. Dynamical Geology of Salt and Related Structures, 1987: 301-337. |
[41] |
BOYER S E. Sedimentary basin taper as a factor controlling the geometry and advance of thrust belts[J]. American Journal of Science, 1995, 295(10): 1220-1254.
DOI URL |
[42] | ERICKSON S G. Influence of mechanical stratigraphy on folding vs faulting[J]. Journal of Structural Geology, 1996, 18(4): 431-435. |
[43] |
FERMOR P. Aspects of the three-dimensional structure of the Alberta foothills and front ranges[J]. Geological Society of America Bulletin, 1999, 111(3): 317-346.
DOI URL |
[44] |
DAVIS D M, ENGELDER T. The role of salt in fold-and-thrust belts[J]. Tectonophysics, 1985, 119(1/2/3/4): 67-88.
DOI URL |
[45] | DAHLEN F A, SUPPE J. Mechanics, growth, and erosion of mountain belts[J]. Geological Society of America Special Papers. Processes in Continental Lithospheric Deformation, 1988, 218: 161-178. |
[46] |
MASSOLI D, KOYI H A, BARCHI M R. Structural evolution of a fold and thrust belt generated by multiple décollements: analogue models and natural examples from the Northern Apennines (Italy)[J]. Journal of Structural Geology, 2006, 28: 185-199.
DOI URL |
[47] |
MORLEY C K. Interaction between critical wedge geometry and sediment supply in a deep-water fold belt[J]. Geology, 2007, 35: 139-142.
DOI URL |
[48] |
SUN C, JIA D, YIN H W, et al. Sandbox modeling of evolving thrust wedges with different preexisting topographic relief: implications for the Longmen Shan thrust belt, eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2016, 121, doi: 10.1002/2016JB013013.
DOI |
[49] | LIU H, MCCLAY K R, POWELL D. Physical models of thrust wedges[M]//MCCLAY K R. Thrust tectonics. London: Chapman and Hall, 1992: 71-81. |
[50] |
MULUGETA G. Modelling the geometry of Coulomb thrust wedges[J]. Journal of Structural Geology, 1988, 10: 847-859.
DOI URL |
[51] | 陈竹新, 李伟, 王丽宁, 等. 川西北地区构造地质结构与深层勘探层系分区[J]. 石油勘探与开发, 2019, 46(2): 397-408. |
[52] |
WANG C Y, CHEN H L, CHENG X G, et al. Evaluating the role of syn-thrusting sedimentation and interaction with frictional detachment in the structural evolution of the SW Tarim basin, NW China: insights from analogue modelling[J]. Tectonophysics, 2013, 608: 642-652.
DOI URL |
[53] |
CHEN H L, ZHANG Y Q, CHENG X G, et al. Using migrating growth strata to confirm a 230-km-long detachment thrust in the southern Tarim Basin[J]. Journal of Structural Geology, 2022, 154: 104488.
DOI URL |
[54] |
谢会文, 陈竹新, 李勇, 等. 塔里木盆地西秋—却勒冲断褶皱带地质结构特征及油气勘探区带[J]. 石油学报, 2012, 33(6): 932-940.
DOI |
[55] | MITRA S. Duplex structures and imbricate thrust systems: geometry, structural position, and hydrocarbon potential[J]. AAPG Bulletin, 1986, 70: 1087-1112. |
[56] |
LI T, CHEN J, FANG L, et al. The 2015 Mw 6.4 Pishan Earthquake: seismic hazards of an active blind wedge thrust system at the Western Kunlun Range front, Northwest Tibetan Plateau[J]. Seismological Research Letters, 2016, doi: 10.1785/0220150205.
DOI |
[57] | 陈竹新, 王丽宁, 杨光, 等. 川西南冲断带深层地质构造与潜在油气勘探领域[J]. 石油勘探与开发, 2020, 47(4): 653-667. |
[58] |
GU Z, WANG X, NUNNS A, et al. Structural styles and evolution of a thin-skinned fold-and-thrust belt with multiple detachments in the eastern Sichuan Basin, South China[J]. Journal of Structural Geology, 2020, 142: 104191.
DOI URL |
[1] | 程永志, 高锐, 卢占武, 李文辉, 王光文, 陈司, 吴国炜, 蔡玉国. 青藏高原东北缘祁连造山带东段深部结构及其动力学过程[J]. 地学前缘, 2023, 30(5): 314-333. |
[2] | 张进, 张北航, 赵衡, 云龙, 曲军峰, 王振义, 杨亚琦, 赵硕. 北山-阿拉善晚新生代变形的特征与机制[J]. 地学前缘, 2023, 30(5): 334-357. |
[3] | 杨学文, 王清华, 李勇, 吕修祥, 谢会文, 吴超, 王翠丽, 王祥, 莫涛, 汪瑞. 库车前陆冲断带博孜—大北万亿方大气区的形成机制[J]. 地学前缘, 2022, 29(6): 175-187. |
[4] | 马德龙,何登发,袁剑英,张虎权,潘树新,王宏斌,王彦君,魏彩茹,郭娟娟. 准噶尔盆地南缘前陆冲断带深层地质结构及对油气藏的控制作用:以霍尔果斯—玛纳斯—吐谷鲁褶皱冲断带为例[J]. 地学前缘, 2019, 26(1): 165-177. |
[5] | 许淑梅,吴珊,李三忠,武向峰,冯怀伟,王金铎. 台湾地区弧陆碰撞控制的海相前陆盆地[J]. 地学前缘, 2017, 24(4): 284-293. |
[6] | 何丽娟,许鹤华,刘琼颖. 前陆盆地构造热演化:以龙门山前陆盆地为例[J]. 地学前缘, 2017, 24(3): 127-136. |
[7] | 李斌,胡博文,石小虎. 湘西地区志留纪沉积体系及典型前陆盆地的形成模式研究[J]. 地学前缘, 2015, 22(6): 167-176. |
[8] | 唐鹏程, 饶刚, 李世琴, 汪仁富. 库车褶皱冲断带前缘盐层厚度对滑脱褶皱构造特征及演化的影响[J]. 地学前缘, 2015, 22(1): 312-327. |
[9] | 刘亚明,谢寅符,马中振,王丹丹,阳孝法,孙作兴. 南美北部前陆盆地重油成藏特征及勘探前景[J]. 地学前缘, 2014, 21(3): 134-144. |
[10] | 谢寅符, 马中振, 刘亚明, 刘剑波, 阳孝法, 孙作兴. 南美洲常规油气资源评价及勘探方向[J]. 地学前缘, 2014, 21(3): 101-111. |
[11] | 张恒, 谢莹, 张传恒, 李廷栋, 耿树方, 高林志, 游国庆. 江南造山带西段冷家溪群沉积地质特征及构造属性探讨[J]. 地学前缘, 2013, 20(6): 269-281. |
[12] | 付晓飞,许鹏,魏长柱,吕延防. 张性断裂带内部结构特征及油气运移和保存研究[J]. 地学前缘, 2012, 19(6): 200-212. |
[13] | 张天舒, 吴因业, 郭彬程, 冯有良. 鄂尔多斯盆地西南缘晚三叠世前陆冲断活动控制的沉积层序特征[J]. 地学前缘, 2012, 19(1): 40-50. |
[14] | 郭进京,任留东,白瑾. 五台山地区古元古界滹沱群沉积环境:前陆盆地还是陆内裂谷盆地?[J]. 地学前缘, 2011, 18(3): 211-220. |
[15] | 张国伟,郭安林,董云鹏,姚安平. 大陆地质与大陆构造和大陆动力学[J]. 地学前缘, 2011, 18(3): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||