地学前缘 ›› 2020, Vol. 27 ›› Issue (6): 144-164.DOI: 10.13745/j.esf.sf.2020.6.16
李国彪1,2(), 王天洋1,2, 李新发1,2, 牛晓路1, 张文苑1,2, 谢丹3, 李阅薇1,2,3, 姚又嘉1, 李琪1,2, 马雪嵩1,2, 李兴鹏1, 修迪1, 韩子晨1, 赵胜楠1, 韩屹1, 薛嵩1, 任荣1, 贾志霞1
收稿日期:
2020-03-19
修回日期:
2020-05-19
出版日期:
2020-11-02
发布日期:
2020-11-02
作者简介:
李国彪(1968—),男,教授,博士生导师,主要从事地层古生物学教学与科研工作。E-mail: liguobiao@cugb.edu.cn
基金资助:
LI Guobiao1,2(), WANG Tianyang1,2, LI Xinfa1,2, NIU Xiaolu1, ZHANG Wenyuan1,2, XIE Dan3, LI Yuewei1,2,3, YAO Youjia1, LI Qi1,2, MA Xuesong1,2, LI Xingpeng1, XIU Di1, HAN Zichen1, ZHAO Shengnan1, HAN Yi1, XUE Song1, REN Rong1, JIA Zhixia1
Received:
2020-03-19
Revised:
2020-05-19
Online:
2020-11-02
Published:
2020-11-02
摘要:
地质历史时期曾发过许多对生命的演化进程造成过重大影响与制约的全球性地质事件,白垩纪—古近纪就是一个重大地质事件频发的时期。随着冈瓦纳大陆在中生代时期的解体,全球海陆格局发生了根本的变化,地球的表层和岩石圈层均发生了重大的改变,由此引发了构造运动空前活跃,发生过诸如大洋缺氧事件(OAE)、大洋富氧事件(CORBs)、白垩纪/古近纪(K/Pg)生物大灭绝事件、古新世—始新世极热(PETM)事件、印度-亚洲板块碰撞、新特提斯洋的演化及最终消亡等一系列的全球性重大地质事件。对这些重大地质事件的研究,有助于加深我们对古海洋、古地理、古环境的认识。尝试追踪和捕捉这些重大地质事件,恢复和重建古地理,其基础是建立精确的年代地层格架。西藏南部保存了中国最为完整的海相白垩纪—古近纪沉积,完整地记录了上述的全球性重大地质事件,通过对札达、岗巴、定日、亚东、江孜、萨嘎和吉隆等地区高分辨率浮游和底栖有孔虫、介形虫、钙质超微化石和放射虫生物地层学研究,可直接约束全球性重大地质事件发生的时间,并为重建新特提斯洋古海洋环境和古地理提供证据。此外,在重大地质环境突变期间生物的演化过程,也可为探明极端环境变化发生时期气候-环境-生物之间的协同演化关系提供证据。本文系统总结了课题组为主的近年来对藏南白垩纪—古近纪海相地层中微体古生物学的研究成果及重要进展,并对未来研究提出展望。
中图分类号:
李国彪, 王天洋, 李新发, 牛晓路, 张文苑, 谢丹, 李阅薇, 姚又嘉, 李琪, 马雪嵩, 李兴鹏, 修迪, 韩子晨, 赵胜楠, 韩屹, 薛嵩, 任荣, 贾志霞. 西藏特提斯喜马拉雅海相白垩纪—古近纪生物地层与重大地质事件研究进展[J]. 地学前缘, 2020, 27(6): 144-164.
LI Guobiao, WANG Tianyang, LI Xinfa, NIU Xiaolu, ZHANG Wenyuan, XIE Dan, LI Yuewei, YAO Youjia, LI Qi, MA Xuesong, LI Xingpeng, XIU Di, HAN Zichen, ZHAO Shengnan, HAN Yi, XUE Song, REN Rong, JIA Zhixia. A review on marine Cretaceous-Paleogene biostratigraphy of and major geological events in Tibet-Tethyan Himalaya[J]. Earth Science Frontiers, 2020, 27(6): 144-164.
图3 西藏南部白垩纪中期大洋缺氧事件中地层和地球化学特征、古水温和海平面变化、有孔虫和放射虫动物群的演化过程[132]
Fig.3 From Left to Right:Stratigraphic and geochemical characteristics,foraminifera and radiolarian fauna evolutions, and sea level and paleotemperature changes associated with mid-Cretaceous oceanic anoxic events in southern Tibet, Adapted from[132].
图5 38 Ma时新特提斯域古地理的重建(据文献[155]) 该图显示了新特提斯域的始新世介形虫的分布[133]:1—印度梅加拉亚邦和阿萨姆邦;2—西藏南部亚东;3—西藏南部岗巴;4—西藏南部定日;5—印度拉贾斯坦邦;6—巴基斯坦西部的Zao River和Shpalai Khwara;7—阿曼的Al Khalid Dam;8—马达加斯加的Toliara。使用在线古地理制图工具(http://www.serg.unicam.it/Intro-Reconstr.html)对板块构造进行了重建。棕色—山脉;棕褐色—高地;黄绿色—平原;绿色—低地;浅蓝色—浅海;蓝色—大陆架;深蓝色—深海。
Fig.5 Reconstruction of paleogeography of the Neo-Tethys at 38 Ma. Adapted from[155].
图6 西藏南部亚东堆纳生物群(据文献[155]) A—微型腹足;B—轮藻;C—底栖有孔虫;D—孢粉;E—钙质超微化石;F—浮游有孔虫;G—底栖大有孔虫;H—介形虫;I—沟鞭藻。比例尺A-C,H:500 μm;F,G:100 μm;D,E,I:10 μm。
Fig.6 Biota in Tuna, Yadong, southern Tibet. Adapted from[155].
