地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 334-349.DOI: 10.13745/j.esf.sf.2025.3.68
曹晨晞1(), 张茂亮1,*(
), 王立胜2, 王学锋2, 段武辉2, 徐胜1
收稿日期:
2025-02-07
修回日期:
2025-02-21
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*张茂亮(1987—),男,博士,副教授,硕士生导师,主要从事火山学与流体地球化学方面的研究。E-mail: 作者简介:
曹晨晞(2001—),男,硕士研究生,主要从事泉华地球化学研究。E-mail: 1535106068@qq.com
基金资助:
CAO Chenxi1(), ZHANG Maoliang1,*(
), WANG Lisheng2, WANG Xuefeng2, DUAN Wuhui2, XU Sheng1
Received:
2025-02-07
Revised:
2025-02-21
Online:
2025-03-25
Published:
2025-04-20
摘要:
青藏高原南部构造运动活跃,为深源含碳流体的形成和释放创造了有利条件,使其成为现今全球最重要的深部碳释放地区之一。如何估算地质历史时期构造运动导致的深部碳释放通量是探索青藏高原生长动力学过程对深部碳释放影响的重要科学问题,也是重建印度-亚洲大陆碰撞造山带地质碳循环的关键环节。活动断裂带内广泛出露的钙华沉积物为回溯地质碳排放提供了理想对象。本研究对青藏高原南部活动断裂带的44个钙华样品进行了铀系年代学、矿物学、元素和同位素地球化学分析,结果显示:(1)钙华U-Th年龄为267.3~1.8 kyr B.P.,形成于中更新世至全新世,沉积速率约为0.02~1.49 mm·yr-1;(2)钙华主要由方解石组成,个别具有方解石和文石混合特征,CaCO3平均含量为94.2%;(3)碳-氧同位素组成(δ13CV-PDB=-3.1‰~+8.6‰;δ18OV-SMOW=-0.5‰~+15.0‰)显示钙华具有热成因性质,沉积过程中受到不同程度的CO2脱气、泉水沸腾及蒸发作用的影响;深部碳是钙华中总碳的最主要来源。基于钙华体积、孔隙度、CaCO3含量以及沉积时间,估算得到研究区伴随钙华沉淀释放的CO2通量处于104~106 mol·km-2·yr-1数量级,与意大利中西部构造活跃区的部分钙华沉积区相当。本研究为理解藏南活动断裂带中钙华的形成年代、成因机制以及CO2释放通量提供了新视角,对于全面认识印度-亚洲大陆碰撞造山带的深部碳循环特征具有重要意义。
中图分类号:
曹晨晞, 张茂亮, 王立胜, 王学锋, 段武辉, 徐胜. 藏南活动断裂带第四纪CO2释放初探:来自钙华年代学与地球化学的约束[J]. 地学前缘, 2025, 32(3): 334-349.
CAO Chenxi, ZHANG Maoliang, WANG Lisheng, WANG Xuefeng, DUAN Wuhui, XU Sheng. Preliminary study on hydrothermal CO2 flux from active fault zones in southern Tibet: Constraints from travertine geochronology and geochemistry[J]. Earth Science Frontiers, 2025, 32(3): 334-349.
采样点 | 温泉编号 | 断裂带 | 所属地块 | 经度/ (°E) | 纬度/ (°N) | 海拔/m | 剖面厚度/cm | 出露面积/ m2 |
---|---|---|---|---|---|---|---|---|
贡巴萨巴温泉 | GBSB | 定日裂谷 | 喜马拉雅 | 86.554 4 | 28.496 5 | 4 584 | 458 | 1.6×105 |
琼甲利众温泉 | QJLZ | 吉隆裂谷 | 喜马拉雅 | 85.335 2 | 28.903 5 | 4 279 | 142 | 3.0×104 |
嘎琼温泉 | GQ | 仲巴裂谷 | 拉萨 | 84.800 5 | 29.907 6 | 5 107 | 246 | 2.5×105 |
布多温泉 | BD | 仲巴裂谷 | 拉萨 | 84.405 2 | 30.403 3 | 4 868 | 300 | 4.0×104 |
热绒温泉 | RR | 仲巴裂谷 | 拉萨 | 84.435 1 | 30.709 9 | 4 749 | 246 | 1.0×106 |
通道温泉 | TD | 嘉黎断裂 | 拉萨 | 93.545 3 | 30.831 9 | 4 572 | 330 | 5.0×104 |
表1 钙华剖面野外实测基本信息
Table 1 Basic information of travertine section measured in the field
采样点 | 温泉编号 | 断裂带 | 所属地块 | 经度/ (°E) | 纬度/ (°N) | 海拔/m | 剖面厚度/cm | 出露面积/ m2 |
---|---|---|---|---|---|---|---|---|
贡巴萨巴温泉 | GBSB | 定日裂谷 | 喜马拉雅 | 86.554 4 | 28.496 5 | 4 584 | 458 | 1.6×105 |
琼甲利众温泉 | QJLZ | 吉隆裂谷 | 喜马拉雅 | 85.335 2 | 28.903 5 | 4 279 | 142 | 3.0×104 |
嘎琼温泉 | GQ | 仲巴裂谷 | 拉萨 | 84.800 5 | 29.907 6 | 5 107 | 246 | 2.5×105 |
布多温泉 | BD | 仲巴裂谷 | 拉萨 | 84.405 2 | 30.403 3 | 4 868 | 300 | 4.0×104 |
热绒温泉 | RR | 仲巴裂谷 | 拉萨 | 84.435 1 | 30.709 9 | 4 749 | 246 | 1.0×106 |
通道温泉 | TD | 嘉黎断裂 | 拉萨 | 93.545 3 | 30.831 9 | 4 572 | 330 | 5.0×104 |
图2 青藏高原南部钙华剖面照片与采样点位示意图 钙华剖面所在的温泉区依次为:(a)贡巴萨巴;(b)琼甲利众;(c)布多;(d)嘎琼;(e)热绒;(f)通道。
Fig.2 Schematic diagram of travertine profile and sampling sites in the southern Tibetan PlateauThe hot spring areas where the travertine section is located are: (a) Gongbasaba; (b) Qiongjializhong; (c) Budo; (d) Gaqiong; (e) Rerong; (f) Tongdao.
