地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 35-56.DOI: 10.13745/j.esf.sf.2022.8.55
所属专题: 印度-欧亚大陆碰撞及其远程效应
• “印度-欧亚大陆碰撞及其远程效应”专栏之六 • 上一篇 下一篇
唐宇1(), 王根厚1,*(
), 韩芳林2, 李典3, 梁晓1, 冯翼鹏1, 张莉4, 王卓胜2, 韩宁1
收稿日期:
2022-06-23
修回日期:
2022-08-30
出版日期:
2023-03-25
发布日期:
2023-01-05
通信作者:
王根厚
作者简介:
唐 宇(1990—),男,博士研究生,主要从事构造地质学研究。E-mail: 382030483@qq.com
基金资助:
TANG Yu1(), WANG Genhou1,*(
), HAN Fanglin2, LI Dian3, LIANG Xiao1, FENG Yipeng1, ZHANG Li4, WANG Zhuosheng2, HAN Ning1
Received:
2022-06-23
Revised:
2022-08-30
Online:
2023-03-25
Published:
2023-01-05
Contact:
WANG Genhou
摘要:
前人将西藏南部特提斯喜马拉雅带加查地区出露的上三叠统中低级变质岩组合“朗杰学群”统认为是一套深海-半深海复理石建造。近来调查研究发现,该晚三叠世地层中实则存在一陡立剪切带(SSB),其南北物质组成、构造变形以及变质作用等存在明显差异。SSB以北具有明显“岩块”+“基质”的增生杂岩特征,“岩块”主要包括变砂岩、灰岩、大理岩、绿片岩、玄武质片岩、变质基性岩、片理化阳起石岩和石榴石云母片岩等;“基质”主要由变质砂板岩、绢云千枚岩和绢云石英千枚岩(千糜岩)等组成,原生沉积构造基本不可见,未见化石保留。然而,SSB以南的地层主要为粗粒—细粒长英质砂岩、泥岩和浅变质板岩组成,重荷模、沟槽模、鲍玛序列、韵律层等原生沉积构造以及遗迹化石十分发育。构造解析表明增生杂岩主要发育两期构造变形:第一期构造变形(D1)表现为顺层剪切形成向北缓倾、具有强烈透入分异面理、长英质脉体新生面理S1,运动方向指示顶部朝南;第二期构造变形(D2)表现为近南北向挤压应力作用形成的向南中-高角度倾斜构造置换面理S2,运动学指示为顶部朝北逆冲剪切,顺劈理发育同构造中基性岩墙。SSB南侧地层主要发育一期近南北向挤压作用形成的褶皱-冲断构造,运动学指示为顶部朝南的逆冲剪切。加查增生杂岩中朝北逆冲叠瓦的构造样式与朗杰学群褶冲带中朝南逆冲叠瓦的构造样式共同构成正花状构造,锆石U-Pb年代学揭示增生杂岩“基质”时代与南部地层时代均为拉丁期—诺利期(242~220 Ma),增生杂岩中“岩块”时代有晚三叠世、晚侏罗世(146 Ma)和早白垩世(144 Ma),表现为“岩块”具有多时代特征。同构造中基性岩墙的形成时代为约56 Ma,代表北侧第二期构造变形事件发生在始新世早期,间接限定第一期构造变形可能发生在古新世—始新世之间。变形构造层次和构造演化研究认为,加查增生杂岩中发育的两期变形分别对应印度被动大陆北缘与亚洲大陆南缘之间的俯冲—增生和碰撞过程,即加查增生杂岩可能为印度被动陆缘俯冲形成。加查增生杂岩与朗杰学群褶冲带构成的正花状构造样式可能代表印度地壳增厚和喜马拉雅造山带隆升,SSB内发育朝南东东缓倾的线理构造,暗示动力学背景可能为始新世晚期印度地壳向亚洲大陆之下斜向俯冲。
中图分类号:
唐宇, 王根厚, 韩芳林, 李典, 梁晓, 冯翼鹏, 张莉, 王卓胜, 韩宁. 西藏加查地区特提斯喜马拉雅带晚三叠世地层重新厘定及构造变形研究[J]. 地学前缘, 2023, 30(2): 35-56.
TANG Yu, WANG Genhou, HAN Fanglin, LI Dian, LIANG Xiao, FENG Yipeng, ZHANG Li, WANG Zhuosheng, HAN Ning. Late-Triassic stratigraphic redefinition of and structural deformation in the Tethys Himalayan Belt in Gyaca area, Tibet[J]. Earth Science Frontiers, 2023, 30(2): 35-56.
