地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 350-361.DOI: 10.13745/j.esf.sf.2025.3.41
谢显刚1,2(), 赵文斌1, 张茂亮2,*(
), 郭正府1, 徐胜2
收稿日期:
2025-02-07
修回日期:
2025-02-28
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*张茂亮(1987—),男,博士,副教授,硕士生导师,主要从事火山学与流体地球化学方面的研究。E-mail:作者简介:
谢显刚(1993—),男,博士,助理研究员,主要从事火山岩地球化学研究。E-mail:xiangangxie@mail.iggcas.ac.cn
基金资助:
XIE Xiangang1,2(), ZHAO Wenbin1, ZHANG Maoliang2,*(
), GUO Zhengfu1, XU Sheng2
Received:
2025-02-07
Revised:
2025-02-28
Online:
2025-03-25
Published:
2025-04-20
摘要: 火山活动等地球深部过程对气候环境的影响是全球变化研究领域的重要议题。新生代青藏高原隆升伴随着多期火山活动和深部碳释放,并且这一时期大气CO2浓度发生阶段性变化,亚洲气候环境格局由行星风系主控转向季风主控。然而,青藏高原火山活动与气候环境变化之间的内在联系尚不明确,原因在于缺乏火山活动深部碳释放规模的直接约束。本文聚焦青藏高原碰撞后火山活动,以拉萨地块查孜、米巴勒地区的中新世火山岩和羌塘地块依布茶卡、俄久买马、鱼鳞山地区的渐新世火山岩为研究对象,利用激光原位拉曼光谱测定了火山岩斑晶的熔体包裹体CO2浓度,进而结合火山岩体积和年龄等参数,估算了拉萨地块中新世火山活动和羌塘地块渐新世火山活动的CO2释放通量。结果表明,拉萨地块和羌塘地块火山岩CO2平均浓度分别为(1.73±0.59)%和(0.46±0.07)%,由此计算得到的拉萨地块中新世火山活动和羌塘地块渐新世火山活动CO2释放通量分别为(0.252±0.091) Pg·a-1和(0.012±0.002) Pg·a-1。羌塘地块较低的渐新世火山CO2释放通量与同时期大气CO2浓度快速下降特征一致;拉萨地块较高的中新世火山CO2释放通量可能对中中新世气候适宜期的大气CO2浓度峰值有一定贡献。青藏高原火山活动深部碳释放通量与大气CO2浓度的近似同步变化特征表明,印度-亚洲大陆碰撞和俯冲导致的火山活动是新生代大气碳收支的重要影响因素。
中图分类号:
谢显刚, 赵文斌, 张茂亮, 郭正府, 徐胜. 青藏高原典型时段火山活动碳释放规模及其环境意义[J]. 地学前缘, 2025, 32(3): 350-361.
XIE Xiangang, ZHAO Wenbin, ZHANG Maoliang, GUO Zhengfu, XU Sheng. Carbon output fluxes of volcanic activity during typical geological periods on the Tibetan Plateau and related environmental implications[J]. Earth Science Frontiers, 2025, 32(3): 350-361.
图1 青藏高原碰撞后火山岩分布图 KS—昆仑缝合带;JS—金沙江缝合带;LS—龙木措双湖缝合带;BNS—班公怒江缝合带;ITS—雅鲁藏布江缝合带;STD—藏南拆离断层;MCT—喜马拉雅主中央逆冲断裂;MBT—主边界逆冲断层。
Fig.1 Map showing the distribution of post-collisional volcanic rocks on the Tibetan Plateau
火山岩区 | 样品编号 | 斑晶 | ν-/(cm-1) | ν+/(cm-1) | Δx/ (cm-1) | ρCO2/ (g·cm-3) | Vvap/ (μm-3) | VMI/ (μm-3) | Vmelt/ (μm-3) |
---|---|---|---|---|---|---|---|---|---|
查孜 | CHZ1303-2-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.24 | 45.9 | 240.6 | 194.7 |
CHZ1303-2-1-2 | 辉石 | 1 283.0 | 1 386.4 | 103.4 | 0.21 | 28.3 | 207.6 | 179.3 | |
CHZ1303-2-1-3 | 辉石 | 1 283.3 | 1 386.7 | 103.4 | 0.20 | 9.2 | 88.5 | 79.3 | |
CHZ1303-2-1-4 | 辉石 | 1 283.2 | 1 386.6 | 103.3 | 0.17 | 4.1 | 47.5 | 43.5 | |
CHZ1303-3-1-1 | 辉石 | 1 282.5 | 1 386.2 | 103.7 | 0.30 | 930.1 | 1 284.1 | 354.0 | |
CHZ1301-1-1-1 | 辉石 | 1 282.9 | 1 386.4 | 103.4 | 0.21 | 97.9 | 647.3 | 549.4 | |
CHZ1301-1-1-2 | 辉石 | 1 282.9 | 1 386.3 | 103.4 | 0.19 | 118.7 | 216.1 | 97.4 | |
CHZ1306-1-1-1 | 辉石 | 1 283.7 | 1 386.9 | 103.2 | 0.12 | 12 361.2 | 50 637.6 | 38 276.4 | |
CHZ1307-1-1-1 | 辉石 | 1 283.4 | 1 386.7 | 103.4 | 0.19 | 474.4 | 2 080.5 | 1 606.1 | |
CHZ1307-1-1-2 | 辉石 | 1 283.4 | 1 386.8 | 103.4 | 0.19 | 48.7 | 326.6 | 277.9 | |
CHZ1307-1-2-1 | 辉石 | 1 283.4 | 1 386.7 | 103.4 | 0.18 | 241.6 | 510.8 | 269.2 | |
CHZ1307-2-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.24 | 341.0 | 2 978.1 | 2 637.1 | |
CHZ1307-2-1-2 | 辉石 | 1 284.2 | 1 387.3 | 103.1 | 0.11 | 710.3 | 5 133.3 | 4 423.0 | |
米巴勒 | MBL1904-1-1-1 | 辉石 | 1 284.4 | 1 387.6 | 103.2 | 0.14 | 61.6 | 641.2 | 579.5 |
MBL1908-2-1-1 | 辉石 | 1 284.1 | 1 387.1 | 103.0 | 0.05 | 895.5 | 3 521.8 | 2 626.3 | |
MBL1908-2-2-1 | 辉石 | 1 283.7 | 1 386.8 | 103.1 | 0.09 | 1 434.9 | 25 828.6 | 24 393.7 | |
MBL1908-2-2-2 | 辉石 | 1 283.4 | 1 386.5 | 103.1 | 0.10 | 1 653.4 | 3 290.2 | 1 636.8 | |