样品编号 | wB/% | δ13CV-PDB/ ‰ | δ18OV-PDB/ ‰ | δ18OV-SMOW/ ‰ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Al | Fe | K | Na | Mg | Mn | Si | ||||
GBSB-cal | 38.32 | 0.021 | 0.041 | 0.003 | 0.022 | 0.192 | 0.03 | 0.003 | 5.8 | -22.3 | 7.9 |
GBSB 0 cm | 39.41 | 0.04 | 0.13 | 0.014 | 0.028 | 0.338 | 0.04 | 0.025 | 4.1 | -25.9 | 4.2 |
GBSB 8 cm | 39.75 | 0.03 | 0.135 | 0.006 | 0.015 | 0.267 | 0.041 | 0.012 | 4.5 | -24.5 | 5.7 |
GBSB 22 cm | 37.25 | 0.07 | 0.147 | 0.016 | 0.029 | 0.231 | 0.031 | 0.045 | 5.1 | -22.3 | 7.9 |
GBSB 45 cm | 40.43 | 0.032 | 0.15 | 0.006 | 0.016 | 0.262 | 0.043 | 0.01 | 4.6 | -24.7 | 5.5 |
GBSB 97 cm | 38.22 | 0.027 | 0.031 | 0.005 | 0.019 | 0.201 | 0.05 | 0.008 | 4.5 | -25.2 | 4.9 |
GBSB 135 cm | 38.86 | 0.019 | 0.051 | 0.004 | 0.014 | 0.197 | 0.038 | 0.004 | 4.8 | -25.1 | 5.0 |
GBSB 200 cm | 38.55 | 0.051 | 0.174 | 0.022 | 0.031 | 0.328 | 0.02 | 0.056 | 8.2 | -17.5 | 12.9 |
GBSB 282 cm | 38.09 | 0.036 | 0.033 | 0.006 | 0.018 | 0.255 | 0.044 | 0.022 | 4.9 | -25.0 | 5.2 |
GBSB 350 cm | 38.55 | 0.034 | 0.071 | 0.008 | 0.022 | 0.252 | 0.061 | 0.015 | 4.2 | -26.9 | 3.2 |
GBSB 412 cm | 38.15 | 0.017 | 0.057 | 0.005 | 0.017 | 0.254 | 0.031 | 0.012 | 5.2 | -24.8 | 5.4 |
GBSB 458 cm | 36.81 | 0.056 | 0.174 | 0.019 | 0.02 | 0.305 | 0.045 | 0.038 | 4.0 | -24.9 | 5.3 |
QJLZ 0 cm | 37.61 | 0.011 | 0.124 | 0.002 | 0.006 | 0.511 | 0.006 | 0.004 | 4.8 | -21.5 | 8.7 |
QJLZ 18 cm | 40.19 | 0.009 | 0.109 | 0.005 | 0.008 | 0.783 | 0.001 | 0.002 | 4.0 | -23.2 | 7.0 |
QJLZ 31 cm | 40.49 | 0.014 | 0.264 | 0.007 | 0.009 | 0.691 | 0.004 | 0.003 | 4.4 | -22.0 | 8.2 |
QJLZ 62 cm | 40.42 | 0.028 | 0.263 | 0.006 | 0.008 | 0.462 | 0.009 | 0.012 | 5.0 | -20.9 | 9.3 |
QJLZ 142 cm | 36.13 | 0.08 | 0.387 | 0.012 | 0.006 | 0.259 | 0.01 | 0.05 | 7.0 | -17.0 | 13.4 |
GQ 0 cm | 39.43 | 0.008 | 0.278 | 0.009 | 0.054 | 0.767 | 0.033 | 0.012 | -1.7 | -30.3 | -0.3 |
GQ 67 cm | 37.91 | 0.011 | 0.391 | 0.007 | 0.067 | 0.741 | 0.055 | 0.014 | -1.5 | -30.2 | -0.3 |
GQ 97 cm | 40.36 | 0.009 | 0.367 | 0.006 | 0.024 | 0.834 | 0.058 | 0.012 | -1.6 | -30.4 | -0.5 |
GQ 121 cm | 39.95 | 0.014 | 0.212 | 0.006 | 0.017 | 0.764 | 0.028 | 0.024 | -1.1 | -29.4 | 0.6 |
GQ 193 cm | 37.69 | 0.008 | 0.869 | 0.004 | 0.026 | 0.6 | 0.144 | 0.007 | -1.5 | -29.9 | 0.1 |
GQ 246 cm | 39.22 | 0.009 | 0.044 | 0.005 | 0.002 | 0.232 | 0.008 | 0.005 | 7.0 | -25.3 | 4.8 |
BD 0 cm | 38.35 | 0.054 | 0.574 | 0.004 | 0.066 | 0.057 | 0.112 | 0.001 | -0.8 | -21.3 | 9.0 |
