地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 248-262.DOI: 10.13745/j.esf.sf.2025.3.45
收稿日期:
2025-02-07
修回日期:
2025-02-26
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*高彦征(1975—),男,博士,教授,博士生导师,主要从事土壤环境学领域研究。E-mail:作者简介:
丁佳妍(2001—),女,硕士研究生,主要从事土壤环境中有机污染物环境行为与效应研究。E-mail:dingjiayan@stu.njau.edu.cn
基金资助:
DING Jiayan(), LIU Xiangyu, CHEN Xuwen, TANG Lei, GAO Yanzheng*(
)
Received:
2025-02-07
Revised:
2025-02-26
Online:
2025-03-25
Published:
2025-04-20
摘要:
作为一类新污染物,环境中微塑料威胁生态安全和人类健康。微生物降解技术因其经济高效、环境友好的特质而备受关注。近些年来,生物膜、酶工程、基因调控等技术在微塑料微生物降解研究中取得重要进展。生物膜降解微塑料的过程通常包括改变表面特性、浸出添加剂、酶或自由基攻击、渗透分解等阶段。细胞外酶可裂解微塑料的大分子结构,细胞内酶则可改变底物结构并处理代谢产物,两者协同作用构建高效酶系统已成为当前研究的重点之一。基于基因工程技术,以往已培育了多种工程菌株,通过生物信息学挖掘功能基因、解析代谢途径,并结合宏基因组修饰技术,显著提升了微塑料的降解效率。本文综述了微生物降解微塑料的最新研究进展,剖析了微塑料降解功能微生物的物种多样性、降解代谢途径及其机制等。已有研究表明,细菌、真菌和微藻等多种微生物皆具备降解微塑料的能力,其中复合菌群的协同作用尤为显著。细菌主要通过分泌水解酶和氧化酶,切断大分子链或改变塑料化学结构来降解微塑料;真菌则依靠分泌细胞内、外酶及生物表面活性剂,将微塑料分解为单体,菌丝还能增强作用效果;微藻可借助光合作用,分泌毒素、酶以及胞外聚合物促进降解。微塑料的降解通常经历生物劣化、碎片化、同化及矿化四个阶段,不同微生物对聚乙烯、聚苯乙烯等各类微塑料降解效率及机制存在差异。本综述为深入探究微塑料微生物降解原理、进一步发展微生物降解微塑料的方法和技术提供了依据。
中图分类号:
丁佳妍, 刘翔宇, 陈旭文, 汤磊, 高彦征. 环境中微塑料的微生物降解机制与生物强化[J]. 地学前缘, 2025, 32(3): 248-262.
DING Jiayan, LIU Xiangyu, CHEN Xuwen, TANG Lei, GAO Yanzheng. Biodegradation mechanisms and biological enhancement of microplastics in the environment[J]. Earth Science Frontiers, 2025, 32(3): 248-262.
微塑料种类 | 名称 | 细菌菌属 | 温度/℃ | 时间/d | 降解效率/% | 参考文献 |
---|---|---|---|---|---|---|
PE | Bacillus cereus | 室温 | 37.5 | 1.6 | [ | |
Bacillus gottheilli | 室温 | 37.5 | 6.2 | [ | ||
Micrococcus sp. | 30 | 6.61 | [ | |||
Streptomyces sp. | 28 | 18 | 18.26 | [ | ||
Microbacterium paraoxydans | 室温 | 60 | 61.0 | [ | ||
NBRC 15399T | Streptomyces coelicoflavus | 28 | 30 | [ | ||
C208 | Rhodococcus ruber | 30 | 60 | 7.5 | [ | |
strain AJ1 | Streptomyces sp. | 25 | 45 | 5.2 | [ | |
KU5、KU1 KU6、KU8 | Streptomyces sp. | 30 | 180 | 22.58、25.80 30.64、46.16 | [ | |
Pseudomonas sp. | 30 | 180 | 37.09 | [ | ||
Bacillus sp. | 30 | 180 | 30.64 | [ | ||
Staphylococcus sp. | 30 | 180 | 17.89 | [ | ||
YP1 | Bacillus sp. | 30 | 60 | 10.7 | [ | |
YT1 | Enterobacter asburiae | 30 | 60 | 6.1 | [ | |
V1 | Pseudomonas aeruginosa | 120 | 18.21 | [ | ||
V8 | Bacillus subtilis | 120 | 16.12 | [ | ||
V4 | Acinetobactor calcoaceticus | 120 | 15.44 | [ | ||
C2-5 | Pseudomonas putida | 120 | 13.30 | [ | ||
B1 4- | Paracoccus aminophilus | 120 | 11.72 | [ | ||
JB4 | Bacillus amyloliquefaciens | 28 | 60 | 3.2 | [ | |
F1 | Acinetobacter venetianus | 36 | 12.2 | [ | ||
strain B2,2 | Brevibacillus borstelensis | 37 | 112 | 20.28 | [ | |
Bacillus spp. | 37 | 112 | 35.72 | [ | ||
Brevibacillus borstelensis | 37 | 30 | 11.4 | [ | ||
VASB14/WL | Lysinibacillus fusiformis | 25 | 60 | 21.9 | [ | |