MBL1908-2-2-3 | 辉石 | 1 283.6 | 1 386.8 | 103.2 | 0.13 | 1 334.1 | 17 619.3 | 16 285.1 | |
依布茶卡 | YBCK1302-1-1-1 | 辉石 | 1 282.8 | 1 386.4 | 103.6 | 0.28 | 1156.7 | 31 103.7 | 29 947.0 |
YBCK1302-1-1-2 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.22 | 25.9 | 445.1 | 419.2 | |
YBCK1302-1-2-1 | 辉石 | 1 283.2 | 1 386.7 | 103.5 | 0.23 | 103.9 | 2 293.6 | 2 189.7 | |
YBCK1302-2-1-1 | 辉石 | 1 283.3 | 1 386.7 | 103.4 | 0.18 | 141.1 | 1 637.3 | 1 496.2 | |
YBCK1302-2-2-1 | 辉石 | 1 283.7 | 1 386.9 | 103.2 | 0.11 | 743.6 | 5 605.6 | 4 862.0 | |
YBCK1302-3-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.22 | 107.0 | 736.9 | 629.9 | |
YBCK1302-3-2-1 | 辉石 | 1 282.8 | 1 386.2 | 103.4 | 0.21 | 360.3 | 4 481.7 | 4 121.4 | |
YBCK1313-1-1-1 | 辉石 | 1 283.1 | 1 386.6 | 103.5 | 0.21 | 111.5 | 2 279.3 | 2 167.9 | |
YBCK1313-2-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.23 | 147.5 | 3 851.5 | 3 704.0 | |
YBCK1313-3-1-1 | 辉石 | 1 282.9 | 1 386.4 | 103.5 | 0.23 | 53.9 | 3 112.0 | 3 058.2 | |
YBCK1313-3-2-1 | 辉石 | 1 282.8 | 1 386.3 | 103.5 | 0.24 | 11.5 | 404.1 | 392.6 | |
俄久买马 | EJU1303-1-1-1 | 辉石 | 1 283.0 | 1 386.6 | 103.6 | 0.27 | 27.8 | 587.1 | 559.3 |
EJU1303-1-2-1 | 辉石 | 1 282.8 | 1 386.2 | 103.4 | 0.21 | 17.2 | 241.1 | 223.8 | |
EJU1303-2-1-1 | 辉石 | 1 282.8 | 1 386.3 | 103.5 | 0.22 | 33.5 | 1 031.8 | 998.3 | |
鱼鳞山 | YLS30-1-1-1 | 辉石 | 1 284.2 | 1 387.3 | 103.1 | 0.09 | 2 080.1 | 0.0 | 0.0 |
YLS30-1-2-1 | 辉石 | 1 284.4 | 1 387.3 | 103.0 | 0.02 | 312.0 | 0.0 | 0.0 | |
YLS30-1-3-1 | 辉石 | 1 283.8 | 1 386.8 | 103.1 | 0.06 | 426.5 | 864.1 | 437.6 | |
YLS30-2-1-1 | 辉石 | 1 283.4 | 1 386.7 | 103.3 | 0.17 | 181.0 | 0.0 | 0.0 |
表1 研究区火山岩熔体包裹体拉曼光谱分析结果
Table 1 Raman spectrometric analysis of volcanic melt inclusions in the study area
火山岩区 | 样品编号 | 斑晶 | ν-/(cm-1) | ν+/(cm-1) | Δx/ (cm-1) | ρCO2/ (g·cm-3) | Vvap/ (μm-3) | VMI/ (μm-3) | Vmelt/ (μm-3) |
---|---|---|---|---|---|---|---|---|---|
查孜 | CHZ1303-2-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.24 | 45.9 | 240.6 | 194.7 |
CHZ1303-2-1-2 | 辉石 | 1 283.0 | 1 386.4 | 103.4 | 0.21 | 28.3 | 207.6 | 179.3 | |
CHZ1303-2-1-3 | 辉石 | 1 283.3 | 1 386.7 | 103.4 | 0.20 | 9.2 | 88.5 | 79.3 | |
CHZ1303-2-1-4 | 辉石 | 1 283.2 | 1 386.6 | 103.3 | 0.17 | 4.1 | 47.5 | 43.5 | |
CHZ1303-3-1-1 | 辉石 | 1 282.5 | 1 386.2 | 103.7 | 0.30 | 930.1 | 1 284.1 | 354.0 | |
CHZ1301-1-1-1 | 辉石 | 1 282.9 | 1 386.4 | 103.4 | 0.21 | 97.9 | 647.3 | 549.4 | |
CHZ1301-1-1-2 | 辉石 | 1 282.9 | 1 386.3 | 103.4 | 0.19 | 118.7 | 216.1 | 97.4 | |
CHZ1306-1-1-1 | 辉石 | 1 283.7 | 1 386.9 | 103.2 | 0.12 | 12 361.2 | 50 637.6 | 38 276.4 | |
CHZ1307-1-1-1 | 辉石 | 1 283.4 | 1 386.7 | 103.4 | 0.19 | 474.4 | 2 080.5 | 1 606.1 | |
CHZ1307-1-1-2 | 辉石 | 1 283.4 | 1 386.8 | 103.4 | 0.19 | 48.7 | 326.6 | 277.9 | |
CHZ1307-1-2-1 | 辉石 | 1 283.4 | 1 386.7 | 103.4 | 0.18 | 241.6 | 510.8 | 269.2 | |
CHZ1307-2-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.24 | 341.0 | 2 978.1 | 2 637.1 | |
CHZ1307-2-1-2 | 辉石 | 1 284.2 | 1 387.3 | 103.1 | 0.11 | 710.3 | 5 133.3 | 4 423.0 | |
米巴勒 | MBL1904-1-1-1 | 辉石 | 1 284.4 | 1 387.6 | 103.2 | 0.14 | 61.6 | 641.2 | 579.5 |
MBL1908-2-1-1 | 辉石 | 1 284.1 | 1 387.1 | 103.0 | 0.05 | 895.5 | 3 521.8 | 2 626.3 | |