BD 60 cm | 40.4 | 0.038 | 1.184 | 0.006 | 0.04 | 0.215 | 0.154 | 0.012 | -1.5 | -20.3 | 10.0 |
BD 120 cm | 37.68 | 0.052 | 1.321 | 0.006 | 0.056 | 0.189 | 0.195 | 0.001 | -1.8 | -21.3 | 9.0 |
BD 130 cm | 34.59 | 0.024 | 0.323 | 0.018 | 0.111 | 0.277 | 0.045 | 0.021 | 0.3 | -16.7 | 13.7 |
BD 180 cm | 37.95 | 0.05 | 1.191 | 0.007 | 0.045 | 0.238 | 0.155 | 0.002 | -1.7 | -21.4 | 8.9 |
BD 240 cm | 38.55 | 0.042 | 0.995 | 0.006 | 0.047 | 0.243 | 0.104 | 0.004 | -1.8 | -21.1 | 9.2 |
BD 300cm | 31.28 | 0.057 | 1.296 | 0.005 | 0.057 | 0.207 | 0.161 | 0.003 | -1.7 | -20.7 | 9.6 |
RR 0 cm | 36.26 | 0.011 | 0.021 | 0.005 | 0.044 | 0.439 | 0.524 | 0.006 | -2.8 | -25.3 | 4.9 |
RR 40 cm | 34.67 | 0.012 | 0.022 | 0.006 | 0.059 | 0.448 | 0.532 | 0.009 | -3.1 | -25.6 | 4.5 |
RR 80 cm | 37.68 | 0.011 | 0.019 | 0.006 | 0.038 | 0.473 | 0.448 | 0.018 | -2.7 | -25.0 | 5.2 |
RR 120 cm | 38.02 | 0.01 | 0.02 | 0.005 | 0.036 | 0.45 | 0.563 | 0.004 | -3.0 | -25.5 | 4.7 |
RR 160 cm | 37.41 | 0.009 | 0.048 | 0.003 | 0.034 | 0.523 | 0.461 | 0.014 | -2.8 | -24.7 | 5.5 |
RR 200 cm | 36.77 | 0.029 | 0.043 | 0.027 | 0.08 | 0.592 | 0.423 | 0.022 | -2.5 | -24.1 | 6.1 |
RR 246 cm | 37.01 | 0.019 | 0.02 | 0.007 | 0.06 | 0.43 | 0.151 | 0.013 | -1.6 | -21.1 | 9.2 |
TD 0 cm | 25.72 | 0.324 | 0.828 | 0.105 | 0.064 | 0.588 | 0.046 | 0.172 | 8.6 | -15.4 | 15.0 |
TD 60 cm | 38.74 | 0.007 | 0.027 | 0.006 | 0.026 | 0.253 | 0.02 | 0.004 | 7.5 | -17.7 | 12.6 |
TD 120 cm | 36.41 | 0.016 | 0.389 | 0.005 | 0.029 | 0.353 | 0.076 | 0.039 | 8.5 | -17.2 | 13.2 |
TD 180 cm | 36.2 | 0.019 | 0.511 | 0.007 | 0.021 | 0.323 | 0.095 | 0.068 | 7.3 | -17.1 | 13.3 |
TD 240 cm | 38.86 | 0.013 | 0.359 | 0.004 | 0.019 | 0.289 | 0.084 | 0.031 | 6.4 | -17.4 | 12.9 |
TD 300 cm | 37.5 | 0.024 | 0.262 | 0.005 | 0.02 | 0.274 | 0.077 | 0.017 | 7.0 | -17.2 | 13.2 |
TD 330 cm | 37.88 | 0.018 | 0.595 | 0.006 | 0.022 | 0.325 | 0.097 | 0.029 | 6.5 | -17.7 | 12.7 |
表3 钙华主微量元素含量与碳-氧同位素组成
Table 3 Main trace elements content and carbon-oxygen isotope composition of travertine
样品编号 | wB/% | δ13CV-PDB/ ‰ | δ18OV-PDB/ ‰ | δ18OV-SMOW/ ‰ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Al | Fe | K | Na | Mg | Mn | Si | ||||
GBSB-cal | 38.32 | 0.021 | 0.041 | 0.003 | 0.022 | 0.192 | 0.03 | 0.003 | 5.8 | -22.3 | 7.9 |
GBSB 0 cm | 39.41 | 0.04 | 0.13 | 0.014 | 0.028 | 0.338 | 0.04 | 0.025 | 4.1 | -25.9 | 4.2 |
GBSB 8 cm | 39.75 | 0.03 | 0.135 | 0.006 | 0.015 | 0.267 | 0.041 | 0.012 | 4.5 | -24.5 | 5.7 |