IS2、IS3 | Enterobacter sp. | 120 | 21、28 | [ | ||
IS5 | Pantoea sp. | 120 | 24 | [ | ||
MTCC 2445 | Pseudomonas putida | 120 | 15 | [ | ||
MTCC 2643 | Pseudomonas stutzeri | 120 | 11 | [ | ||
MTCC 9447 | Bacillus subtilis | 120 | 13 | [ | ||
PS | Bacillus cereus | 室温 | 37.5 | 7.4 | [ | |
Bacillus gottheilli | 室温 | 37.5 | 5.8 | [ | ||
C208 | Rhodococcus ruber | 60 | 0.8 | [ | ||
PP | Bacillus gottheilli | 室温 | 37.5 | 3.0 | [ | |
strain 27 | Bacillus sp. | 室温 | 40 | 6.4 | [ | |
strain 36 | Rhodococcus sp. | 29 | 37.5 | 6.4 | [ | |
ATCC 11859 | Bacillus pasteurii | 30 | 20.9 | [ | ||
strain 36、ADL36 | Rhodococcus sp. | 40 | 4.0、7.3 | [ | ||
ADL15 | Pseudomonas sp. | 40 | 17.3 | [ | ||
JJY0216 | Lysinibacillus sp. | 26 | 4.0 | [ | ||
AB021189 | Bacillus lentus | 30 | 40 | [ | ||
Staphylococcus sp. | 180 | 9.5 | [ | |||
PET | Bacillus cereus | 室温 | 37.5 | 6.6 | [ | |
Bacillus gottheilli | 室温 | 37.5 | 3.6 | [ | ||
Streptomyces sp. | 28 | 18 | 68.8 | [ | ||
PD6 | Vibrio sp. | 37 | 42 | 35 | [ | |
PVC | EMBL-1 | Klebsiella sp. | 30 | 90 | 19.57 | [ |
Streptomyces albospinus | 25 | 29.55 | [ | |||
BP-4.3 | Altermonas | 60 | 1.76 | [ |
表1 微塑料降解细菌及降解效果
Table 1 Bacteria for microplastics degradation and their degradation effects
微塑料种类 | 名称 | 细菌菌属 | 温度/℃ | 时间/d | 降解效率/% | 参考文献 |
---|---|---|---|---|---|---|
PE | Bacillus cereus | 室温 | 37.5 | 1.6 | [ | |
Bacillus gottheilli | 室温 | 37.5 | 6.2 | [ | ||
Micrococcus sp. | 30 | 6.61 | [ | |||
Streptomyces sp. | 28 | 18 | 18.26 | [ | ||
Microbacterium paraoxydans | 室温 | 60 | 61.0 | [ | ||
NBRC 15399T | Streptomyces coelicoflavus | 28 | 30 | [ | ||
C208 | Rhodococcus ruber | 30 | 60 | 7.5 | [ | |
strain AJ1 | Streptomyces sp. | 25 | 45 | 5.2 | [ | |
KU5、KU1 KU6、KU8 | Streptomyces sp. | 30 | 180 | 22.58、25.80 30.64、46.16 | [ | |
Pseudomonas sp. | 30 | 180 | 37.09 | [ | ||
Bacillus sp. | 30 | 180 | 30.64 | [ | ||
Staphylococcus sp. | 30 | 180 | 17.89 | [ | ||
YP1 | Bacillus sp. | 30 | 60 | 10.7 | [ | |
YT1 | Enterobacter asburiae | 30 | 60 | 6.1 | [ | |
V1 | Pseudomonas aeruginosa | 120 | 18.21 | [ | ||
V8 | Bacillus subtilis | 120 | 16.12 | [ | ||
V4 | Acinetobactor calcoaceticus | 120 | 15.44 | [ | ||
C2-5 | Pseudomonas putida | 120 | 13.30 | [ | ||
B1 4- | Paracoccus aminophilus | 120 | 11.72 | [ | ||
JB4 | Bacillus amyloliquefaciens | 28 | 60 | 3.2 | [ | |
F1 | Acinetobacter venetianus | 36 | 12.2 | [ | ||
strain B2,2 | Brevibacillus borstelensis | 37 | 112 | 20.28 | [ | |
Bacillus spp. | 37 | 112 | 35.72 | [ | ||
Brevibacillus borstelensis | 37 | 30 | 11.4 | [ | ||
VASB14/WL | Lysinibacillus fusiformis | 25 | 60 | 21.9 | [ | |
IS2、IS3 | Enterobacter sp. | 120 | 21、28 | [ | ||
IS5 | Pantoea sp. | 120 | 24 | [ | ||
MTCC 2445 | Pseudomonas putida | 120 | 15 | [ | ||