MBL1908-2-2-1 | 辉石 | 1 283.7 | 1 386.8 | 103.1 | 0.09 | 1 434.9 | 25 828.6 | 24 393.7 | |
MBL1908-2-2-2 | 辉石 | 1 283.4 | 1 386.5 | 103.1 | 0.10 | 1 653.4 | 3 290.2 | 1 636.8 | |
MBL1908-2-2-3 | 辉石 | 1 283.6 | 1 386.8 | 103.2 | 0.13 | 1 334.1 | 17 619.3 | 16 285.1 | |
依布茶卡 | YBCK1302-1-1-1 | 辉石 | 1 282.8 | 1 386.4 | 103.6 | 0.28 | 1156.7 | 31 103.7 | 29 947.0 |
YBCK1302-1-1-2 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.22 | 25.9 | 445.1 | 419.2 | |
YBCK1302-1-2-1 | 辉石 | 1 283.2 | 1 386.7 | 103.5 | 0.23 | 103.9 | 2 293.6 | 2 189.7 | |
YBCK1302-2-1-1 | 辉石 | 1 283.3 | 1 386.7 | 103.4 | 0.18 | 141.1 | 1 637.3 | 1 496.2 | |
YBCK1302-2-2-1 | 辉石 | 1 283.7 | 1 386.9 | 103.2 | 0.11 | 743.6 | 5 605.6 | 4 862.0 | |
YBCK1302-3-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.22 | 107.0 | 736.9 | 629.9 | |
YBCK1302-3-2-1 | 辉石 | 1 282.8 | 1 386.2 | 103.4 | 0.21 | 360.3 | 4 481.7 | 4 121.4 | |
YBCK1313-1-1-1 | 辉石 | 1 283.1 | 1 386.6 | 103.5 | 0.21 | 111.5 | 2 279.3 | 2 167.9 | |
YBCK1313-2-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.23 | 147.5 | 3 851.5 | 3 704.0 | |
YBCK1313-3-1-1 | 辉石 | 1 282.9 | 1 386.4 | 103.5 | 0.23 | 53.9 | 3 112.0 | 3 058.2 | |
YBCK1313-3-2-1 | 辉石 | 1 282.8 | 1 386.3 | 103.5 | 0.24 | 11.5 | 404.1 | 392.6 | |
俄久买马 | EJU1303-1-1-1 | 辉石 | 1 283.0 | 1 386.6 | 103.6 | 0.27 | 27.8 | 587.1 | 559.3 |
EJU1303-1-2-1 | 辉石 | 1 282.8 | 1 386.2 | 103.4 | 0.21 | 17.2 | 241.1 | 223.8 | |
EJU1303-2-1-1 | 辉石 | 1 282.8 | 1 386.3 | 103.5 | 0.22 | 33.5 | 1 031.8 | 998.3 | |
鱼鳞山 | YLS30-1-1-1 | 辉石 | 1 284.2 | 1 387.3 | 103.1 | 0.09 | 2 080.1 | 0.0 | 0.0 |
YLS30-1-2-1 | 辉石 | 1 284.4 | 1 387.3 | 103.0 | 0.02 | 312.0 | 0.0 | 0.0 | |
YLS30-1-3-1 | 辉石 | 1 283.8 | 1 386.8 | 103.1 | 0.06 | 426.5 | 864.1 | 437.6 | |
YLS30-2-1-1 | 辉石 | 1 283.4 | 1 386.7 | 103.3 | 0.17 | 181.0 | 0.0 | 0.0 |
火山岩区 | 样品编号 | ρCO2/ (g·cm-3)* | Vvap/ (μm-3) | Vmelt/ (μm-3) | w(CO2)/ 10-6 | w(CO2)/ % |
---|---|---|---|---|---|---|
查孜 | CHZ1303-2-1-1 | 0.24 | 45.9 | 194.7 | 20 432.6 | 2.04 |
CHZ1303-2-1-2 | 0.21 | 28.3 | 179.3 | 12 188.0 | 1.22 | |
CHZ1301-1-1-1 | 0.21 | 97.9 | 549.4 | 13 780.6 | 1.38 | |
CHZ1306-1-1-1 | 0.12 | 12 361.2 | 38 276.4 | 14 058.3 | 1.41 | |
CHZ1307-1-1-1 | 0.19 | 474.4 | 1 606.1 | 19 767.6 | 1.98 | |
CHZ1307-1-1-2 | 0.19 | 48.7 | 277.9 | 11 841.0 | 1.18 | |
CHZ1307-2-1-2 | 0.11 | 710.3 | 4 423.0 | 6 474.3 | 0.65 | |
平均值 | 1.41 | |||||
米巴勒 | MBL1904-1-1-1 | 0.14 | 61.6 | 579.5 | 5 544.3 | 0.55 |
MBL1908-2-2-1 | 0.09 | 1 434.9 | 24 393.7 | 2 028.4 | 0.20 | |
MBL1908-2-2-3 | 0.13 | 1 334.1 | 16 285.1 | 3 953.4 | 0.40 | |
平均值 | 0.38 | |||||
依布茶卡 | YBCK1302-1-1-1 | 0.28 | 1 156.7 | 29 947.0 | 3 886.4 | 0.39 |
YBCK1302-1-1-2 | 0.22 | 25.9 | 419.2 | 4 965.7 | 0.50 | |
YBCK1302-1-2-1 | 0.23 | 103.9 | 2 189.7 | 3 905.7 | 0.39 | |
YBCK1302-2-1-1 | 0.18 | 141.1 | 1 496.2 | 6 349.3 | 0.63 | |
YBCK1302-3-2-1 | 0.21 | 360.3 | 4 121.4 | 6 622.5 | 0.66 | |
YBCK1313-1-1-1 | 0.21 | 111.5 | 2 167.9 | 4 031.8 | 0.40 | |
YBCK1313-2-1-1 | 0.23 | 147.5 | 3 704.0 | 3 399.8 | 0.34 | |
平均值 | 0.47 | |||||
俄久买马 | EJU1303-1-1-1 | 0.27 | 27.8 | 559.3 | 4 819.1 | 0.48 |
EJU1303-1-2-1 | 0.21 | 17.2 | 223.8 | 5 789.2 | 0.58 | |
EJU1303-2-1-1 | 0.22 | 33.5 | 998.3 | 2 674.7 | 0.27 | |
平均值 | 0.44 | |||||
鱼鳞山 | YLS30-1-3-1 | 0.06 | 426.5 | 437.6 | 21 959.7 | 2.20 |