GBSB 22 cm | 37.25 | 0.07 | 0.147 | 0.016 | 0.029 | 0.231 | 0.031 | 0.045 | 5.1 | -22.3 | 7.9 |
GBSB 45 cm | 40.43 | 0.032 | 0.15 | 0.006 | 0.016 | 0.262 | 0.043 | 0.01 | 4.6 | -24.7 | 5.5 |
GBSB 97 cm | 38.22 | 0.027 | 0.031 | 0.005 | 0.019 | 0.201 | 0.05 | 0.008 | 4.5 | -25.2 | 4.9 |
GBSB 135 cm | 38.86 | 0.019 | 0.051 | 0.004 | 0.014 | 0.197 | 0.038 | 0.004 | 4.8 | -25.1 | 5.0 |
GBSB 200 cm | 38.55 | 0.051 | 0.174 | 0.022 | 0.031 | 0.328 | 0.02 | 0.056 | 8.2 | -17.5 | 12.9 |
GBSB 282 cm | 38.09 | 0.036 | 0.033 | 0.006 | 0.018 | 0.255 | 0.044 | 0.022 | 4.9 | -25.0 | 5.2 |
GBSB 350 cm | 38.55 | 0.034 | 0.071 | 0.008 | 0.022 | 0.252 | 0.061 | 0.015 | 4.2 | -26.9 | 3.2 |
GBSB 412 cm | 38.15 | 0.017 | 0.057 | 0.005 | 0.017 | 0.254 | 0.031 | 0.012 | 5.2 | -24.8 | 5.4 |
GBSB 458 cm | 36.81 | 0.056 | 0.174 | 0.019 | 0.02 | 0.305 | 0.045 | 0.038 | 4.0 | -24.9 | 5.3 |
QJLZ 0 cm | 37.61 | 0.011 | 0.124 | 0.002 | 0.006 | 0.511 | 0.006 | 0.004 | 4.8 | -21.5 | 8.7 |
QJLZ 18 cm | 40.19 | 0.009 | 0.109 | 0.005 | 0.008 | 0.783 | 0.001 | 0.002 | 4.0 | -23.2 | 7.0 |
QJLZ 31 cm | 40.49 | 0.014 | 0.264 | 0.007 | 0.009 | 0.691 | 0.004 | 0.003 | 4.4 | -22.0 | 8.2 |
QJLZ 62 cm | 40.42 | 0.028 | 0.263 | 0.006 | 0.008 | 0.462 | 0.009 | 0.012 | 5.0 | -20.9 | 9.3 |
QJLZ 142 cm | 36.13 | 0.08 | 0.387 | 0.012 | 0.006 | 0.259 | 0.01 | 0.05 | 7.0 | -17.0 | 13.4 |
GQ 0 cm | 39.43 | 0.008 | 0.278 | 0.009 | 0.054 | 0.767 | 0.033 | 0.012 | -1.7 | -30.3 | -0.3 |
GQ 67 cm | 37.91 | 0.011 | 0.391 | 0.007 | 0.067 | 0.741 | 0.055 | 0.014 | -1.5 | -30.2 | -0.3 |
GQ 97 cm | 40.36 | 0.009 | 0.367 | 0.006 | 0.024 | 0.834 | 0.058 | 0.012 | -1.6 | -30.4 | -0.5 |
GQ 121 cm | 39.95 | 0.014 | 0.212 | 0.006 | 0.017 | 0.764 | 0.028 | 0.024 | -1.1 | -29.4 | 0.6 |
GQ 193 cm | 37.69 | 0.008 | 0.869 | 0.004 | 0.026 | 0.6 | 0.144 | 0.007 | -1.5 | -29.9 | 0.1 |
GQ 246 cm | 39.22 | 0.009 | 0.044 | 0.005 | 0.002 | 0.232 | 0.008 | 0.005 | 7.0 | -25.3 | 4.8 |
BD 0 cm | 38.35 | 0.054 | 0.574 | 0.004 | 0.066 | 0.057 | 0.112 | 0.001 | -0.8 | -21.3 | 9.0 |
BD 60 cm | 40.4 | 0.038 | 1.184 | 0.006 | 0.04 | 0.215 | 0.154 | 0.012 | -1.5 | -20.3 | 10.0 |
BD 120 cm | 37.68 | 0.052 | 1.321 | 0.006 | 0.056 | 0.189 | 0.195 | 0.001 | -1.8 | -21.3 | 9.0 |
BD 130 cm | 34.59 | 0.024 | 0.323 | 0.018 | 0.111 | 0.277 | 0.045 | 0.021 | 0.3 | -16.7 | 13.7 |
BD 180 cm | 37.95 | 0.05 | 1.191 | 0.007 | 0.045 | 0.238 | 0.155 | 0.002 | -1.7 | -21.4 | 8.9 |