图3 加查增生杂岩中“岩块”和“基质”组成特征 a—灰岩岩块和绢云石英千枚岩基质;b—辉绿岩、变基性岩和砂岩等岩块与绢云石英千枚岩和变质砂岩基质;c—变基性岩和灰岩岩块与绢云石英千枚岩基质;d—绿片岩岩块与绢云石英千枚岩基质;e—变砂岩岩块与绢云千枚岩基质;f—玄武质片岩岩块与绢云千枚岩基质;g—阳起石片岩岩块与石榴石英云母片岩基质;h—桑东岩组砂质板岩基质,发育少量石英脉;i—普姆岩组绢云千枚岩夹变砂岩基质,发育大量的石英脉;j—江惹岩组绢云长英质千枚岩基质,发育大量的石英脉;k—色拉岩组含石榴石石英云母片岩基质,脉体含量相对较少;l—邦浪岩组绢云石英千枚岩夹变砂岩,较多石英脉发育。
Fig.3 Compositional characteristics of “blocks” and “matrix” in the Gyaca accretionary complex
图4 晚三叠世朗杰学群组成特征 a—江雄组内中厚层砂岩与中薄层细砂岩组成的韵律层;b—江雄组中薄层砂岩和泥岩组成的韵律性层序;c—宋热组厚层砂岩和薄层泥岩组成的韵律层;d—涅如组中薄层砂岩和薄层泥岩(板岩)组成的韵律性层序;e—鲍玛序列ABCD段;f—包卷层理;g—粉砂岩中泥砾;h—含砾砂岩;i—沟槽模,镜头代表水流方向;j—粉砂岩中的底模构造;k—植物茎干化石;l—遗迹化石(虫迹)。
Fig.4 Compositional characteristics of the Late-Triassic Langjiexue Group
图5 加查增生杂岩的构造变形特征 a—变质粗砂岩和变质细砂岩原始残留的粒序层,显示层理倾向朝南的地层为倒转层序;b—原始变质砂岩和变质泥岩残留成分层S0组成的韵律层,显示地层层序为正常朝北缓倾,层理S0平行于变形面理S1,D1变形运动学具有上盘朝北的顺层剪切特征;c—图b橙色矩形放大,可见层理S0发生顺层剪切作用,导致岩石发生褶皱作用;d—成分层S0与S1变形面理(石英脉)发生褶皱作用形成S2逆冲剪切置换面理;e,f—原始成分层S0与新生面理S1呈平行关系,两者共同发生挤压褶皱作用,形成上盘朝北逆冲剪切面理和轴面劈理S2;g—S1面理和S2面理的相互关系,可见石英脉发生上盘朝北的逆冲剪切而形成的褶皱,粉砂质板岩发生面理置换形成置换面理S2;h,i,j—S1面理发生面理置换形成S2面理和轴面劈理;k—D1变形中残留的石英脉发生褶皱作用,S1面理被S2面理置换;l,m,n—D2变形强带,主要以大量置换面理S2和透镜状石英脉为主,少量石英脉形成无根沟状褶皱;o—D2变形强带(南侧)和D1变形强带(北侧),前者形成置换面理S2,后者石英脉体褶皱形成轴面劈理S2;p,q,r—都为顺S2面理发育的同构造(D2)中基性岩墙,p中可见残留的S1和中基性岩墙均被S2面理改造,r中可见中基性脉体与S2面理相互改造的证据(同构造)。白色实线代表S0,黄色短虚线代表S1,紫色长虚线代表S2,红色实线和箭头代表剪切面和剪切方向。
Fig.5 Structural deformation characteristics of the Gyaca accretionary complex
图6 特提斯喜马拉雅带东段晚三叠世构造-地层剖面 地层单元和对应颜色参考图2中图例,图切剖面位置见图2中AB段和CD段。
Fig.6 Tectonostratigraphy profile of Late-Triassic strata of the eastern Tethys Himalayan Belt. Stratigraphic unit and color scheme refer to Fig.2; cross-section locations see Fig.2, lines AB, CD.