表2 研究区火山岩样品熔体包裹体CO2浓度
Table 2 CO2 concentration in melt inclusion samples in the study area
火山岩区 | 样品编号 | ρCO2/ (g·cm-3)* | Vvap/ (μm-3) | Vmelt/ (μm-3) | w(CO2)/ 10-6 | w(CO2)/ % |
---|---|---|---|---|---|---|
查孜 | CHZ1303-2-1-1 | 0.24 | 45.9 | 194.7 | 20 432.6 | 2.04 |
CHZ1303-2-1-2 | 0.21 | 28.3 | 179.3 | 12 188.0 | 1.22 | |
CHZ1301-1-1-1 | 0.21 | 97.9 | 549.4 | 13 780.6 | 1.38 | |
CHZ1306-1-1-1 | 0.12 | 12 361.2 | 38 276.4 | 14 058.3 | 1.41 | |
CHZ1307-1-1-1 | 0.19 | 474.4 | 1 606.1 | 19 767.6 | 1.98 | |
CHZ1307-1-1-2 | 0.19 | 48.7 | 277.9 | 11 841.0 | 1.18 | |
CHZ1307-2-1-2 | 0.11 | 710.3 | 4 423.0 | 6 474.3 | 0.65 | |
平均值 | 1.41 | |||||
米巴勒 | MBL1904-1-1-1 | 0.14 | 61.6 | 579.5 | 5 544.3 | 0.55 |
MBL1908-2-2-1 | 0.09 | 1 434.9 | 24 393.7 | 2 028.4 | 0.20 | |
MBL1908-2-2-3 | 0.13 | 1 334.1 | 16 285.1 | 3 953.4 | 0.40 | |
平均值 | 0.38 | |||||
依布茶卡 | YBCK1302-1-1-1 | 0.28 | 1 156.7 | 29 947.0 | 3 886.4 | 0.39 |
YBCK1302-1-1-2 | 0.22 | 25.9 | 419.2 | 4 965.7 | 0.50 | |
YBCK1302-1-2-1 | 0.23 | 103.9 | 2 189.7 | 3 905.7 | 0.39 | |
YBCK1302-2-1-1 | 0.18 | 141.1 | 1 496.2 | 6 349.3 | 0.63 | |
YBCK1302-3-2-1 | 0.21 | 360.3 | 4 121.4 | 6 622.5 | 0.66 | |
YBCK1313-1-1-1 | 0.21 | 111.5 | 2 167.9 | 4 031.8 | 0.40 | |
YBCK1313-2-1-1 | 0.23 | 147.5 | 3 704.0 | 3 399.8 | 0.34 | |
平均值 | 0.47 | |||||
俄久买马 | EJU1303-1-1-1 | 0.27 | 27.8 | 559.3 | 4 819.1 | 0.48 |
EJU1303-1-2-1 | 0.21 | 17.2 | 223.8 | 5 789.2 | 0.58 | |
EJU1303-2-1-1 | 0.22 | 33.5 | 998.3 | 2 674.7 | 0.27 | |
平均值 | 0.44 | |||||
鱼鳞山 | YLS30-1-3-1 | 0.06 | 426.5 | 437.6 | 21 959.7 | 2.20 |
所属地块 | 火山岩区 | 纬度 °N | 经度 °E | 面积/ km2 | 厚度/ m | 体积/ km3 | 年龄/ Ma | 火山岩 类型 | 数据 来源 |
---|---|---|---|---|---|---|---|---|---|
拉萨地块 | 狮泉河 | 32.5 | 80.2 | >20 | n.d. | n.d. | 24.0~21.2 | 富钾 | [ |
查加寺 | 32.05 | 81.26 | >100 | n.d. | n.d. | 24.0~23.9 | 富钾 | [ | |
革吉 | 32.2 | 81.25 | 200 | >2 000 | 400 | 25.4~23.3 | 富钾 | [ | |
米巴勒* | 30.8 | 86.6 | 20 | 883 | 17.66 | 24.0~21.2 | 富钾 | - | |
孔隆乡 | 30.1 | 86 | 81 | n.d. | n.d. | 21.4~21.3 | 富钾 | [ | |
雄巴 | 32 | 81.9 | >600 | 190~310 | 120 | 24.1~18.1 | 富钾 | [ | |
学那 | 31.5 | 82.35 | <1 | n.d. | n.d. | 18.5~15.5 | 富钾 | [ | |
赛利普* | 31.35 | 82.75 | 188 | 1~100 | 9.4 | 18.5~15.5 | 富钾 | - | |
布嘎寺* | 31.5 | 84.4 | >400 | >300 | 120 | 16.2~15.6 | 富钾 | - | |
麦嘎 | 30.82 | 84.43 | 1 | 100 | 0.1 | 17.4~16.1 | 富钾 | [ | |
文部 | 31.1 | 86.5 | <1 | n.d. | n.d. | 22.9~17.8 | 富钾 | [ | |
亚仟 | 30.97 | 86.44 | 48 | n.d. | n.d. | 14.2~13.4 | 富钾 | [ | |
仪仟 | 30.75 | 86.7 | 10 | n.d. | n.d. | 13.5~11.2 | 富钾 | [ | |
查孜* | 30 | 86.5 | 300 | 517~883 | 150 | 13.3~8.2 | 富钾 | - | |
Pabbai Zong | 29.32 | 87 | <1 | n.d. | n.d. | 18.3~13.3 | 富钾 | [ | |
南木林 | 29.4 | 89.4 | >10 | n.d. | n.d. | 15.3~10.9 | 富钾 | [ | |
麻江 | 29.7 | 89.9 | 0.04 | >80 | 0.003 2 | 15.8~10.1 | 富钾 | [ | |
羊应 | 29.6 | 90.3 | 10 | 800 | 8 | 11.4~10.3 | 富钾 | [ | |
羌塘地块 | 松西 | 34.41 | 80.28 | n.d. | 674 | n.d. | 36.7~32.7 | 富钠 | [ |
走沟茶错 | 33.12 | 85.11 | 120 | n.d. | n.d. | 34.8~30.5 | 富钠 | [ | |
那丁错 | 32.61 | 85.4 | 700 | n.d. | n.d. | 36.2~34.2 | 富钠 | [ | |
依布茶卡 | 32.98 | 86.65 | 3 | >20 | 0.06 | 30.4~27.3 | 富钠 | [ | |
俄久买马* | 32.22 | 86.81 | 15 | >300 | 4.5 | 34.3~34.2 | 富钠 | - | |
峰火山 | 34.97 | 92.6 | 10 | 70 | 0.7 | 27.8~27.5 | 富钾 | [ | |
类乌齐 | 31.38 | 96.54 | 0.4 | 2 | 0.000 8 | 30.54 | 富钾 | [ | |