BD 240 cm | 38.55 | 0.042 | 0.995 | 0.006 | 0.047 | 0.243 | 0.104 | 0.004 | -1.8 | -21.1 | 9.2 |
BD 300cm | 31.28 | 0.057 | 1.296 | 0.005 | 0.057 | 0.207 | 0.161 | 0.003 | -1.7 | -20.7 | 9.6 |
RR 0 cm | 36.26 | 0.011 | 0.021 | 0.005 | 0.044 | 0.439 | 0.524 | 0.006 | -2.8 | -25.3 | 4.9 |
RR 40 cm | 34.67 | 0.012 | 0.022 | 0.006 | 0.059 | 0.448 | 0.532 | 0.009 | -3.1 | -25.6 | 4.5 |
RR 80 cm | 37.68 | 0.011 | 0.019 | 0.006 | 0.038 | 0.473 | 0.448 | 0.018 | -2.7 | -25.0 | 5.2 |
RR 120 cm | 38.02 | 0.01 | 0.02 | 0.005 | 0.036 | 0.45 | 0.563 | 0.004 | -3.0 | -25.5 | 4.7 |
RR 160 cm | 37.41 | 0.009 | 0.048 | 0.003 | 0.034 | 0.523 | 0.461 | 0.014 | -2.8 | -24.7 | 5.5 |
RR 200 cm | 36.77 | 0.029 | 0.043 | 0.027 | 0.08 | 0.592 | 0.423 | 0.022 | -2.5 | -24.1 | 6.1 |
RR 246 cm | 37.01 | 0.019 | 0.02 | 0.007 | 0.06 | 0.43 | 0.151 | 0.013 | -1.6 | -21.1 | 9.2 |
TD 0 cm | 25.72 | 0.324 | 0.828 | 0.105 | 0.064 | 0.588 | 0.046 | 0.172 | 8.6 | -15.4 | 15.0 |
TD 60 cm | 38.74 | 0.007 | 0.027 | 0.006 | 0.026 | 0.253 | 0.02 | 0.004 | 7.5 | -17.7 | 12.6 |
TD 120 cm | 36.41 | 0.016 | 0.389 | 0.005 | 0.029 | 0.353 | 0.076 | 0.039 | 8.5 | -17.2 | 13.2 |
TD 180 cm | 36.2 | 0.019 | 0.511 | 0.007 | 0.021 | 0.323 | 0.095 | 0.068 | 7.3 | -17.1 | 13.3 |
TD 240 cm | 38.86 | 0.013 | 0.359 | 0.004 | 0.019 | 0.289 | 0.084 | 0.031 | 6.4 | -17.4 | 12.9 |
TD 300 cm | 37.5 | 0.024 | 0.262 | 0.005 | 0.02 | 0.274 | 0.077 | 0.017 | 7.0 | -17.2 | 13.2 |
TD 330 cm | 37.88 | 0.018 | 0.595 | 0.006 | 0.022 | 0.325 | 0.097 | 0.029 | 6.5 | -17.7 | 12.7 |
图3 温泉钙华剖面样品的XRD图像 A代表文石衍射峰,C代表方解石衍射峰。
Fig.3 XRD image of hot spring travertine profile sample A represents the aragonite diffraction peak, C represents the calcite diffraction peak.
图6 青藏高原地区钙华U-Th年龄分布直方图(文献数据来源[47⇓⇓⇓⇓⇓⇓-54])
Fig.6 U-Th age distribution histogram of travertine in Tibetan Plateau. Literature data source [47⇓⇓⇓⇓⇓⇓-54].
图7 钙华δ13CV-PDB值与δ18OV-SMOW值协变图(文献数据来源[26,63⇓⇓⇓-67])
Fig.7 Covariation of δ13CV-PDB values and δ18OV-SMOW values of travertine. Literature data source [26,63⇓⇓⇓-67].
图8 全球代表性钙华沉积区的CO2通量与面积对比示意图 数据及来源见表4。实线表示全球高温地热区的CO2释放通量基线[75];虚线表示意大利中西部地区CO2释放通量范围[73]。
Fig.8 Comparison of CO2 flux and area in representative travertine deposition areas around the world. Data and sources are shown in Table 4. The solid line represents the baseline CO2 emission flux in the global high-temperature geothermal area [75]. The dashed lines in dicate the range of CO2 emission fluxes over central and western Italy [73].