图7 上三叠统朗杰学群岩石构造变形特征 a—江雄组内部薄层砂岩发育的尖棱褶皱和推覆断层;b—江雄组内部发育的尖圆褶皱;c—宋热组内部粉砂岩发育的推覆断层和同斜褶皱;d—涅如组内部岩石发育的推覆断层、反冲断层及其相关褶皱样式;e—涅如组中薄层砂岩和薄层泥岩组成的向斜构造和逆冲断层;f—涅如组内部岩石发育的断层相关褶皱,可见砂岩标志层被明显的错断,显示断层性质为逆断层;g—涅如组内部薄层砂岩发育的断层相关及叠加褶皱;h—宋热组砂质板岩褶皱形成的轴面劈理S1;i—砂岩能干层和泥岩非能干层之间顺层剪切形成的层间劈理,指示上层面向上运动,表明地层层序正常;j—细砂岩与粉砂质泥岩层间剪切形成劈理。层理S0用黄色实线表示,轴面劈理S1用紫色虚线表示。
Fig.7 Structural deformation characteristics of the Late-Triassic Langjiexue Group. Yellow lines represent bedding (S0); purple lines refer to axial-plane cleavage (S1).
图8 特提斯喜马拉雅带东段晚三叠世构造-地层构造样式简化图 地层单元参考图2中图例所示。
Fig.8 Schematic diagram showing the tectonostratigraphic framework of the Late-Triassic strata of the eastern Tethys Himalayan Belt. Stratigraphic units refer to Fig.2.
图9 特提斯喜马拉雅带东段晚三叠世构造-地层碎屑锆石谐和图 a,b—桑东岩组碎屑锆石年龄谐和图;c—普姆岩组碎屑锆石年龄谐和图;d—江惹岩组碎屑锆石年龄谐和图;e—色拉岩组碎屑锆石年龄谐和图;f—邦浪岩组碎屑锆石年龄谐和图;g,h—江雄组碎屑锆石年龄谐和图;i,j—宋热组碎屑锆石年龄谐和图;k,l—涅如组碎屑锆石年龄谐和图。Mean为均值年龄,MSWD为平均标准加权偏差,n为锆石数量。
Fig.9 Detrital zircon concordance of the Late Triassic tectonostratigraphy on the eastern Tethys Himalayan belt
图10 加查增生杂岩中变基性岩岩块的锆石年龄谐和图(a, c)和均值图(b, d) Mean为均值年龄,MSWD为平均标准加权偏差,n为锆石数量。
Fig.10 Zircon concordance (a, c) and weighted mean age (b, d) plots for zircon grains from metabasite blocks in the Gyaca accretionary complex
图11 同构造中基性岩墙或岩墙的锆石年龄谐和图(a, c)和均值图(b, d) Mean为均值年龄,MSWD为平均标准加权偏差,n为锆石数量。
Fig.11 Zircon concordance (a, c) and weighted mean age (b, d) plots for zircon grains from syntectonic intermediate-mafic veins or dikes
图12 印度被动陆缘的俯冲—增生—碰撞过程 a—印度与亚洲大陆的初始碰撞,印度被动大陆边缘之上沉积的晚三叠世物质与亚洲大陆发生接触;b—印度被动陆缘的俯冲—增生过程,北侧部分晚三叠世物质进入俯冲带,发生上盘朝南的顺层剪切变形(南侧物质未进入因而没有发生变形),形成S1面理和陆缘俯冲增生杂岩,原始洋壳增生杂岩可能遭受俯冲侵蚀作用被带入俯冲带而消失;c—印度与亚洲大陆的同碰撞作用的开启,陆壳增生杂岩中S1面理和未进入俯冲带的朗杰学群原始层理S0一起发生上盘朝南的挤压逆冲剪切变形,形成S2面理和初始的褶皱冲断带;d—后碰撞阶段,印度与亚洲大陆持续的碰撞和挤压,引起增生杂岩内部运动学表现为上盘朝北的逆冲剪切,而朗杰学群则表现为上盘朝南的逆冲剪切,两者形成具有正花状构造的叠瓦式褶冲带,走滑剪切带发育向SEE缓倾的线理构造,推测印度-亚洲大陆之间的碰撞方式可能为一种斜向碰撞。GA:岗底斯岩浆弧;OC:大洋板片;IPCM:印度被动大陆边缘;ACOS:大洋俯冲增生杂岩;ACCS:大陆俯冲增生杂岩;IFTZ:叠瓦式褶冲带;T3L:上三叠统朗杰学群;T3:晚三叠世地层。
Fig.12 Passive continental margin of India subduction-accretion-collision process
[84] |
GAO R, LU Z W, KLEMPERER S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9: 555-560.