[1] | 郝诒纯, 茅绍智. 微体古生物学教程[M]. 武汉: 中国地质大学出版社, 1989: 1-351. |
[2] | 郝诒纯, 裘松余, 林甲兴, 等. 有孔虫[M]. 北京: 科学出版社, 1980: 1-224. |
[3] | 郝诒纯, 苏德英, 余静贤, 等. 中国地层典·白垩系[M]. 北京: 地质出版社, 2000: 1-124. |
[4] | 郝诒纯, 曾学鲁, 李汉敏. 塔里木盆地西部晚白垩世—第三纪地层及有孔虫[C]// 中国地质学会. 全国地质科技重要成果学术交流会. 北京: 中国地质协会, 1986: 40. |
[5] | 郝诒纯, 苏德英, 李友桂, 等. 松辽平原白垩—第三纪介形虫化石[M]. 北京: 地质出版社, 1974: 1-155. |
[6] | 郝诒纯, 阮培华, 周修高, 等. 西宁、民和盆地中侏罗世—第三纪地层及介形虫、轮藻化石[J]. 地球科学: 中国地质大学学报, 1983, 23(2): 15-16. |
[7] | 郝诒纯, 徐钰林, 许仕策. 南海珠江口盆地第三纪微体古生物及古海洋学研究[M]. 武汉: 中国地质大学出版社, 1996: 122-128. |
[8] | 郝诒纯. 西沙北海槽第四纪微体生物群及其地质意义[M]. 武汉: 中国地质大学出版社, 1989: 1-200. |
[9] | 地质矿产部海洋地质综合研究大队, 中国地质大学. 冲绳海槽第四纪微体古生物群及其地质意义[M]. 北京: 地质出版社, 1988: 1-459. |
[10] | 郝诒纯, 万晓樵. 西藏定日的海相白垩、第三系[J]. 青藏高原地质文集, 1985(2): 227-232. |
[11] | HALLAM A. Anoxic events in the Cretaceousocean[J]. Nature, 1977, 268: 15-16. |
[12] |
JENKYNS H C. Cretaceous anoxic events: from continents to oceans[J]. Journal of Geological Society of London, 1980, 137(2): 171-188.
DOI URL |
[13] | LECKIE R M, BRALOWER T J, CASHMAN R. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous[J]. Paleoceanography, 2002, 17(3): 623-642. |
[14] |
SARMIENTO L J, HERBERT D T. Causes of anoxia in the world ocean[J]. Global Biogeochemical Cycles, 1988, 2(2): 115-128.
DOI URL |
[15] | SCHLANGER S O, JENKYNS H C. Cretaceous oceanic anoxic events: cause and consequence[J]. Geologie en Mijnbown, 1976, 55(3): 179-184. |
[16] |
LI G B, JANSAL L B, WAN X Q, et al. Discovery of radiolaria from Upper Cretaceous Oceanic Red Beds in Daba, Kangmar and its paleogeographic implication[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 312(1/2): 127-137.
DOI URL |
[17] |
LI G B, JIANG G Q, WAN X Q. The age of the Chuangde Formation in Kangmar, southern Tibet of China: implications for the origin of Cretaceous oceanic red beds (CORBs) in the northern Tethyan Himalaya[J]. Sedimentary Geology, 2011, 235(1/2): 111-121.
DOI URL |
[18] |
WAN X Q, MARCOS A L, SI J L, et al. Foraminiferal stratigraphy of late Cretaceous red beds in southern Tibet[J]. Cretaceous Research, 2005, 26(1): 43-48.
DOI URL |
[19] | WANG C S, HU X M, HUANG Y J, et al. Overview of the cretaceous oceanic red beds (CORBs): a window on global oceanic/climate change[M]//HU X M, WANG C S, SCOTT R W, et al. Cretaceous oceanic red beds: stratigraphy, composition, origins, and paleoceanographic and paleoclimatic significance. Tulsa: SEPM Society for Sedimentary Geology, 2009: 13-33. |
[20] |
WANG C S, HU X M, SART M, et al. Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments[J]. Cretaceous Research, 2005, 26(1): 21-32.
DOI URL |
[21] | 李响, 蔡元峰. 白垩纪大洋红层的致色机制及成因研究[J]. 矿物学报, 2014, 34(4): 451-460. |
[22] | 万晓樵, 李国彪, 司家亮. 西藏南部晚白垩世:古新世大洋红层的分布与时代[J]. 地学前缘, 2005, 12(2): 31-37. |
[23] | 王成善, 胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘, 2005, 12(2): 11-21. |
[24] |
COFFIN M F, ELDHOLm O. Large igneous provinces: crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32(1): 1-36.
DOI URL |
[25] |
LARSON R L. Geological consequences of superplumes[J]. Geology, 1991, 19(10): 963-966.
DOI URL |
[26] |
LARSON R L. Latest pulse of Earth: evidence for a mid-Cretaceous super plume[J]. Geology, 1991, 19(6): 547-550.
DOI URL |
[27] |
ZHU D C, CHUNG S L, MO X X, et al. The 132 Ma Comei-Bunbury large igneous province: remnants identified in present-day southeastern Tibet and southwestern Australia[J]. Geology, 2009, 37(7): 583-586.
DOI URL |
[28] | 邓晋福, 莫宣学, FLOWER M F J, 等. 白垩纪大火成岩省与地幔对流[J]. 地学前缘, 2015, 12(2): 217-221. |
[29] |
ALVAREZ L W, ALVAREZ W, ASARo F, et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction[J]. Science, 1980, 208(4448): 1095-1108.
DOI URL |
[30] |
DUNCAN R A, PYLE D G. Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary[J]. Nature, 1988, 333: 841-843.
DOI URL |
[31] |
POPE K O, BAINES K H, OCAMPO A C, et al. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact[J]. Journal of Geophysical Research, 1997, 102(E9): 21645-21664.