鱼鳞山 | 33.85 | 83.37 | 150 | >65 | 9.75 | 29.3~27.8 | 富钾 | [ | |
戈木错 | 33.99 | 85.5 | 40 | 200 | 8 | 30.6~29.8 | 富钠 | [ | |
巴毛琼宗 | 34.77 | 87.18 | 300 | 50~300 | 15 | 33.9~24.4 | 富钠 | [ |
表3 拉萨地块中新世火山岩与羌塘地块渐新世火山岩相关参数
Table 3 Volcanic rock parameters of the Lhasa and Qiangtang block
所属地块 | 火山岩区 | 纬度 °N | 经度 °E | 面积/ km2 | 厚度/ m | 体积/ km3 | 年龄/ Ma | 火山岩 类型 | 数据 来源 |
---|---|---|---|---|---|---|---|---|---|
拉萨地块 | 狮泉河 | 32.5 | 80.2 | >20 | n.d. | n.d. | 24.0~21.2 | 富钾 | [ |
查加寺 | 32.05 | 81.26 | >100 | n.d. | n.d. | 24.0~23.9 | 富钾 | [ | |
革吉 | 32.2 | 81.25 | 200 | >2 000 | 400 | 25.4~23.3 | 富钾 | [ | |
米巴勒* | 30.8 | 86.6 | 20 | 883 | 17.66 | 24.0~21.2 | 富钾 | - | |
孔隆乡 | 30.1 | 86 | 81 | n.d. | n.d. | 21.4~21.3 | 富钾 | [ | |
雄巴 | 32 | 81.9 | >600 | 190~310 | 120 | 24.1~18.1 | 富钾 | [ | |
学那 | 31.5 | 82.35 | <1 | n.d. | n.d. | 18.5~15.5 | 富钾 | [ | |
赛利普* | 31.35 | 82.75 | 188 | 1~100 | 9.4 | 18.5~15.5 | 富钾 | - | |
布嘎寺* | 31.5 | 84.4 | >400 | >300 | 120 | 16.2~15.6 | 富钾 | - | |
麦嘎 | 30.82 | 84.43 | 1 | 100 | 0.1 | 17.4~16.1 | 富钾 | [ | |
文部 | 31.1 | 86.5 | <1 | n.d. | n.d. | 22.9~17.8 | 富钾 | [ | |
亚仟 | 30.97 | 86.44 | 48 | n.d. | n.d. | 14.2~13.4 | 富钾 | [ | |
仪仟 | 30.75 | 86.7 | 10 | n.d. | n.d. | 13.5~11.2 | 富钾 | [ | |
查孜* | 30 | 86.5 | 300 | 517~883 | 150 | 13.3~8.2 | 富钾 | - | |
Pabbai Zong | 29.32 | 87 | <1 | n.d. | n.d. | 18.3~13.3 | 富钾 | [ | |
南木林 | 29.4 | 89.4 | >10 | n.d. | n.d. | 15.3~10.9 | 富钾 | [ | |
麻江 | 29.7 | 89.9 | 0.04 | >80 | 0.003 2 | 15.8~10.1 | 富钾 | [ | |
羊应 | 29.6 | 90.3 | 10 | 800 | 8 | 11.4~10.3 | 富钾 | [ | |
羌塘地块 | 松西 | 34.41 | 80.28 | n.d. | 674 | n.d. | 36.7~32.7 | 富钠 | [ |
走沟茶错 | 33.12 | 85.11 | 120 | n.d. | n.d. | 34.8~30.5 | 富钠 | [ | |
那丁错 | 32.61 | 85.4 | 700 | n.d. | n.d. | 36.2~34.2 | 富钠 | [ | |
依布茶卡 | 32.98 | 86.65 | 3 | >20 | 0.06 | 30.4~27.3 | 富钠 | [ | |
俄久买马* | 32.22 | 86.81 | 15 | >300 | 4.5 | 34.3~34.2 | 富钠 | - | |
峰火山 | 34.97 | 92.6 | 10 | 70 | 0.7 | 27.8~27.5 | 富钾 | [ | |
类乌齐 | 31.38 | 96.54 | 0.4 | 2 | 0.000 8 | 30.54 | 富钾 | [ | |
鱼鳞山 | 33.85 | 83.37 | 150 | >65 | 9.75 | 29.3~27.8 | 富钾 | [ | |
戈木错 | 33.99 | 85.5 | 40 | 200 | 8 | 30.6~29.8 | 富钠 | [ | |
巴毛琼宗 | 34.77 | 87.18 | 300 | 50~300 | 15 | 33.9~24.4 | 富钠 | [ |
图4 青藏高原碰撞后火山岩CO2释放通量特征(大气CO2浓度数据引自文献[55]) 古新世—始新世极热事件(PETM);始新世早期气候适宜期(EECO);中始新世气候适宜期(MECO);始新世—渐新世转变期(EOT);中中新世气候适宜期(MMCO);北半球冰川期(NHG)。
Fig.4 Characteristics of CO2 fluxes from post-collisional volcanic rocks on the Tibetan Plateau. Modified after [55]
[1] | GUO Z, WILSON M, DINGWELL D B, et al. India-Asia collision as a driver of atmospheric CO2 in the Cenozoic[J]. Nature Communications, 2021, 12(1): 3891. |
[2] | GUO Z, WILSON M. Late Oligocene-early Miocene transformation of postcollisional magmatism in Tibet[J]. Geology, 2019, 47(8): 776-780. |
[3] | ZHAO W, GUO Z, ZHENG G, et al. Subducting Indian lithosphere controls the deep carbon emission in Lhasa Terrane southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(7): e2022JB024250. |
[4] | ZHANG S H, JI W Q, CHEN H B, et al. Linking rapid eruption of the Linzizong volcanic rocks and Early Eocene Climatic Optimum (EECO): constraints from the Pana formation in the Linzhou and Pangduo basins, southern Tibet[J]. Lithos, 2023, 446-447. |