DOI URL |
[85] |
卢占武, 高锐, KLEMPERER S, 等. 喜马拉雅西部雅鲁藏布江缝合带地壳尺度的构造叠置[J]. 地学前缘, 2022, 29(2): 210-217.
DOI |
[86] |
DONG X Y, LI W H, LU Z W, et al. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics, 2020, 780(4): 228395.
DOI URL |
[87] |
GAO R, ZHOU H, GUO X Y, et al. Deep seismic reflection evidence on the deep processes of tectonic construction of the Tibetan Plateau[J]. Earth Science Frontiers, 2021, 28(5): 320-336.
DOI |
[88] | 付建刚, 李光明, 王根厚, 等. 北喜马拉雅双穹窿构造的建立: 来自藏南错那洞穹窿的厘定[J]. 中国地质, 2018, 45(4): 783-802. |
[89] | 李海兵, 戚学祥, VALLI F, 等. 喀喇昆仑断裂的形成时代: 锆石SHRIMP U-Pb年龄的制约[J]. 科学通报, 2007, 52(4): 438-447. |
[90] | CUO Z J, LU J M, ZHANG Z C. Cenozoic exhumation and thrusting in the northern Qilian Shan, northeastern margin of the Tibetan Plateau: constraints from sedimentological and apatite fission-track data[J]. Acta Ceologica Sinica, 2009, 83: 801-840. |
[91] |
MENG Q R, HU J M, YANG F Z. Timing and magnitude of displacement on the Altyn Tagh fault: constraints from stracigraphic correlation of adjoining Tarim and Qaidam basins, NW China[J]. Terra Nova, 2003, 13: 86-91.
DOI URL |
[92] |
DUPONT-NIVET G, KRIJGSMAN W, LANGEREIS C G, et al. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445: 635-638.
DOI URL |
[93] | MOLNAR P, TAPPONNIER P. The collision between India and Eurasia[J]. Scientific American, 1977, 236(4): 30-41. |
[1] |
MOLNARP, ENGLANG P, MARTINOD P J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31: 357-396.
DOI URL |
[2] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
[3] |
DING L, SPICER R A, YANG J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3): 215-218.
DOI URL |
[4] | RAYMOND L A. Classification of mélange[J]. Special Paper of the Geological Society of America, 1984, 198: 7-20. |
[5] | CHANG C P, ANGELIER J, HUANG C Y. Evolution of subductions indicated by mélanges in Taiwan[M]//LALLEMAND S, FUNICIELLO F. Subduction zone geodynamics. Berlin: Springer, 2009: 207-225. |
[6] |
BURG J P, CHEN G. Tectonics and structure zonation of southern Tibet, China[J]. Nature, 1984, 311: 219-223.
DOI URL |
[7] |
SEARLE M P, WINDLEY B F, COWARD M P, et al. The closing of Tethys and the tectonics of the Himalaya[J]. Geological Society of America Bulletin, 1987, 98: 678-701.
DOI URL |
[8] |
AITCHISON J C. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (South Tibet)[J]. Earth and Planetary Science Letters, 2000, 183: 231-244.
DOI URL |
[9] | CAI F L, DING L, LEARY R J, et al. Tectonostratigraphy and provenance of an accretionary complex within the Yarlung-Zangpo suture zone, southern Tibet: insights into subduction-accretion processes in the Neo-Tethys[J]. Tectonophysics, 2012, 574: 181-192. |
[10] |
WANG H Q, DING L, KAPP P, et al. Earliest Cretaceous accretion of Neo-Tethys oceanic subduction along the Yarlung-Zangbo Suture Zone, Sangsang area, southern Tibet[J]. Tectonophysics, 2018, 744: 373-389.
DOI URL |
[11] |
ZHONG Y, LIU W L, TANG G J, et al. Origin of Mesozoic ophiolitic melanges in the western Yarlung Zangbo suture zone, SW Tibet[J]. Gondwana Research, 2019, 76: 204-223.
DOI URL |
[12] | 张万平, 莫宣学, 朱弟成, 等. 西藏朗县蛇绿混杂岩中变辉绿岩和变玄武岩的年代学和地球化学[J]. 成都理工大学学报(自然科学版), 2011, 38(5): 538-548. |
[13] | 李奋其, 李益多, 张士贞, 等. 西藏朗县地区增生楔杂岩带90 Ma岛弧型深成岩浆活动和意义[J]. 中国地质, 2016, 43(1): 142-152. |
[14] |
PAN G T, WANG L Q, LI R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14.