[1] | DASGUPTA R, HIRSCHMANN M M. The deep carbon cycle and melting in Earth’s interior[J]. Earth and Planetary Science Letters, 2010, 298(1/2): 1-13. |
[2] | HAZEN R M, SCHIFFRIES C M. Why deep carbon?[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 1-6. |
[3] | LEE C T A, JIANG H, DASGUPTA R, et al. A framework for understanding whole-Earth carbon cycling[M]// ORCUTTB N, DANIELI, DASGUPTAR. Deep carbon:past to present. Cambridge: Cambridge University Press, 2019: 313-357. |
[4] | BEKAERT D V, TURNER S J, BROADLEY M W, et al. Subduction-driven volatile recycling: a global mass balance[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 37-70. |
[5] | ZHANG M, XU S, SANO Y. Deep carbon recycling viewed from global plate tectonics[J]. National Science Review, 2024, 11(6): nwae089. |
[6] | FRIEDLINGSTEIN P, O’SULLIVAN M, JONES M W, et al. Global carbon budget 2022[J]. Earth System Science Data, 2022, 14(11): 4811-4900. |
[7] | FISCHER T P, AIUPPA A. AGU centennial grand challenge: volcanoes and deep carbon global CO2 emissions from subaerial volcanism: recent progress and future challenges[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(3): e2019GC008690. |
[8] | ISSON T T, PLANAVSKY N J, COOGAN L A, et al. Evolution of the global carbon cycle and climate regulation on Earth[J]. Global Biogeochemical Cycles, 2020, 34(2): e2018GB006061. |
[9] | BECKER J A, BICKLE M J, GALY A, et al. Himalayan metamorphic CO2 fluxes: quantitative constraints from hydrothermal springs[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 616-629. |
[10] | TAMBURELLO G, PONDRELLI S, CHIODINI G, et al. Global-scale control of extensional tectonics on CO2 earth degassing[J]. Nature communications, 2018, 9: 4608. |
[11] | MUIRHEAD J D, FISCHER T P, OLIVA S J, et al. Displaced cratonic mantle concentrates deep carbon during continental rifting[J]. Nature, 2020, 582: 67-72. |
[12] | XU S, GUAN L, ZHANG M, et al. Degassing of deep-sourced CO2from Xianshuihe-Anninghe fault zones in the eastern Tibetan Plateau[J]. Science China: Earth Sciences, 2022, 65(1): 139-155. |
[13] | 郭正府, 张茂亮, 成智慧, 等. 中国大陆新生代典型火山区温室气体释放的规模及其成因[J]. 岩石学报, 2014(11): 3467-3480. |
[14] | LIAO Z. Thermal springs and geothermal energy in the Qinghai-Tibetan Plateau and the surroundings[M]. Singapore: Springer, 2018: 1-311. |
[15] | 赵文斌, 郭正府, 李菊景, 等. 青藏高原南部及邻区深部碳释放规模与成因[J]. 岩石学报, 2022, 38(5): 1541-1556. |
[16] | LIU W, ZHANG M, LIU Y, et al. Massive crustal carbon mobilization and emission driven by India underthrusting Asia[J]. Communications Earth & Environment, 2024, 5: 271. |
[17] | 张丽红, 郭正府, 张茂亮, 等. 高温地热区土壤微渗漏的温室气体释放通量研究: 以藏南羊八井地热田为例[J]. 岩石学报, 2014, 30(12): 3612-3626. |
[18] | 张丽红, 郭正府, 郑国东, 等. 藏南新生代火山-地热区温室气体的释放通量与成因: 以谷露—亚东裂谷为例[J]. 岩石学报, 2017, 33(1): 250-266. |
[19] | ZHANG M, GUO Z, ZHANG L, et al. Geochemical constraints on origin of hydrothermal volatiles from southern Tibet and the Himalayas: understanding the degassing systems in the India-Asia continental subduction zone[J]. Chemical Geology, 2017, 469: 19-33. |
[20] | ZHANG M, ZHANG L, ZHAO W, et al. Metamorphic CO2 emissions from the southern Yadong-Gulu rift, Tibetan Plateau: insights into deep carbon cycle in the India-Asia continental collision zone[J]. Chemical Geology, 2021, 584: 120534. |
[21] | XIE X G, ZHANG M, LIU W, et al. Active CO2 emissions from thermal springs in the Karakoram fault system and adjacent regions, western Tibetan Plateau[J]. Applied Geochemistry, 2024, 161: 105896. |
[22] | PENTECOST A. Travertine[M]. Berlin: Springer, 2005: 1-445. |
[23] | JONES B. Siliceous sinters in thermal spring systems: review of their mineralogy, diagenesis, and fabrics[J]. Sedimentary Geology, 2021, 413: 105820. |
[24] | CHIODINI G, PAPPALARDO L, AIUPPA A, et al. The geological CO2 degassing history of a long-lived caldera[J]. Geology, 2015, 43(9): 767-770. |
[25] | D’ALESSANDRO W, GIAMMANCO S, BELLOMO S, et al. Geochemistry and mineralogy of travertine deposits of the SW flank of Mt. Etna (Italy): relationships with past volcanic and degassing activity[J]. Journal of Volcanology and Geothermal Research, 2007, 165(1/2): 64-70. |
[26] | HARRISON L N, Hurwitz S, PACES J B, et al. Travertine records climate-induced transformations of the Yellowstone hydrothermal system from the Late Pleistocene to the present[J]. Geological Society of America Bulletin, 2024, 136(9/10): 3605-3618. |
[27] | MANCINI A, CAPEZZUOLI E, BROGI A, et al. Geogenie CO2 flux calculations from the Late Pleistocene Tivoli travertines (Acque Albule Basin, Tivoli, Central Italy)[J]. Italian Journal of Geosciences, 2020, 139(3): 374-382. |
[28] | MANCINI A, CORNACCHIA I, LAMAL J, et al. Using stable isotopes in deciphering climate changes from travertine deposits: the case of the Lapis Tiburtinus succession (Acque Albule Basin, Tivoli, Central Italy)[J]. Frontiers in Earth Science, 2024, 12: 1355693. |
[29] | MANCINI A, FRONDINI F, CAPEZZUOLI E, et al. Evaluating the geogenic CO2 flux from geothermal areas by analysing quaternary travertine masses. New data from western central Italy and review of previous CO2 flux data[J]. Quaternary Science Reviews, 2019, 215: 132-143. |
[30] | DING L, KAPP P, CAI F, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3(10): 652-667. |
[31] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. |
[32] | PAN G, WANG L, LI R, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. |
[33] | ZHANG H, HOU Z. Metallogenesis within continental collision zones: comparisons of modern collisional orogens[J]. Science China: Earth Sciences, 2018, 61(12): 1737-1760. |
[34] | 莫宣学, 董国臣, 赵志丹, 等. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J]. 高校地质学报, 2005, 11(3): 281-290. |
[35] |
ZHANG B, BAO X, WU Y, et al. Southern Tibetan rifting since late Miocene enabled by basal shear of the underthrusting Indian lithosphere[J]. Nature Communications, 2023, 14: 2565.