DOI URL |
[32] |
RENNE P R, DEINO A L, HILGEN F J, et al. Time scales of critical events around the Cretaceous-Paleogene boundary[J]. Science, 2013, 339(6120): 684-687.
DOI URL |
[33] |
MILLER K G, JANECEK T R, KATZ M E, et al. Abyssal circulation and benthic foraminiferal changes near the Paleocene/Eoceneboundary[J]. Paleoceanography, 1987, 2(6): 741-761.
DOI URL |
[34] |
ZACHOS J C, LOHMANN K C, WALKER J C G, et al. Abrupt climate change and transient climates during the Paleogene: a marine perspective[J]. Journal of Geology, 1993, 101(2): 191-213.
DOI URL |
[35] |
CANUDO J I, KELLER G, MOLINA E, et al. Planktic foraminiferal turnover and δ 13C isotopes across the Paleocene-Eocene transition at Caravaca and Zumaya, Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 114(1): 75-100.
DOI URL |
[36] |
THOMAS E, SHACKLETON N J. The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies[J]. Geological Society London Special Publications, 1996, 101(1): 401-441.
DOI URL |
[37] | PARDO A, KELLER G, NSLI H O. Paleoecologic and paleoceanographic evolution of the Tethyan realm during the Paleocene-Eocenetransition[J]. The Journal of Foraminiferal Research, 1999, 29(1): 37-57. |
[38] |
ZACHOS J C, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
DOI URL |
[39] |
ZACHOS J C, WARA M, BOHATY S, et al. A transient rise in tropical sea surf ace temperature during Paleocene-Eocene thermal maximum[J]. Science, 2003, 302(28): 1551-1554.
DOI URL |
[40] | GUASTI E, SPEIJER R P. The Paleocene-Eocene Thermal Maximum in Egypt and Jordan: an overview of the planktic foraminiferal record [C]//MONECHI S, COCCIONI R,RAMPINO M R. Large ecosystem perturbations: causes and consequences. New York: Geological Society of America, 2007, 424: 53-67. |
[41] |
WESTERHOLD T, RÖHL U, RAFFI I, et al. Astronomical calibration of the Paleocene time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 257(4): 377-403.
DOI URL |
[42] |
MCINERNEY F A, WING S L. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future[J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 489-516.
DOI URL |
[43] | BOWEN G J, MAIBAUER B J, KRAUS, M J, et al. Two massive, rapid releases of carbon during the onset of the Palaeocene-Eocene thermal maximum[J]. Nature, 2015, 8(1): 44-47. |
[44] |
JIANG T, WAN X Q, AITCHISONC J C, et al. Foraminiferal response to the PETM recorded in the SW Tarim Basin, central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 506: 217-225.
DOI URL |
[45] |
ACHARYYA S K. Evolution of the Himalayan Paleogene foreland basin, influence of its litho-packet on the formation of thrust-related domes and windows in the Eastern Himalayas: a review[J]. Journal of Asian Earth Sciences, 2007, 31(1): 1-17.
DOI URL |
[46] |
ACHARYYA S K. Break up of Australia-India-Madagascar block, opening of the Indian Ocean and continental accretion in Southeast Asia with special reference to the characteristics of the Peri-Indian collision zones[J]. Gondwana Research, 2000, 3(4): 425-443.
DOI URL |
[47] | AITCHISON J C, ALI J R, DAVIS A M. When and where did India and Asia collide ?[J]. Journal of Geophysical Research, 2007, 112: B05423. |
[48] |
ALI J R, AITCHISON J C. Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166-35 Ma)[J]. Earth-Science Reviews, 2008, 88(3/4): 145-166.
DOI URL |
[49] |
ALI J R, AITCHISON J C. Greater India’s northern margin prior to its collision with Asia[J]. Basin Research, 2014, 26(1): 73-84.
DOI URL |
[50] |
BECK R A, BURBANK D W, SERCOMBE W J, et al. Stratigraphic evidence for an early collision between northwest India and Asia[J]. Nature, 1995, 373(5): 55-58
DOI URL |
[51] |
BHATIA S B, BHARGAVA O N. Biochronological continuity of the Paleogene sediments of the Himalayan Foreland Basin: paleontological and other evidences[J]. Journal of Asian Earth Sciences, 2006, 26(5): 477-487.
DOI URL |
[52] | DING L, KAPP P, WAN X. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics, 2005, 24(3): TC3001 |
[53] | LI G B. The discovery of Paleogene marine stratum along the southern side of YarlungZangbo suture zone and its implications in tectonics[J]. Science China: Earth Sciences, 2005, 48(5): 647-661. |
[54] |
ROWLEY D B. Age of initiation collision between India and Asia: a review of the stratigraphic data[J]. Earth and Planetary Science Letters, 1996, 145(1): 1-13.
DOI URL |
[55] | ROWLEY D W. Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain section[J]. Journal of Geology, 1998, 106: 229-235. |
[56] |
SEARLE M P, WINDLEY B F, COWARD M P, et al. The closing of Tethys and the tectonics of the Himalaya[J]. Geological Society of America Bulletin, 1987, 98(6): 678-701.
DOI URL |
[57] |
WANG C S, LI X H, HU X M, et al. Latest marine horizon north of Qomolangma (Mt Everest): implications for closure of Tethys seaway and collision tectonics[J]. Terra Nova, 2002, 14(2): 114-120.
DOI URL |
[58] | 王成善, 李祥辉, 胡修棉. 再论印度-亚洲大陆碰撞的启动时间[J]. 地质学报, 2003, 77(1): 16-24. |
[59] |
JIANG T, AITCHISON J C, WAN X Q. The youngest marine deposits preserved in southern Tibet and disappearance of the Tethyan Ocean[J]. Gondwana Research, 2016, 32: 64-75.