MTCC 2643 | Pseudomonas stutzeri | 120 | 11 | [ | ||
MTCC 9447 | Bacillus subtilis | 120 | 13 | [ | ||
PS | Bacillus cereus | 室温 | 37.5 | 7.4 | [ | |
Bacillus gottheilli | 室温 | 37.5 | 5.8 | [ | ||
C208 | Rhodococcus ruber | 60 | 0.8 | [ | ||
PP | Bacillus gottheilli | 室温 | 37.5 | 3.0 | [ | |
strain 27 | Bacillus sp. | 室温 | 40 | 6.4 | [ | |
strain 36 | Rhodococcus sp. | 29 | 37.5 | 6.4 | [ | |
ATCC 11859 | Bacillus pasteurii | 30 | 20.9 | [ | ||
strain 36、ADL36 | Rhodococcus sp. | 40 | 4.0、7.3 | [ | ||
ADL15 | Pseudomonas sp. | 40 | 17.3 | [ | ||
JJY0216 | Lysinibacillus sp. | 26 | 4.0 | [ | ||
AB021189 | Bacillus lentus | 30 | 40 | [ | ||
Staphylococcus sp. | 180 | 9.5 | [ | |||
PET | Bacillus cereus | 室温 | 37.5 | 6.6 | [ | |
Bacillus gottheilli | 室温 | 37.5 | 3.6 | [ | ||
Streptomyces sp. | 28 | 18 | 68.8 | [ | ||
PD6 | Vibrio sp. | 37 | 42 | 35 | [ | |
PVC | EMBL-1 | Klebsiella sp. | 30 | 90 | 19.57 | [ |
Streptomyces albospinus | 25 | 29.55 | [ | |||
BP-4.3 | Altermonas | 60 | 1.76 | [ |
微塑料种类 | 名称 | 真菌菌属 | 温度/℃ | 时间/d | 降解效率/% | 参考文献 |
---|---|---|---|---|---|---|
PE | JAPE1 | Aspergillus nomius | 25 | 45 | 4.90 | [ |
Aspergillus nidulans | 30 | 180 | 12.63 | [ | ||
Aspergillus flavus | 30 | 180 | 20.96 | [ | ||
strain A5,1 | Aspergillus oryzae | 28 | 120 | 36.40 | [ | |
JASK1 | Aspergillus clavatus | 25 | 90 | 35.00 | [ | |
PEDX3 | Aspergillus flavus | 28 | 28 | 3.90 | [ | |
VRKPT2 | Aspergillus flavus | 30 | 30 | 9.34 | [ | |
VRKPT1 | Aspergillus tubingensis | 30 | 30 | 6.88 | [ | |
Aspergillus flavus | 30 | 28 | 1.20 | [ | ||
Zalerion maritimum | 25 | 28 | 43.00 | [ | ||
Trichoderma harzianum | 90 | 40.00 | [ | |||
21S4S | Cladosporium sphaerospermum | 37 | 7 | 15.12 | [ | |
PS | NCIM 1251 | Cephalosporium sp. | 28 | 60 | 2.17 | [ |
NCIM 881 | Mucor sp. | 28 | 60 | 1.81 | [ | |
NG007 | Pestalotiopsis sp. | 25 | 30 | 74.43 | [ | |
BIOM3 | Ceriporia sp. | 25 | 30 | 19.44 | [ | |
WM01 | Cymatoderma dendriticum | 25 | 30 | 15.50 | [ | |
PP | NCIM 1170 | Phanerochaete chrysosporium | 30 | 360 | 18.8 | [ |
MTP091 | Engyodontium album | 30 | 360 | 9.42 | [ | |
PU | ARF5 | Aspergillus versicolor | 35 | 16 | 58 | [ |
PET | MH119104 | Aspergillus sp. | 37 | 42 | 22 | [ |
Aspergillus niger | 120 | 52.94 | [ | |||
Humilica insolens | 70 | 4 | 97 | [ | ||
PVC | PV1 | Phanerocheate chrysosporium | 25 | 28 | 31 | [ |
表2 微塑料降解真菌及降解效果
Table 2 Fungi for microplastics degradation and their degradation efficiency
微塑料种类 | 名称 | 真菌菌属 | 温度/℃ | 时间/d | 降解效率/% | 参考文献 |
---|---|---|---|---|---|---|
PE | JAPE1 | Aspergillus nomius | 25 | 45 | 4.90 | [ |
Aspergillus nidulans | 30 | 180 | 12.63 | [ | ||
Aspergillus flavus | 30 | 180 | 20.96 | [ | ||
strain A5,1 | Aspergillus oryzae | 28 | 120 | 36.40 | [ | |