DOI URL |
[15] | 王立全, 潘桂堂, 丁俊, 等. 青藏高原及邻区地质图(1∶1500000)及说明书[M]. 北京: 地质出版社, 2013. |
[16] | 李祥辉, 王尹, 徐文礼, 等. 试论西藏南部上三叠统复理石朗杰学群与涅如组[J]. 地质学报, 2011, 85(10): 1551-1562. |
[17] |
LI X H, MATTERN F, ZHANG C K, et al. Multiple sources of the Upper Triassic flysch in the eastern Himalaya Orogen, Tibet, China: implications to palaeogeography and palaeotectonic evolution[J]. Tectonophysics, 2016, 666: 12-22.
DOI URL |
[18] | JADOUL F, BERRA F, GARZANTI E. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet)[J]. Journal of Asian Earth Sciences, 1998, 16(2/3): 172-194. |
[19] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[20] |
CAI F L, DING L, LASKOWSKI A K, et al. Late Triassic paleogeographic reconstruction along the Neo-Tethyan Ocean margins, southern Tibet[J]. Earth and Planetary Science Letters, 2016, 435: 105-114.
DOI URL |
[21] |
CAO H W, HUANG Y, LI G M, et al. Late Triassic sedimentary records in the northern Tethyan Himalaya: tectonic link with Greater India[J]. Geoscience Frontiers, 2018, 9: 273-291.
DOI URL |
[22] |
WANG J G, WU F Y, GARZANTI E, et al. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue group): the terminal of a sediment-routing system sourced in the Gondwanide orogen[J]. Gondwana Research, 2016, 34: 84-98.
DOI URL |
[23] |
FANG D R, WANG G H, HISADA K I, et al. Provenance of the Langjiexue Group to the south of the Yarlung-Tsangpo Suture Zone in south-eastern Tibet: insights on the evolution of the Neo-Tethys Ocean in the Late Triassic[J]. International Geology Review, 2019, 61(3): 341-360.
DOI URL |
[24] | 孟中玙, 王建刚, 纪伟强, 等. 藏东南朗杰学群是原地沉积而非外来地体: 来自印度大陆北缘浅海相曲龙贡巴组沉积物源的证据[J]. 中国科学: 地球科学, 2019, 49: 848-863. |
[25] | 肖文交, 敖松坚, 杨磊, 等. 喜马拉雅汇聚带结构-属性解剖及印度-亚洲大陆最终拼贴格局[J]. 中国科学: 地球科学, 2017, 47: 631-656. |
[26] |
AO S J, XIAO W J, WINDLEY B F, et al. Components and structures of the eastern Tethyan Himalayan Sequence in SW China: not a passive margin shelf but a mélange accretionary prism[J]. Geological Journal, 2018, 53: 2665-2689.
DOI URL |
[27] |
李典, 王根厚, 刘正勇, 等. 西藏南羌塘晚三叠世陆缘俯冲增生造山带的褶皱-冲断与增生杂岩双层结构厘定[J]. 地学前缘, 2022, 29(4): 231-248.
DOI |
[28] |
CHU M F, CHUNG S L, SONG B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2016, 34: 745-748.
DOI URL |
[29] |
MO X X, NIU Y L, DONG G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250: 49-67.
DOI URL |
[30] |
JI W Q, WU F Y, CHUNG S, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262: 229-245.
DOI URL |
[31] |
ZHU D C, ZHAO Z D, NIU Y L, et al. Lhasa Terrane in southern Tibet came from Australia[J]. Geology, 2011, 39: 727-730.
DOI URL |
[32] | KANG Z Q, XU J F, WILDE S A, et al. Geochronology and geochemistry of the Sangri Group volcanic rocks, southern Lhasa Terrane: implications for the early subduction history of the Neo-Tethys and Gangdese magmatic arc[J]. Lithos, 2014, 20: 157-168. |
[33] |
ZHANG Z M, DONG X, SANTOSH M, et al. Metamorphism and tectonic evolution of the Lhasa Terrane, central Tibet[J]. Gondwana Research, 2014, 25(1): 170-189.
DOI URL |
[34] |
GUYNN J H, KAPP P, PULLEN A, et al. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 2006, 34: 505-508.