[5] | DING L, SPICER R A, YANG J, et al. Quantifying the rise of the Himalaya orogen and implications for the south asian monsoon[J]. Geology, 2017, 45(3): 215-218. |
[6] | DING L, MAKSATBEK S, CAI F, et al. Processes of initial collision and suturing between India and Asia[J]. Science China Earth Sciences, 2017, 60(4): 635-651. |
[7] | PARSONS A J, HOSSEINI K, PALIN R M, et al. Geological, geophysical and plate kinematic constraints for models of the India-Asia collision and the post-Triassic central tethys oceans[J]. Earth-Science Reviews, 2020, 208: 103084. |
[8] | HU X, GARZANTI E, WANG J, et al. The timing of India-Asia collision onset-facts, theories, controversies[J]. Earth-Science Reviews, 2016, 160: 264-299. |
[9] | TAMBURELLO G, PONDRELLI S, CHIODINI G, et al. Global-scale control of extensional tectonics on CO2 earth degassing[J]. Nature Communications, 2018, 9(1): 4608. |
[10] | SOBOLEV A V, DANYUSHEVSKY L V. Petrology and geochemistry of boninites from the north termination of the tonga trench: constraints on the generation conditions of primary high-Ca boninite magmas[J]. Journal of Petrology, 1994, 35(5): 1183-1211. |
[11] | SOBOLEV A V, CHAUSSIDON M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle[J]. Earth and Planetary Science Letters, 1996, 137(1): 45-55. |
[12] | HAURI E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions[J]. Chemical Geology, 2002, 183(1): 115-141. |
[13] | KENT A J R. Melt inclusions in basaltic and related volcanic rocks[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 273-331. |
[14] | CANNATELLI C, DOHERTY A L, ESPOSITO R, et al. Understanding a volcano through a droplet: a melt inclusion approach[J]. Journal of Geochemical Exploration, 2016, 171: 4-19. |
[15] | MIRONOV N, PORTNYAGIN M, BOTCHARNIKOV R, et al. Quantification of the CO2 budget and H2O-CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure[J]. Earth and Planetary Science Letters, 2015, 425: 1-11. |
[16] | HARTLEY M E, MACLENNAN J, EDMONDS M, et al. Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions[J]. Earth and Planetary Science Letters, 2014, 393: 120-131. |
[17] | MOORE L R, GAZEL E, TUOHY R, et al. Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets[J]. American Mineralogist, 2015, 100(4): 806-823. |
[18] | BLACK B A, GIBSON S A. Deep carbon and the life cycle of large igneous provinces[J]. Elements, 2019, 15(5): 319-324. |
[19] | CAPRIOLO M, MARZOLI A, ARADI L E, et al. Deep CO2 in the end-Triassic central atlantic magmatic province[J]. Nature Communications, 2020, 11(1): 1670. |
[20] | HERNANDEZ NAVA A, BLACK B A, GIBSON S A, et al. Reconciling early Deccan Traps CO2 outgassing and pre-KPB global climate[J]. Proceedings of the National Academy of Sciences, 2021, 118(14): e2007797118. |
[21] | 谢显刚, 赵文斌, 李晓光, 等. 拉萨地块西部碰撞后富钾火山作用CO2释放规模初探[J]. 岩石学报, 2024, 40(7): 2225-2237. |
[22] | QIN Z, DU Q, ZHANG G, et al. Origin and tectonic significance of Eocene sodic lamprophyres in the southern Qiangtang orogen, Tibet[J]. Journal of Asian Earth Sciences, 2023, 250: 105629. |
[23] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. |
[24] | 李才, 翟庆国, 陈文, 等. 青藏高原羌塘中部榴辉岩Ar-Ar定年[J]. 岩石学报, 2006, 22(12): 2843-2849. |
[25] | ZHU D C, ZHAO Z D, NIU Y, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454. |