JASK1 | Aspergillus clavatus | 25 | 90 | 35.00 | [ | |
PEDX3 | Aspergillus flavus | 28 | 28 | 3.90 | [ | |
VRKPT2 | Aspergillus flavus | 30 | 30 | 9.34 | [ | |
VRKPT1 | Aspergillus tubingensis | 30 | 30 | 6.88 | [ | |
Aspergillus flavus | 30 | 28 | 1.20 | [ | ||
Zalerion maritimum | 25 | 28 | 43.00 | [ | ||
Trichoderma harzianum | 90 | 40.00 | [ | |||
21S4S | Cladosporium sphaerospermum | 37 | 7 | 15.12 | [ | |
PS | NCIM 1251 | Cephalosporium sp. | 28 | 60 | 2.17 | [ |
NCIM 881 | Mucor sp. | 28 | 60 | 1.81 | [ | |
NG007 | Pestalotiopsis sp. | 25 | 30 | 74.43 | [ | |
BIOM3 | Ceriporia sp. | 25 | 30 | 19.44 | [ | |
WM01 | Cymatoderma dendriticum | 25 | 30 | 15.50 | [ | |
PP | NCIM 1170 | Phanerochaete chrysosporium | 30 | 360 | 18.8 | [ |
MTP091 | Engyodontium album | 30 | 360 | 9.42 | [ | |
PU | ARF5 | Aspergillus versicolor | 35 | 16 | 58 | [ |
PET | MH119104 | Aspergillus sp. | 37 | 42 | 22 | [ |
Aspergillus niger | 120 | 52.94 | [ | |||
Humilica insolens | 70 | 4 | 97 | [ | ||
PVC | PV1 | Phanerocheate chrysosporium | 25 | 28 | 31 | [ |
菌群来源 | 菌群种类 | 微塑料 | 降解效率/% | 参考文献 |
---|---|---|---|---|
人工 复配 | Enterobacter spp. (IS2 and IS3), Pantoea spp. (IS5) | PE | 38.0 | [ |
Aspergillus niger, Aspergillus flavus, Aspergillus | PE | 26 | [ | |
Arthrobacter viscosus, Micrococcus lylae, Micrococcus luteus, Bacillus mycoides, Bacillus cereus, Bacillus pumilus, Bacillus thuringiensis | PE | 17.0 | [ | |
Pirellulaceae, Phycisphaerales, Cyclobacteriaceae, Roseococcus | PE、PP | [ | ||
Pseudomonas citronellolis, Bacillus flexus | PVC | 19.0 | [ | |
Enterobacter sp. nov. btDSCE-01, Enterobacter cloacae nov. btDSCE-02, P. aeruginosa nov. btDSCE-CD03 | PE、PP | 64.25, 63.00 | [ | |
Sterigmatomyces halophilus SSA1575, Meyerozyma guilliermondii SSA1547, Meyerozyma caribbica SSA1654 | PE | 33.2 | [ | |
Curvularia lunata, Alternaria alternata, Penicillium simplicissimum, Fusarium sp. | PE | 27 | [ | |
Aspergillus niger, Aspergillus flavus, Aspergillus oryzae | PE | 26 | [ | |
Sterigmatomyces halophilus, Meyerozyma guilliermondii, Meyerozyma caribbica | PE | 33.2 | [ | |
Bacillus sp., Aspergillus sp. | PE | 12 | [ | |
自然驯化 | Bacillus sp., Paenibacillus sp. | PE | 14.7 | [ |
Lysinibacillus sp., Salinibacterium sp. | PE | 19.0 | [ | |
Alphaproteobacteria, Gammaproteobacteria, Flavobacteriia, Acidobacteria, Cyanobacteria | PP、PS | [ | ||
Autographiviridae, Podoviridae | PE、PP | [ | ||
Myoviridae, Siphoviridae, Podoviridae | PP、PS | [ |
表3 微塑料降解复合菌群
Table 3 Microbial consortia for microplastics
菌群来源 | 菌群种类 | 微塑料 | 降解效率/% | 参考文献 |
---|---|---|---|---|
人工 复配 | Enterobacter spp. (IS2 and IS3), Pantoea spp. (IS5) | PE | 38.0 | [ |
Aspergillus niger, Aspergillus flavus, Aspergillus | PE | 26 | [ | |