DOI URL |
[35] |
DUPUIS C, HEBERTA R, DUBOIS-COTE V, et al. The Yarlung Zangbo Suture Zone ophiolitic mélange(southern Tibet): new insights from geochemistry of ultramafic rocks[J]. Journal of Asian Earth Sciences, 2005, 25: 937-960.
DOI URL |
[36] |
CHAN G H N, AITCHISON J C, CROWLEY Q G, et al. U-Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications[J]. Gondwana Research, 2015, 27 (2): 719-732.
DOI URL |
[37] | 潘桂堂, 丁俊. 青藏高原及邻区地质图(1∶1500000)说明书[M]. 成都: 地图出版社, 2004. |
[38] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76: 1-131.
DOI URL |
[39] |
GARZANTI E, CASNEDI R, JADOUL F, et al. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya[J]. Sedimentary Geology, 1986, 48 (3/4): 237-265.
DOI URL |
[40] |
GARZANTI E. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin[J]. Journal of Asian Earth Sciences, 1999, 17: 805-827.
DOI URL |
[41] |
MYROW P M, THOMPSON K R, HUGHES N C, et al. Cambrian stratigraphy and depositional history of the northern Indian Himalaya, Spiti Valley, north-central India[J]. Geological Society of American Bulletin, 2006, 118 (3/4): 491-510.
DOI URL |
[42] | COTTLE J M, JESSUP M J, NEWELL D L, et al. Geochronology of granulitized eclogite from the Ama Drime Massif: implications for the tectonic evolution of the South Tibetan Himalaya[J]. Tectonics, 2009, 28: 1-25. |
[43] |
WIEDENBECK M, HANCHAR J M, PECK W H, et al. Further characterisation of the 91500 zircon crystal[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 9-39.
DOI URL |
[44] |
JACKSON S E, PEARSON N J, GRIFFIN W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1/2): 47-69.
DOI URL |
[45] |
SLAMA J, KOSLER J, CONDON D J, et al. Plesovice zircon: a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35.
DOI URL |
[46] |
HU Z, LIU Y, GAO S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399.
DOI URL |
[47] |
LIU Y, HU Z, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
DOI URL |
[48] |
LIU Y, HU Z, ZONG K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
DOI URL |
[49] |
ANDERSEN T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
DOI URL |
[50] |
BECK R A, BURBANK D W, SERCOMBE W J, et al. Stratigraphic evidence for an early collision between Northwest India and Asia[J]. Nature, 1995, 373(65): 55-58.
DOI URL |
[51] | MASCLE G, PÊCHER A, GUILLOT S, et al. The Himalaya-Tibet collision[R]. Paris: Nepal Geological Society and Société Géologique de France, 2012. |
[52] |
HU X M, SINCLAIR H D, WANG J G, et al. Late Cretaceous - Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of India-Asia initial collision[J]. Basin Research, 2012, 24 (5): 520-543.
DOI URL |
[53] |
HU X M, GARZANTI E, WANG J G, et al. The timing of India-Asia collision onset: facts, theories, controversies[J]. Earth-Science Reviews, 2016, 160: 264-299.
DOI URL |
[54] |
DING L, QASIM M, JADOON I A K, et al. The India-Asia collision in north Pakistan: insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin[J]. Earth and Planetary Science Letters, 2016, 455: 49-61.
DOI URL |
[55] | DING L, KAPP P, WAN X Q. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south-central Tibet[J]. Tectonics, 2005, 24: 1-18. |
[56] | 莫宣学, 赵志丹, 周肃, 等. 印度-亚洲大陆碰撞的时限[J]. 地质通报, 2007, 26(10): 1240-1244. |
[57] | AITCHISON J C, ALI J R, DAVIS A M. When and where did India and Asia collide?[J]. Journal of Geophysics Research, 2007, 112: B05423. |
[58] |
NAJMAN Y, APPEL E, BOUDAGHER-FADEL M, et al. Timing of India-Asia collision: geological, biostratigraphic, and palaeomagnetic constraints[J]. Journal of Geophysics Research, 2010, 115: B12416.
DOI URL |
[59] |
WU F Y, JI W Q, WANG J G, et al. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision[J]. American Journal of Science, 2014, 314(2): 548-579.
DOI URL |
[60] |
DECELLES P G, KAPP P, GEHRELS G E, et al. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision[J]. Tectonics, 2014, 33: 824-849.