DOI URL |
[60] |
LI G B, JIANG G Q, HU X M, et al. New biostratigraphic data from the Cretaceous Bolinxiala Formation in Zanda, southwestern Tibet of China and their paleogeographic and paleoceanographic implications[J]. Cretaceous Research, 2009, 30: 1005-1018.
DOI URL |
[61] |
LI G B, WAN X Q, LIU W C, et al. A new Cretaceous age for the Saiqu “mélange”, southern Tibet, evidence from radiolaria[J]. Cretaceous Research, 2009, 30(1): 35-40.
DOI URL |
[62] | LI G B, WAN X Q, JIANG G Q, et al. Late Cretaceous foraminiferal faunas from the Saiqu “mélange” in southern Tibet[J]. Acta Geologica Sinica(English Edition), 2007, 81(6): 917-924. |
[63] | LI X, LI Y L, WANG C S, et al. Paleocene radiolarian faunas in the deep-marine sediments near Zhongba County, southern Tibet[J]. Paleontology Research, 2018, 22(1): 37-56. |
[64] | LIU J B, AITCHISON J C. Upper Paleocene radiolarians from the Yamdrok mélange, south Xizang (Tibet), China[J]. Micropaleontology, 2002, 48(Suppl 1): 145-154. |
[65] |
LIU J, AITCHISON J C, ALI J R. Upper Paleocene radiolarians from DSDP Sites 549 and 550, Goban Spur, NE Atlantic[J]. Palaeoworld, 2011, 20(2/3): 218-231.
DOI URL |
[66] |
MATSUOKA A, YANG Q, KOBAYASHI K, et al. Jurassic-Cretaceous radiolarian biostratigraphy and sedimentary environments of the Ceno-Tethys: records from the Xialu Chert in the Yarlung-Zangbo Suture Zone, southern Tibet[J]. Journal of Asian Earth Sciences, 2002, 20(3): 277-287.
DOI URL |
[67] | WAN X. Eocene larger foraminifera from Southern Tibet[J]. Revista Espanola De Micropaleontologia, 1990, 22: 213-238. |
[68] | WAN X. Paleocene larger foraminifera from southern Tibet[J]. Revista Espanola De Micropaleontologia, 1991, 23: 7-18. |
[69] | WU H R. Upper Jurassic and Lower Cretaceous radiolarians of the Xialu chert, Yarlung Zangbo ophiolite belt, southern Tibet[J]. Micropaleontology Special Publication, 1993, 6: 115-136. |
[70] | 丁林. 西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物群的发现及对前陆盆地演化的制约[J]. 中国科学: D辑, 2003, 33(1): 47-58. |
[71] | 郝诒纯, 万晓樵. 西藏定日地区的海相地区的海相白垩、第三系[G]// 李延栋. 青藏高原地质文集(17). 北京: 地质出版社, 1985: 227-232. |
[72] | 何炎, 章炳高, 胡英兰, 等. 珠穆朗玛峰地区中生代及新生代有孔虫[M]//中国科学院西藏科学考察队. 珠穆朗玛峰地区科学考察报告古生物(第二分册). 北京: 科学出版社, 1976: 1-124. |
[73] | 苟宗海. 西藏岗巴宗山地区晚白垩世到古新世的双壳类化石[J]. 成都地质学院学报, 1985(2): 62-74. |
[74] | 黄宝仁. 珠穆朗玛峰地区晚白垩世及早第三纪介形类[M]//中国科学院西藏科学考察队.珠穆朗玛峰地区科学考察报告古生物(第一分册). 北京: 科学出版社, 1975: 317-368. |
[75] | 李国彪, 万晓樵. 藏南岗巴—定日地区始新世的微体古生物与特提斯的消亡[J]. 地层学杂志, 2003, 27(2): 99-108. |
[76] | 李国彪, 万晓樵. 西藏岗巴地区始新世介形虫化石重组[J]. 古生物学报, 2004, 40(3): 400-406. |
[77] | 李国彪, 万晓樵, 丁林, 等. 藏南古近纪前陆盆地演化过程及其沉积响应[J]. 沉积学报, 2004, 22(3): 455-464. |
[78] | 李国彪, 万晓樵, 刘文灿. 西藏南部古近纪微体古生物及盆地演化特征[M]. 北京: 地质出版社, 2005: 1-157. |
[79] | 李国彪, 万晓樵, 刘文灿, 等. 藏南萨迦县赛区“混杂岩”放射虫的发现及其地质意义[J]. 地质通报, 2003, 22(10/11): 30-37. |
[80] | 李国彪, 万晓樵, 刘文灿, 等. 雅鲁藏布江缝合带南侧古近纪海相地层的发现及其构造意义[J]. 中国科学: D辑, 2004, 34(3): 228-240. |
[81] | 李国彪, 万晓樵, 其和日格, 等. 藏南岗巴—定日地区始新世化石碳酸盐岩微相与沉积环境[J]. 中国地质, 2002, 29(4): 401-406. |
[82] | 李红生. 藏南古近纪放射虫岩的发现: 一个迟到的发现报告[C]// 第三届全国地层会议委员会. 第三届全国地层会议论文集. 北京: 地质出版社, 2000: 354-358. |
[83] | 李红生, 吴浩若. 西藏南部白垩系冲堆组的一些放射虫化石[J]. 微体古生物学报, 1985, 2(1): 61-77. |
[84] | 李祥辉, 王成善, 胡修棉, 等. 朋曲组: 西藏南部最高海相层位一个新的地层单元[J]. 地层学杂志, 2000, 24(3): 243-248. |