[26] | JIANG Q Y, LI C, SU L, et al. Carboniferous arc magmatism in the Qiangtang area, northern Tibet: zircon U-Pb ages, geochemical and Lu-Hf isotopic characteristics, and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 100: 132-144. |
[27] | WANG X, CHOU I M, HU W, et al. Raman spectroscopic measurements of CO2 density: experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations[J]. Geochimica et Cosmochimica Acta, 2011, 75(14): 4080-4093. |
[28] | CHOU I M. Optical cells with fused silica windows for the study of geological fluids[M]. Raman spectroscopy applied to Earth sciences and cultural heritage. 2012: 227-247. |
[29] | DEVITRE C L, ALLISON C M, GAZEL E. A high-precision CO2 densimeter for Raman spectroscopy using a Fluid Density Calibration Apparatus[J]. Chemical Geology, 2021, 584, 120522. |
[30] | FALL A, TATTITCH B, BODNAR R J. Combined microthermometric and Raman spectroscopic technique to determine the salinity of H2O-CO2-NaCl fluid inclusions based on clathrate melting[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 951-964. |
[31] | LAMADRID H M, MOORE L R, MONCADA D, et al. Reassessment of the Raman CO2 densimeter[J]. Chemical Geology, 2017, 450: 210-222. |
[32] | PASSMORE E, MACLENNAN J, FITTON G, et al. Mush disaggregation in basaltic magma chambers: evidence from the ad 1783 laki eruption[J]. Journal of Petrology, 2012, 53(12): 2593-2623. |
[33] | MIRONOV N L, TOBELKO D P, SMIRNOV S Z, et al. Estimation of CO2 Content in the gas phase of melt inclusions using Raman spectroscopy: case study of inclusions in olivine from the Karymsky Volcano (Kamchatka)[J]. Russian Geology and Geophysics, 2020, 61(5/6): 600-610. |
[34] | WIESER P E, LAMADRID H, MACLENNAN J, et al. Reconstructing magma storage depths for the 2018 Kı̄lauean eruption from melt inclusion CO2 Contents: The importance of vapor bubbles[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(2): e2020GC009364. |
[35] | BORGHINI A, NICOLI G, FERRERO S, et al. The role of continental subduction in mantle metasomatism and carbon recycling revealed by melt inclusions in UHP eclogites[J]. Science Advances, 2023, 9(6): eabp9482. |
[36] | ARNAUD N O, VIDAL P, TAPPONNIER P, et al. The high K2O volcanism of northwestern Tibet: geochemistry and tectonic implications[J]. Earth and Planetary Science Letters, 1992, 111(2): 351-367. |
[37] | 胡文洁, 田世洪, 杨竹森, 等. 拉萨地块西段中新世查加寺钾质火山岩岩石成因: 岩石地球化学、年代学和Sr-Nd同位素约束[J]. 矿床地质, 2012, 31(4): 813-830. |
[38] | WANG Q, MCDERMOTT F, XU J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6): 465-468. |
[39] | CHEN J L, XU J F, KANG Z Q, et al. Origin of Cenozoic alkaline potassic volcanic rocks at KonglongXiang, Lhasa terrane, Tibetan Plateau: products of partial melting of a mafic lower-crustal source?[J]. Chemical Geology, 2010, 273(3/4): 286-299. |
[40] | 刘栋等. 青藏高原拉萨地块西部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学[J]. 岩石学报, 2011, 27(7): 2045-2059. |
[41] | MILLER C, SCHUSTER R, KLÖTZLI U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 1999, 40(9): 1399-1424. |
[42] | 丁林, 岳雅慧, 蔡福龙, 等. 西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约[J]. 地质学报, 2006(9): 1252-1261. |
[43] | DING L, KAPP P, ZHONG D, et al. Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44(10): 1833-1865. |