DOI PMID |
[36] | KAPP P, DECELLES P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319(3): 159-254. |
[37] | LI S M, WANG Q, ZHU D C, et al. One or two Early Cretaceous arc systems in the Lhasa Terrane, southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3391-3413. |
[38] | LI S, YIN C, GUILMETTE C, et al. Birth and demise of the Bangong-Nujiang Tethyan Ocean: a review from the Gerze area of central Tibet[J]. Earth-Science Reviews, 2019, 198: 102907. |
[39] | PARSONS A J, HOSSEINI K, PALIN R M, et al. Geological, geophysical and plate kinematic constraints for models of the India-Asia collision and the post-Triassic central Tethys oceans[J]. Earth-Science Reviews, 2020, 208: 103084. |
[40] | 侯增谦, 李振清. 印度大陆俯冲前缘的可能位置: 来自藏南和藏东活动热泉气体He 同位素约束[J]. 地质学报, 2004, 78(4): 482-493. |
[41] | CHENG H, EDWARDS R L, SHEN C C, et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371: 82-91. |
[42] |
王立胜, 马志邦, 程海, 等. MC-ICP-MS测定铀系定年标样的230Th年龄[J]. 质谱学报, 2016, 37(3): 262-272.
DOI |
[43] | EDWARDS R L, CHEN J H, WASSERBURG G J. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500000 years[J]. Earth and Planetary Science Letters, 1987, 81(2): 175-192. |
[44] | 马志邦, 赵希涛, 朱大岗, 等. 西藏纳木错湖相沉积的铀系年代学研究[J]. 地球学报, 2002, 23(4): 311-316. |
[45] | BISCHOFF J L, LUDWIG K, GARCIA J F, et al. Dating of the basal Aurignacian sandwich at Abric Romanı (Catalunya, Spain) by radiocarbon and uranium-series[J]. Journal of Archaeological Science, 1994, 21(4): 541-551. |
[46] | AULER A S, SMART P L. Late Quaternary paleoclimate in semiarid northeastern Brazil from U-series dating of travertine and water-table speleothems[J]. Quaternary Research, 2001, 55(2): 159-167. |
[47] | 欧阳慧子. 青藏高原南部全新世早-中期气候变化: 墨竹工卡钙华碳氧同位素记录[D]. 成都: 成都理工大学, 2018. |
[48] | 王潇. 西藏羊易地热田泉华地球化学特征及其指示意义[D]. 北京: 中国地质科学院, 2018. |
[49] | 高竞. 地下热水钙华沉积的水化学影响因素和热水钙华微层的气候环境指示意义[D]. 北京: 中国地质大学(北京), 2013. |
[50] | HUDSON A M, QUADE J, HUTH T E, et al. Lake level reconstruction for 12.8-2.3 ka of the Ngangla Ring Tso closed-basin lake system, southwest Tibetan Plateau[J]. Quaternary Research, 2015, 83(1): 66-79. |
[51] | ZENTMYER R, MYROW P M, NEWELL D L. Travertine deposits from along the South Tibetan fault system near Nyalam, Tibet[J]. Geological Magazine, 2008, 145(6): 753-765. |
[52] | 赵元艺, 崔玉斌, 赵希涛. 西藏扎布耶盐湖钙华岛钙华的地质地球化学特征及意义[J]. 地质通报, 2010, 29(1): 124-141. |
[53] |
MEYER M C, ALDENDERFER M S, WANG Z, et al. Permanent human occupation of the central Tibetan Plateau in the early Holocene[J]. Science, 2017, 355(6320): 64-67.