[85] | 李亚林, 王成善, 胡修棉, 等. 西藏南部始新世早期放射虫动物群及其对特提斯闭合时间的约束[J]. 科学通报, 2007, 52(12): 1430-1435. |
[86] | 梁银平. 西藏西南萨嘎—仲巴白垩纪—古新世放射虫动物群及古海盆研究[D]. 武汉: 中国地质大学(武汉), 2012: 1-105. |
[87] | 刘实佳, 罗辉, 许波, 等. 藏南泽当金鲁地区晚侏罗世—早白垩世放射虫[J]. 微体古生物学报, 2016, 33(3): 211-228. |
[88] | 盛金章. 珠穆朗玛峰地区吉隆群的放射虫动物群[M]//中国科学院西藏科学考察队. 珠穆朗玛峰地区科学考察报告古生物(第二分册). 北京: 科学出版社, 1976: 125-136. |
[89] | 吴浩若. 西藏南部下鲁硅岩晚侏罗世罩笼虫(放射虫)新材料[J]. 现代地质, 2000, 14(3): 301-306. |
[90] | 穆西南, 王玉静. 西藏定日始新世的一些钙藻化石[J]. 微体古生物学报, 1985, 2(3): 289-299. |
[91] | 万晓樵. 西藏第三纪有孔虫生物地层及地理环境[J]. 现代地质, 1987, 1(1): 15-47. |
[92] | 万晓樵. 西藏岗巴地区白垩纪地层及有孔虫动物群[G]//李延栋. 青藏高原地质文集(16). 北京: 地质出版社, 1985: 203-228. |
[93] | 万晓樵. 西藏白垩纪—早第三纪有孔虫与特提斯喜马拉雅海的演化[J]. 微体古生物学报, 1990, 7(2): 169-186. |
[94] | 万晓樵, 丁林. 西藏吉隆白垩纪末期浮游有孔虫的发现及其年代意义[J]. 古生物学报, 2002, 41(10): 89-95. |
[95] | 万晓樵, 丁林, 李建国, 等. 西藏仲巴地区白垩纪末期-始新世早期海相沉积[J]. 地层学杂志, 2001, 25(4): 267-272. |
[96] | 万晓樵, 李金和, 张双增, 等. 西藏札达晚白垩世—古新世浮游有孔虫及其时代意义[J]. 微体古生物学报, 2005, 22(1): 10-18. |
[97] | 万晓樵, 刘文灿, 李国彪, 等. 白垩纪黑色页岩与海水含氧量变化: 以西藏南部为例[J]. 中国地质, 2003, 30(1): 36-47. |
[98] | 王曦, 万晓樵, 李国彪. 西藏岗巴地区古新世—始新世界线地层及地球大有孔虫的演替[J]. 微体古生物学报, 2010, 27(2): 109-117. |
[99] | 王学恒, 罗辉, 许波, 等. 藏南桑单林剖面晚古新世放射虫动物群及其地质意义[J]. 微体古生物学报, 2016, 33(2): 105-126. |
[100] | 王玉净. 珠穆朗玛峰地区晚白垩世及早第三纪钙藻化石[M]//中国科学院西藏科学考察队. 珠穆朗玛峰地区科学考察报告古生物(第二分册). 北京: 科学出版社, 1976: 425-474. |
[101] | 徐钰林. 西藏南部早第三纪钙质超微化石及东特提斯在西藏境内的封闭时限[J]. 现代地质, 2000, 14(3): 255-262. |
[102] | 徐钰林, 茅绍智. 西藏南部白垩—早第三纪钙质超微及其沉积环境[J]. 微体古生物学报, 1992, 9(4): 331-347. |
[103] | 杨群, 松岗笃, 王玉净. 西藏南部放射虫微体古生物研究进展[J]. 微体古生物学报, 2002, 19(2): 105-111. |
[104] | 阴家润. 西藏侏罗纪菊石[M]. 北京: 地质出版社, 2010: 1-247. |
[105] | 赵文金, 万晓樵. 西藏特提斯演化晚期生物古海洋事件[M]. 北京: 地质出版社, 2003: 1-123. |
[106] | 钟石兰, 周志澄, WILLEMS H, 等. 西藏南部岗巴地区白垩纪中期钙质超微化石带和Cenomanian-Turonian界线[J]. 古生物学报, 2000, 39(3): 313-325. |
[107] | 周志澄. 西藏南部堆纳地区上白垩统及下第三系遗迹化石及其环境意义[J]. 古生物学报, 2000, 39(3): 403-415. |
[108] |
GRÖCKE D R, LUDVIGSON G A, WITZKE B L, et al. Recognizing the Albian-Cenomanian (OAE1d) sequence boundary using plant carbon isotopes: Dakota Formation, Western Interior Basin, USA[J]. Geology, 2006, 34(3): 193-196.
DOI URL |
[109] |
LAURIN J, BARCLAY R S, SAGEMAN B B, et al. Terrestrial and marginal-marine record of the mid-Cretaceous Oceanic Anoxic Event 2 (OAE 2): high-resolution framework, carbon isotopes, CO2 and sea-level change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology 2019, 524: 118-136.
DOI URL |
[110] |
LI Y X, MONTANEZ I P, LIU Z H, et al. Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE 2)[J]. Earth and Planetary Science Letters, 2017, 462: 35-46.
DOI URL |
[111] |
TSIKOS H, JENKYNS H C, WALSWORTH-BELL B, et al. Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian oceanic anoxic event; correlation and implications based on three key localities[J]. Journal of the Geological Society London, 2004, 161(4): 711-719.
DOI URL |
[112] |
WU H C, ZHANG S H, JIANG G Q, et al. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications[J]. Earth and Planetary Science Letters, 2009, 278(3/4): 308-323.
DOI URL |
[113] |
YAO H W, CHEN X, MELINTE-DOBRINESCU C, et al. Biostratigraphy, carbon isotopes and cyclostratigraphy of the Albian-Cenomanian transition and Oceanic Anoxic Event 1d in southern Tibet[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2018, 499: 45-55.