[44] | WILLIAMS H, TURNER S, KELLEY S, et al. Age and composition of dikes in Southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism[J]. Geology, 2001, 29(4): 339-342. |
[45] | ZHOU S, MO X, ZHAO Z, et al. 40Ar/39Ar geochronology of post-collisional volcanism in the middle Gangdese Belt, southern Tibet[J]. Journal of Asian Earth Sciences, 2010, 37(3): 246-258. |
[46] | NOMADE S, RENNE P R, MO X, et al. Miocene volcanism in the Lhasa block, Tibet: spatial trends and geodynamic implications[J]. Earth and Planetary Science Letters, 2004, 221(1/2/3/4): 227-243. |
[47] | 钟华明, 吕达, 童劲松, 等. 羌塘西北部松西地区新生代火山岩岩石地球化学特征及成因讨论[J]. 岩石矿物学杂志, 2009, 28(4): 339-348. |
[48] | 刘建峰, 迟效国, 赵秀羽, 等. 青藏高原北部新生代走构油茶错、纳丁错火山岩年代学、地球化学特征及其构造意义[J]. 岩石学报, 2009, 25(12): 3259-3274. |
[49] | DING L, KAPP P, YUE Y, et al. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet[J]. Earth and Planetary Science Letters, 2007, 254(1/2): 28-38. |
[50] | ROGER F, TAPPONNIER P, ARNAUD N, et al. An Eocene magmatic belt across central Tibet: mantle subduction triggered by the Indian collision?[J]. Terra Nova, 2000, 12(3): 102-108. |
[51] | 邱军强, 强巴扎西. 藏东类乌齐地区古近纪钾质火山岩的发现及特征[J]. 地质学刊, 2011, 35(3): 241-246. |
[52] | DING L, ZHOU Y, ZHANG J, et al. Geologic relationships and geochronology of the Cenozoic volcanoes and interbedded weathered mantles of Yulinshan in Qiangtang, North Tibet[J]. Chinese Science Bulletin, 2000, 45(24): 2214-2220. |
[53] | 翟庆国, 李才, 王军, 等. 藏北羌塘戈木错北部新生代钾质火山岩40Ar/39Ar定年[J]. 地质通报, 2009, 28(9): 1221-1228. |
[54] | 李佑国, 马润则, 伊海生, 等. 藏北火车头山新生代火山岩的岩石特征与时代[J]. 成都理工大学学报(自然科学版), 2005(5): 441-446. |
[55] | HÖNISCH B, ROYER D L, BREECKER D O, et al. Toward a Cenozoic history of atmospheric CO2[J]. Science, 2023, 382(6675): 1-10. |
[56] | LIU W, ZHANG M, LIU Y, et al. Massive crustal carbon mobilization and emission driven by India underthrusting Asia[J]. Communications Earth & Environment, 2024, 5(1): 271. |
[1] | 崔灏, 韦刚健. 青藏高原周缘始新世—渐新世气候转换期风化演变及其对全球及区域气候环境变化的响应[J]. 地学前缘, 2025, 32(3): 274-287. |
[2] | 曹晨晞, 张茂亮, 王立胜, 王学锋, 段武辉, 徐胜. 藏南活动断裂带第四纪CO2释放初探:来自钙华年代学与地球化学的约束[J]. 地学前缘, 2025, 32(3): 334-349. |
[3] | 刘晓惠, 刘一珉, 丁林, 郭晓玉, 黄兴富, 李蕙琳, 高锐. 中拉萨地体当惹雍措锆石微量元素特征及其对地壳厚度演化的指示[J]. 地学前缘, 2025, 32(1): 343-366. |
[4] | 刘玲霞, 路睿, 谢文苹, 刘博, 王亚茹, 姚海慧, 蔺文静. 青藏高原东北部温泉分布及水文地球化学特征[J]. 地学前缘, 2024, 31(6): 173-195. |
[5] | 孙浩然, 豆佳乐, 李南, 吴鹏, 杜聪, 段先哲. 基于随机模拟的火山CO2释放通量预测研究:以意大利埃特纳火山为例[J]. 地学前缘, 2024, 31(4): 429-437. |
[6] | 刘德民, 王杰, 姜淮, 赵悦, 郭铁鹰, 杨巍然. 青藏高原形成演化动力机制及其远程效应[J]. 地学前缘, 2024, 31(1): 154-169. |
[7] | 谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕. 小小地质微生物演绎跨圈层的相互作用[J]. 地学前缘, 2024, 31(1): 446-454. |
[8] | 程永志, 高锐, 卢占武, 李文辉, 王光文, 陈司, 吴国炜, 蔡玉国. 青藏高原东北缘祁连造山带东段深部结构及其动力学过程[J]. 地学前缘, 2023, 30(5): 314-333. |
[9] | 张进, 张北航, 赵衡, 云龙, 曲军峰, 王振义, 杨亚琦, 赵硕. 北山-阿拉善晚新生代变形的特征与机制[J]. 地学前缘, 2023, 30(5): 334-357. |
[10] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[11] | 仝霄飞, 徐啸, 郭晓玉, 李春森, 向波, 余嘉豪, 罗旭聪, 袁梓昭, 林燕琪, 时宏城. 接收函数成像揭示东昆仑断裂带及其周缘地壳结构[J]. 地学前缘, 2023, 30(4): 270-282. |
[12] | 刘晓宇, 杨文采, 陈召曦, 瞿辰, 于常青. 青藏高原东部地块的属性与演化[J]. 地学前缘, 2023, 30(3): 233-241. |
[13] | 吴晨, 陈宣华, 丁林. 祁连造山带构造演化与新生代变形历史[J]. 地学前缘, 2023, 30(3): 262-281. |
[14] | 贾承造, 陈竹新, 雷永良, 王丽宁, 任荣, 苏楠, 杨庚. 中国中西部褶皱冲断带构造变形机制与结构模型[J]. 地学前缘, 2022, 29(6): 156-174. |
[15] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||