DOI URL |
[61] | WEI Z, LI X H, LI Y X, et al. Discovery of vestige sedimentary archives of the India-Asia collision in the eastern Yarlung Zangbo suture zone[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: e2019JB018192. |
[62] | AN W, HU X M, GARZANTI E, et al. New precise dating of the India-Asia collision in the Tibetan Himalaya at 61 Ma[J]. Geophysical Research Letters, 2021, 48(3): e2020GL090641. |
[63] | YI Z Y, WANG T, MEERT J G, et al. An initial collision of India and Asia in the equatorial humid belt[J]. Geophysical Research Letters, 2021, 48(9): e2021GL093408. |
[64] |
CAI F L, DING L, YUE Y H. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: implications for timing of India-Asia collision[J]. Earth and Planetary Science Letters, 2011, 305: 195-206.
DOI URL |
[65] | 丁林, MAKSATBEK S, 蔡福龙, 等. 印度与亚洲大陆初始碰撞时限、 封闭方式和过程[J]. 中国科学: 地球科学, 2017, 47: 293-309. |
[66] |
WANG H Q, DING L, CAI F L, et al. Early Tertiary deformation of the Zhongba-Gyangze Thrust in central southern Tibet[J]. Gondwana Research, 2017, 41: 235-248.
DOI URL |
[67] |
LI J, HU X M, GARZANTI E, et al. Shallow-water carbonate responses to the Paleocene-Eocene thermal maximum in the Tethyan Himalaya (southern Tibet): tectonic and climatic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 153-165.
DOI URL |
[68] |
DAI J G, YIN A, LIU W C, et al. Nd isotopic compositions of the Tethyan Himalayan Sequence in southeastern Tibet[J]. Science China Earth Sciences, 2008, 51: 1306-1316
DOI URL |
[69] |
ZHANG C K, LI X H, MATTERN F, et al. Composition and sediment dispersal pattern of the Upper Triassic flysch in the eastern Himalayas, China: significance to provenance and basin analysis[J]. International Journal of Earth Sciences, 2017, 106: 1257-1276.
DOI URL |
[70] | 李广伟. 喜马拉雅地区上三叠统沉积物来源: 汇聚板块边缘物质构造属性[J]. 中国科学: 地球科学, 2019, 49: 1452-1454. |
[71] |
ZHANG C K, LI X H, MATTERN F, et al. Deposystem architectures and lithofacies of a submarine fan-dominated deep sea succession in an orogen: a case study from the Upper Triassic Langjiexue Group of southern Tibet[J]. Journal of Asian Earth Sciences, 2015, 111: 222-243.
DOI URL |
[72] |
FEDO C M, SIRCOMBE K N, RAINBIRD, R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 277-303.
DOI URL |
[73] |
GEHRELS G. Detrital zircon U-Pb geochronology applied to tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 127-149.
DOI URL |
[74] |
DICKINSON W R, GEHRELS G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288: 115-125.
DOI URL |
[75] | ZHENG Y F, CHEN Y X. Continental versus oceanic subduction zones[J]. National Science Review, 2016, 4: 495-519. |
[76] |
ZHOU J B. Accretionary complex: geological records from oceanic subduction to continental deep subduction[J]. Science China Earth Sciences, 2020, 63(12): 1868-1883.
DOI URL |
[77] |
ZHU D C, CHUNG S L, MO X X, et al. The 132 Ma Comei-Bunbury large igneous province: remnants identified in present-day southeastern Tibet and southwestern Australia[J]. Geology, 2009, 37: 583-586.
DOI URL |
[78] |
BIAN W, YANG T, MA Y, et al. Paleomagnetic and geochronological results from the Zhela and Weimei formations lava flows of the Eastern Tethyan Himalaya: new insights into the breakup of eastern Gondwana[J]. Journal of Geophysical Research: Solid Earth, 2019, 124: 44-64.
DOI URL |
[79] |
HUEN V R, RANERO C R, VANNUCCHI P. Generic model of subduction erosion[J]. Geology, 2004, 32: 913-916.
DOI URL |
[80] |
CLIFT P D, VANNUCCHI P, MORGAN J P. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust[J]. Earth-Science Reviews, 2009, 97: 80-104.
DOI URL |
[81] | 张正一, 董冬冬, 张广旭, 等. 板块俯冲侵蚀雅浦岛弧的地形制约[J]. 海洋地质与第四纪地质, 2017, 37(1): 41-50. |
[82] |
张进, 曲军峰, 赵衡, 等. 俯冲增生杂岩带变形特征、 成因机制及与后期变形的区别[J]. 地学前缘, 2022, 29(2): 56-78.