DOI URL |
[114] | BJERRUM C J, BENDTSEN J, LEGARTH J J F. Modeling organic carbon burial during sea level rise with reference to the Cretaceous[J]. Geochemisty, Geophysics, Geosystems, 2006, 7(5): Q05008. |
[115] |
BOTTINI C, ERBA E. Mid-Cretaceous paleoenvironmental changes in the western Tethys[J]. Climate of the Past, 2018, 14(8): 1147-1163.
DOI URL |
[116] |
ERBACHER J, THUROW J. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolarian in the North Atlantic and western Tethys[J]. Marine Micropaleontology, 1997, 30: 139-158.
DOI URL |
[117] |
ERBACHER J, THUROW J, LITTKE R. Evolution patterns of radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments[J]. Geology, 1996, 24: 499-502.
DOI URL |
[118] |
BRALOWER T J, ARTHUR M A, LECKIE R M, et al. Timing and paleoceanography of oceanic dysoxia/anoxia in the late Barremian to early Aptian (Early Cretaceous)[J]. Palaios, 1994, 9: 335-369.
DOI URL |
[119] |
COCCIONI R, ERBA E, PREMOLI-SILVA I. Barremian-Aptian calcareous plankton biostratigraphy from the Gorgo Cerbara section (Marche, central Itraly)and implications for plankton evolution[J]. Cretaceous Research, 1992, 13(5/6): 517-537.
DOI URL |
[120] |
LI X, MATSUOKA A, BERTINELLI A, et al. Correlation of Early Cretaceous radiolarian assemblages from southern Tibet and central Italy[J]. Cretaceous Research, 2020, 105: 104046.
DOI URL |
[121] |
BORNEMANN A, PROSS J, REICHELT K, et al. Reconstruction of short-term palaeoceanographic changes during the formation of the Late Albian ‘Niveau Breistroffer’ black shales (Oceanic Anoxic Event 1d, SE France)[J]. Journal of the Geological Society, 2005, 162: 623-639.
DOI URL |
[122] |
BRALOWER T J, FULLAGAR P D, PAULL C K, et al. Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections[J]. Geological Society of America Bulletin, 1997, 109(11): 1421-1442.
DOI URL |
[123] |
JARVIS I, CARSON G A, COOPER M K E, et al. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) Oceanic Anoxic Event[J]. Cretaceous Research, 1988, 9(1): 3-103.
DOI URL |
[124] |
MUSAVU-MOUSSAVOU B, DANELIAN T. The Radiolarian biotic response to Oceanic Anoxic Event 2 in the southern part of the Northern proto-Atlantic (Demerara Rise, ODP Leg 207)[J]. Revue de Micropaléontologie, 2006, 49(3): 141-163.
DOI URL |
[125] | NAVIDTALAB A, HEIMHOFER U, HUCK S, et al. Biochemostratigraphy of an upper Albian-Turonian succession from the south eastern Neo-Tethys margin,SW Iran[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 533: 109-255. |
[126] |
Passerini M M, BETTINI P, DAINELLI J, et al. The “Bonarelli Horizon” in the central Apennines (Italy): radiolarian biostratigraphy[J]. Cretaceous Research, 1991, 12(3): 321-331.
DOI URL |
[127] |
O’DOGHERTY L, GUEX J. Rates and pattern of evolution among Cretaceous radiolarians: relations with global paleoceanographic events[J]. Micropaleontology, 2002, 48(Suppl 1): 1-22.
DOI URL |
[128] | LI G B. Foraminifera-environmental co-evolution during Cretaceous Oceanic Anoxic Event 2 in Gamba of southern Tibet, China[J]. Disaster Advances, 2012, 5(4): 383-390. |
[129] |
WAN X, WEI M, LI G. δ13C values from the Cenomanian-Turonian passage beds of southern Tibet[J]. Journal of Asian Earth Sciences, 2003, 21(8): 861-866.
DOI URL |
[130] |
WAN X, WIGNALL P B, ZHAO W. The Cenomanian-Turonian extinction and oceanic anoxic event: evidence from southern Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 199(3/4): 283-298.
DOI URL |
[131] |
WANG C S, HU X M, HUANG Y J, et al. Cretaceous oceanic red beds as possible consequence of oceanic anoxic events[J]. Sedimentary Geology, 2011, 235(1/2): 27-37.
DOI URL |
[132] |
WANG T Y, LI G B, AITCHISON J C, et al. Evolution of mid-Cretaceous radiolarians in response to oceanic anoxic events in the eastern Tethys (southern Tibet, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 536: 109369.