DOI PMID |
[54] | 余石勇. 西藏麻米错盐湖锂矿水化学与钙华年代学和地球化学特征[D]. 北京: 中国地质科学院, 2022. |
[55] | CAPEZZUOLI E, GANDIN A, PEDLEY M. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of the art[J]. Sedimentology, 2014, 61(1): 1-21. |
[56] | 文华国, 罗连超, 罗晓彤, 等. 陆地热泉钙华研究进展与展望[J]. 沉积学报, 2019, 37(6): 1162-1180. |
[57] | 刘再华. 表生和内生钙华的气候环境指代意义研究进展[J]. 科学通报, 2014, 59(23): 2229-2239. |
[58] | NISHIKAWA O, FURUHASHI K, MASUYAMA M, et al. Radiocarbon dating of residual organic matter in travertine formed along the Yumoto Fault in Oga Peninsula, northeast Japan: implications for long-term hot spring activity under the influence of earthquakes[J]. Sedimentary Geology, 2012, 243: 181-190. |
[59] | WANG Y, LV W, XUE K, et al. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau[J]. Nature Reviews Earth & Environment, 2022, 3(10): 668-683. |
[60] |
汪智军, 殷建军, 蒲俊兵, 等. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
DOI |
[61] | SHIRAISHI F, HANZAWA Y, NAKAMURA Y, et al. Abiotic and biotic processes controlling travertine deposition: insights from eight hot springs in Japan[J]. Sedimentology, 2022, 69(2): 592-623. |
[62] | PENTECOST A, VILES H. A review and reassessment of travertine classification[J]. Géographie physique et Quaternaire, 1994, 48(3): 305-314. |
[63] | FRIEDMAN I. Some investigations of the deposition of travertine from Hot Springs: I. the isotopic chemistry of a travertine-depositing spring[J]. Geochimica et Cosmochimica Acta, 1970, 34(12): 1303-1315. |
[64] | FOUKE B W, FARMER J D, DES MARAIS D J, et al. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA)[J]. Journal of Sedimentary Research, 2000, 70(3): 565-585. |
[65] | UYSAL I T, FENG Y, ZHAO J, et al. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary[J]. Chemical Geology, 2009, 265(3/4): 442-454. |
[66] | DEBOEVER E, JARAMILLO-VOGEL D, BOUVIER A S, et al. The fate of a travertine record: impact of early diagenesis on the Y-10 core (Mammoth Hot Springs, Yellowstone National Park, USA)[J]. The Depositional Record, 2022, 8(1): 220-250. |
[67] | LIANG J, YU Y, SHI Z, et al. Geothermal springs with high $\delta^{13} \mathrm{C}_{\mathrm{CO}_{2}}$-DIC along the Xianshuihe fault, Western Sichuan, China: a geochemical signature of enhanced deep tectonic activity[J]. Journal of Hydrology, 2023, 623: 129760. |
[68] | SMERAGLIA L, GIUFFRIDA A, GRIMALDI S, et al. Fault-controlled upwelling of low-T hydrothermal fluids tracked by travertines in a fold-and-thrust belt, Monte Alpi, Southern Apennines, Italy[J]. Journal of Structural Geology, 2021, 144: 104276. |
[69] | KELE S, ÖZKUL M, FÓRIZS I, et al. Stable isotope geochemical study of Pamukkale travertines: new evidences of low-temperature non-equilibrium calcite-water fractionation[J]. Sedimentary Geology, 2011, 238(1/2): 191-212. |
[70] | BOTTINGA Y, CRAIG H. Oxygen isotope fractionation between CO2 and water, and the isotopic composition of marine atmospheric CO2[J]. Earth and Planetary Science Letters, 1968, 5: 285-295. |
[71] | BISSE S B, EKOMANE E, EYONG J T, et al. Sedimentological and geochemical study of the Bongongo and Ngol travertines located at the Cameroon Volcanic Line[J]. Journal of African Earth Sciences, 2018, 143: 201-214. |
[72] | LIU W, GUAN L, LIU Y, et al. Fluid geochemistry and geothermal anomaly along the Yushu-Ganzi-Xianshuihe fault system, eastern Tibetan Plateau: implications for regional seismic activity[J]. Journal of Hydrology, 2022, 607: 127554. |
[73] | CHIODINI G, CARDELLINI C, AMATO A, et al. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy[J]. Geophysical Research Letters, 2004, 31(7): L07615. |
[74] | CHIODINI G, FRONDINI F, CARDELLINI C, et al. Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B4): 8423-8434. |
[75] | KERRICK D M, MCKIBBEN M A, SEWARD T M, et al. Convective hydrothermal CO2 emission from high heat flow regions[J]. Chemical Geology, 1995, 121(1/2/3/4): 285-293. |
[76] |
BUONO G, CALIRO S, PAPPALARDO L, et al. Hydrothermal calcite formation in Campi Flegrei caldera, Italy: unraveling carbon sink processes in alkaline volcanic systems[J]. Scientific Reports, 2024, 14(1): 16839.
DOI PMID |
[1] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[2] | 张泽明,丁慧霞,董昕,田作林. 冈底斯弧的岩浆作用:从新特提斯俯冲到印度亚洲碰撞[J]. 地学前缘, 2018, 25(6): 78-91. |
[3] | 朱弟成,王青,赵志丹,牛耀龄,侯增谦,潘桂棠,莫宣学. 大陆边缘弧岩浆成因与大陆地壳形成[J]. 地学前缘, 2018, 25(6): 67-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||