DOI |
[83] | YANG Z Y, WANG Q, HAO L L, et al. Subduction erosion and crustal material recycling indicated by adakites in central Tibet[J]. Geology, 2021, 49(6): 535-541. |
[1] | 鞠玮, 杨慧, 侯贵廷, 宁卫科, 李永康, 梁孝柏. 复杂构造变形区断控裂缝发育分布模式[J]. 地学前缘, 2024, 31(5): 130-138. |
[2] | 毕先梅, 莫宣学, 刘艳宾. 西藏南部极低级变质岩及其地质与资源意义[J]. 地学前缘, 2024, 31(1): 201-210. |
[3] | 吴晨, 陈宣华, 丁林. 祁连造山带构造演化与新生代变形历史[J]. 地学前缘, 2023, 30(3): 262-281. |
[4] | 毕文军, 张佳伟, 李亚林, 邓玉珍. 西藏中部羌塘地体白垩纪以来隆升剥露过程[J]. 地学前缘, 2023, 30(2): 18-34. |
[5] | 张宝林, 吕古贤, 余建国, 梁光河, 李志远, 徐兴旺, 胡宝群, 王红才, 毕珉峰, 焦建刚, 王翠芝. 基于深部地球物理信息的构造变形岩相分类研究[J]. 地学前缘, 2022, 29(1): 413-426. |
[6] | 吕承训, 张达, 许亚青, 郭涛, 王宗永, 霍庆龙, 袁月蕾. 胶东金矿成矿深度的构造校正测算及成矿预测[J]. 地学前缘, 2022, 29(1): 427-438. |
[7] | 夏祥标, 李光明, 张林奎, 张志, 曹华文, 梁维. 西藏错那洞穹隆祥林铍锡多金属矿地质特征及找矿方向[J]. 地学前缘, 2022, 29(1): 93-106. |
[8] | 郑有业, 次琼, 高顺宝, 吴松, 姜晓佳, 陈鑫. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向[J]. 地学前缘, 2021, 28(3): 379-402. |
[9] | 万晓樵. 中—新生代有孔虫古地理对西藏特提斯演变的动态响应[J]. 地学前缘, 2020, 27(6): 116-127. |
[10] | 李国彪, 王天洋, 李新发, 牛晓路, 张文苑, 谢丹, 李阅薇, 姚又嘉, 李琪, 马雪嵩, 李兴鹏, 修迪, 韩子晨, 赵胜楠, 韩屹, 薛嵩, 任荣, 贾志霞. 西藏特提斯喜马拉雅海相白垩纪—古近纪生物地层与重大地质事件研究进展[J]. 地学前缘, 2020, 27(6): 144-164. |
[11] | 高莲凤, 李璞壮, 张振国, 万晓樵, 夏世强, 董桂玉, 王兆生, 冷春鹏, 张盈, 姚纪明, 张琳婷, 于江涛, 殷世艳. 藏南江孜侏罗系/白垩系界线时期古海洋环境分析[J]. 地学前缘, 2020, 27(4): 272-281. |
[12] | 方维萱,黄转盈. 沉积盆地构造变形序列Ⅰ:秦岭晚古生代拉分盆地的构造组合与金铜铅锌多金属矿集区构造[J]. 地学前缘, 2019, 26(5): 53-83. |
[13] | 韦天伟,康志强,杨锋,冉孟兰,李强,韦乃韶,刘迪, 曹延,陈欢,李岱鲜. 西藏拉萨地块西部赛利普地区捷嘎组火山岩的年代学、地球化学及地质意义 [J]. 地学前缘, 2019, 26(2): 157-168. |
[14] | 罗照华,江秀敏,刘晓,李重,吴宗昌,井文超. 蛇绿岩型铬铁矿床包壳纯橄榄岩中的流体过程印记:来自西藏雅鲁藏布江缝合带罗布莎和泽当岩体的地质学、岩石学和橄榄石晶体化学证据[J]. 地学前缘, 2019, 26(1): 272-285. |
[15] | 王健,魏启荣,次琼,郑秋平,王旭东,吉雪峰,许欢. 西藏鸡公村钼矿区中酸性岩体的时代、岩石地球化学特征及构造背景[J]. 地学前缘, 2018, 25(6): 152-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||