DOI URL |
[133] | WILLEMS H. Sedimentary history of the Tethys Himalaya continental margin in the South Tibet (Gamba, Tingri) during upper Cretaceous and Paleogene (Xizang Autonomous Region, PR China) [C]//WILLEMS H. Geoscietific Investigations in the Tethyan Himalayas. Bremen, Germany: Universitat Bremen, 1993: 49-181. |
[134] | 赵文金, 万晓樵. 藏南定日地区白垩纪中期地球化学异常对海平面上升的响应[J]. 地球科学进展, 2002, 17(3): 331-338. |
[135] | 李琪, 李国彪. 西藏定日县贡扎上白垩统浮游有孔虫与桑顿阶/坎潘阶界线的厘定[J]. 古生物学报, 2019, 58(3): 353-362. |
[136] | 陈蒲礼. 西藏南部岗巴地区早白垩世有孔虫生物地层学研究[D]. 北京: 中国地质大学(北京), 2011: 1-51. |
[137] | 高茂龙. 藏南岗巴强东地区白垩纪晚期有孔虫动物群研究[D]. 北京: 中国地质大学(北京), 2011: 1-46. |
[138] | 李国彪, 潘懋, 万晓樵, 等. 论西藏扎达上白垩统波林夏拉组[J]. 地层学杂志, 2012, 36(1): 37-48. |
[139] | 张金彪. 西藏南部江孜地区床得组大洋红层有孔虫生物地层[D]. 北京: 中国地质大学(北京), 2015: 1-55. |
[140] | LI Y W, WANG C S, XU X, et al. Planktic foraminiferal biostratigraphy of the Cretaceous oceanic red beds in Duomu, Gyangze, Southern Tibet[J]. Acta Geologica Sinica(English Edition), 2019, 93(Suppl 2): 268. |
[141] | LI G B, WAN X Q, PAN M. Planktic foraminiferal biostratigraphy of the Cretaceous oceanic red beds in Kangmar, southern Tibet, China[J]. Acta Geologica Sinica(English Edition), 2011, 85(6): 1238-1253. |
[142] | 韩子辰. 西藏亚东堆纳地区晚白垩世有孔虫生物地层[D]. 北京: 中国地质大学(北京), 2012: 1-65. |
[143] | 董丽平. 西藏江孜床得白垩纪介形虫生物地层[D]. 北京: 中国地质大学(北京), 2015: 1-56. |
[144] | LI G B, XIE D, WAN X Q, et al. Discovery of radiolaria from the Zongzhuo Formation in Tianba, Kangmar, Tibet and its age implication[J]. Acta Geologica Sinica(English Edition), 2009, 83(5): 853-859. |
[145] | BOUDAGHER-FADEL M K, PRICE G D, HU X M, et al. Late Cretaceous to early Paleogene foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation scheme[J]. Stratigraphy, 2015, 12: 67-91. |
[146] | HAN Y, LI G B, LI Y W, et al. Late Cretaceous-Early Paleogene Foraminiferal biostratigraphy in Xishan, Gamba, Southern Tibet[J]. Acta Geologica Sinica(English Edition), 2019, 93(Suppl 1): 106-108. |
[147] |
JIANG S J, CHEN X K, BERNAOLA G. Environmental controls on calcareous nannoplankton response to the Cretaceous/Paleogene mass extinction in the Tethys realm[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 515: 134-142.
DOI URL |
[148] |
ZHANG Q H, DING L, KITAJIMA K, et al. Constraining the magnitude of the carbon isotope excursion during the Paleocene-Eocene thermal maximum using larger benthic foraminifera[J]. Global and Planetary Change, 2020, 184: 103049.
DOI URL |
[149] |
LI J, HU X M, GARZANTI E, et al. Shallow-water carbonate responses to the Paleocene-Eocene thermal maximum in the Tethyan Himalaya (southern Tibet): tectonic and climatic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 153-165.
DOI URL |
[150] | 李兴鹏. 西藏南部岗巴地区古近纪有孔虫生物地层学研究[D]. 北京: 中国地质大学(北京), 2011: 1-61. |
[151] | 李新发. 西藏亚东堆纳地区古近纪浮游有孔虫生物地层[D]. 北京: 中国地质大学(北京), 2015. |
[152] | LI X F, LI G B, ZHANG Y Y, et al. Eocene planktonic foraminfera and the age of the youngest marine sediments in Tüna, Yadong, southern Tibet[J]. Acta Geologica Sinica(English Edition), 2019, 93(Suppl 1): 123-125. |
[153] | 修迪. 西藏亚东堆纳地区始新世介形虫动物群研究[D]. 北京: 中国地质大学(北京), 2011: 1-54. |
[154] | 陈宇. 西藏亚东查昌地区始新统介形虫生物地层[D]. 北京: 中国地质大学(北京), 2019: 1-69. |
[155] |
WANG T Y, LI G B, AITCHISON J C, et al. Eocene ostracods from southern Tibet: implications for the disappearance of Neo-Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 539: 109488.
DOI URL |
[156] | 牛晓路. 藏南堆纳地区始新世微体古生物与东特提斯的封闭时限[D]. 北京: 中国地质大学(北京), 2017: 1-106. |
[157] | MARTINI E. Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proceedings of the Second Planktonic Conference[C]// FARINACCI A. Proceedings of the 2nd Planktonic Conference. Roma: Tecnoscienza, 1971: 739-785. |
[158] | 姚又嘉. 西藏亚东堆纳地区始新世沟鞭藻生物地层[D]. 北京: 中国地质大学(北京), 2017: 1-62. |
[159] | YAO Y J, LI G B, ZHANG W Y, et al. Eocene dinoflagellate biostratigraphy in Tüna, Yadong, Tibet[J]. Acta Geologica Sinica(English Edition), 2019, 93(Suppl 2): 284-285. |
[160] | ZHANG W Y, LI G B, YAO Y J, et al. Eocene sporopollen biostratigraphy in Tüna, Yadong, Tibet[J]. Acta Geologica Sinica(English Edition), 2019, 93(Suppl 2): 286-287. |
[161] | 张文苑, 李国彪. 西藏亚东堆纳地区始新世轮藻化石[J]. 微体古生物学报, 2017, 34(4): 360-368. |
[162] | LI X F, LI G B, GARVIE C L, et al. First report of the Early Eocene pteropods from the Zhupure Formation in Yadong, Southern Tibet, China[J]. Journal of Paleontology, 2020: 1-10. |
[163] | 李新发, 李国彪, 张文苑, 等. 西藏亚东堆纳始新世早期微型腹足类的首次发现[C]// 中国古生物学会. 中国古生物学会第十二次全国会员代表大会暨第29 届学术年会论文摘要集. 郑州: 中国古生物学会, 2018: 237. |
[164] | 牛晓路. 西藏亚东堆纳地区始新世钙藻化石的研究[D]. 北京: 中国地质大学(北京), 2013: 1-57. |
[165] | 牛晓路, 李国彪, 王天洋. 藏南亚东堆纳地区古近纪钙藻化石与沉积环境[J]. 现代地质, 2016, 30(4): 863-870. |
[166] | 牛晓路, 李国彪, 韩子晨, 等. 西藏亚东堆纳地区始新世钙藻化石[J]. 微体古生物学报, 2015, 32(4): 361-371. |
[167] | WANG T Y, LI G B. Biostratigraphy and provenance analysis of the Cretaceous to Paleogene deposits in southern Tibet: implications for the collision between India and Asia[J]. Basin Research (in press). |
[168] | WANG T Y, LI G B, LI X F, et al. Early Eocene radiolarian fauna from the Sangdanlin, Southern Tibet: constraints on the timing of initial India-Asia collision[J]. Acta Geologica Sinica(English Edition), 2017, 91(6): 1964-1977. |
[169] |
HU X M, GARZANTI E, MOORE, T, et al. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma)[J]. Geology 2015, 43(10): 859-862.
DOI URL |
[170] |
WAN X Q, WANG X, JANSA L F. Biostratigraphy of a Paleocene-Eocene foreland basin boundary in southern Tibet[J]. Geoscience Frontiers, 2010, 1(1): 69-79.
DOI URL |
[171] |
ZHU B KIDD W S F ROWLEY D B, et al. Age of initiation of the India-Asia collision in the east-central Himalaya[J]. The Journal of Geology, 2005, 113: 265-285.
DOI URL |
[1] | 毕先梅, 莫宣学, 刘艳宾. 西藏南部极低级变质岩及其地质与资源意义[J]. 地学前缘, 2024, 31(1): 201-210. |
[2] | 王成善, 高远, 王璞珺, 吴怀春, 吕庆田, 朱永宜, 万晓樵, 邹长春, 黄永建, 高有峰, 席党鹏, 王稳石, 贺怀宇, 冯子辉, 杨光, 邓成龙, 张来明, 王天天, 胡滨, 崔立伟, 彭诚, 余恩晓, 黄何, 杨柳, 毋正轩. 松辽盆地国际大陆科学钻探:白垩纪恐龙时代陆相地质记录[J]. 地学前缘, 2024, 31(1): 412-430. |
[3] | 吴怀春, 李山, 王成善, 褚润健, 王璞珺, 高远, 万晓樵, 贺怀宇, 邓成龙, 杨光, 黄永建, 高有峰, 席党鹏, 王天天, 房强, 杨天水, 张世红. 松辽盆地白垩纪综合年代地层格架[J]. 地学前缘, 2024, 31(1): 431-445. |
[4] | 付顺, 赵应权, 王进军, 余瑜, 朱迎堂, 傅星喆. 白垩纪羌塘地体西南缘的陆-陆碰撞:来自班怒带西段的花岗岩约束[J]. 地学前缘, 2022, 29(2): 416-430. |
[5] | 余小灿, 刘成林, 王春连, 徐海明, 赵艳军, 黄华, 李瑞琴. 江汉盆地大型富锂卤水矿床成因与资源勘查进展:综述[J]. 地学前缘, 2022, 29(1): 107-123. |
[6] | 王彤, 朱筱敏, 董艳蕾, 杨道庆, 苏彬, 谈明轩, 刘宇, 伍炜, 张亚雄. 陆相坳陷湖盆沉积对深时古气候的响应信号: 以准噶尔盆地西北缘安集海河组为例[J]. 地学前缘, 2021, 28(1): 60-76. |
[7] | 席党鹏, 唐自华, 王雪娇, 覃祚焕, 曹文心, 江湉, 吴宝旭, 栗源浩, 张赢月, 姜文彬, KAMRAN Muhammad, 方小敏, 万晓樵. 塔里木盆地西部白垩纪—古近纪海相地层框架及对重大地质事件的记录[J]. 地学前缘, 2020, 27(6): 165-198. |
[8] | 景秀春, 周洪瑞, 王训练, 杨志华, 房强, 王振涛, 樊杰. 华北板块奥陶纪牙形石生物地层研究回顾及在西北缘区新进展[J]. 地学前缘, 2020, 27(6): 199-212. |
[9] | 沈阳, 王训练, 李玉坤, 杨志华, 岑武轩, 王雪兵. 黔南上司地区石炭系有孔虫:兼论华南维宪阶有孔虫生物地层序列[J]. 地学前缘, 2020, 27(6): 213-233. |
[10] | 黄明立, 田坤烜, 史宇坤. 滇黔桂盆地早二叠世亚丁斯克期的沉积环境分异与䗴有孔虫响应[J]. 地学前缘, 2020, 27(6): 313-328. |
[11] | 高莲凤, 李璞壮, 张振国, 万晓樵, 夏世强, 董桂玉, 王兆生, 冷春鹏, 张盈, 姚纪明, 张琳婷, 于江涛, 殷世艳. 藏南江孜侏罗系/白垩系界线时期古海洋环境分析[J]. 地学前缘, 2020, 27(4): 272-281. |
[12] | 朱弟成,王青,赵志丹,牛耀龄,侯增谦,潘桂棠,莫宣学. 大陆边缘弧岩浆成因与大陆地壳形成[J]. 地学前缘, 2018, 25(6): 67-77. |
[13] | 张泽明,丁慧霞,董昕,田作林. 冈底斯弧的岩浆作用:从新特提斯俯冲到印度亚洲碰撞[J]. 地学前缘, 2018, 25(6): 78-91. |
[14] | 雷华蕊,姜在兴,周红科. 早古近纪极热时期古气候演化分析:以东营凹陷为例[J]. 地学前缘, 2018, 25(4): 176-184. |
[15] | 万晓樵,吴怀春,席党鹏,刘美羽,覃祚焕. 中国东北地区白垩纪温室时期陆相生物群与气候环境演化[J]. 地学前缘, 2017, 24(1): 18-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||