Arthrobacter viscosus, Micrococcus lylae, Micrococcus luteus, Bacillus mycoides, Bacillus cereus, Bacillus pumilus, Bacillus thuringiensis | PE | 17.0 | [ | |
Pirellulaceae, Phycisphaerales, Cyclobacteriaceae, Roseococcus | PE、PP | [ | ||
Pseudomonas citronellolis, Bacillus flexus | PVC | 19.0 | [ | |
Enterobacter sp. nov. btDSCE-01, Enterobacter cloacae nov. btDSCE-02, P. aeruginosa nov. btDSCE-CD03 | PE、PP | 64.25, 63.00 | [ | |
Sterigmatomyces halophilus SSA1575, Meyerozyma guilliermondii SSA1547, Meyerozyma caribbica SSA1654 | PE | 33.2 | [ | |
Curvularia lunata, Alternaria alternata, Penicillium simplicissimum, Fusarium sp. | PE | 27 | [ | |
Aspergillus niger, Aspergillus flavus, Aspergillus oryzae | PE | 26 | [ | |
Sterigmatomyces halophilus, Meyerozyma guilliermondii, Meyerozyma caribbica | PE | 33.2 | [ | |
Bacillus sp., Aspergillus sp. | PE | 12 | [ | |
自然驯化 | Bacillus sp., Paenibacillus sp. | PE | 14.7 | [ |
Lysinibacillus sp., Salinibacterium sp. | PE | 19.0 | [ | |
Alphaproteobacteria, Gammaproteobacteria, Flavobacteriia, Acidobacteria, Cyanobacteria | PP、PS | [ | ||
Autographiviridae, Podoviridae | PE、PP | [ | ||
Myoviridae, Siphoviridae, Podoviridae | PP、PS | [ |
种类 | 微生物 | 酶 | 基因名称/编码 | 参考文献 | |
---|---|---|---|---|---|
细菌 | Pseudomonas mendocina ATCC 53552 | PmC | [ | ||
Ideonella sakaiensis 201-F6 | IsPETase | ISF6_4831 | [ | ||
Oleispira antarctica RB-8 | PET5 | LipA | [ | ||
Moraxella sp. TA144 | lip1 | Mors1 | [ | ||
Vibrio gazogenes | PET6 | BSQ33_03270 | [ | ||
Polyangium brachysporum | PET12 | AAW51_2473 | [ | ||
PET2 | lipIAF5-2 | [ | |||
Pseudomonas pseudoalcaligenes DSM 50188 | PpCutA | [ | |||
Pseudomonas pelagia DSM 25163 | PpelaLip | [ | |||
Pseudomonas aestusnigri VGXO14 | PE-H | B7O88_11480 | [ | ||
Pseudomonas pseudoalcaligenes | PpEst | [ | |||
HR29 bacterium | BhrPETase | LCC | [ | ||
Bacillus subtilis 4P3-11 | BsEstB | [ | |||
Aequorivita sp. CIP111184 | PET27 | [ | |||
Kaistella jeonii | PET30 | [ | |||
Thermoanaerobacterales | PHL-7 | [ | |||
Exiguobacterium sp. | ON627837 | [ | |||
放线菌 | Thermobifida fusca DSM43793 | BTA-1, BTA-2 | TfH | [ | |
Thermobifida cellulosilytica DSM44535 | Thc_Cut1, Thc_Cut2 | [ | |||
Thermobifida fusca DSM44342 | TfH42_Cut1 | [ | |||
Thermobifida fusca strain YX | WSH03-11 | Tfu_0883, Tfu_0882 | [ | ||
Thermobifida fusca | TfCut_2 (Cut2-kw3) | [ | |||
Thermobifida fusca NRRL B-8184 | Cut1, Cut2 | [ | |||
Thermobifida alba AHL119 | Est119 | est2 | [ | ||
Thermobifida curvata DSM43183 | Tcur_1278, Tcur0390 | [ | |||
Thermobifida halotolerans | Thh_Est | [ | |||
Saccharomonospora viridis AHK190 | Cut190 | [ | |||
真菌 | Pseudozyma antarctica | lipase B CalB | [ | ||
Fusarium solani | FsC | [ | |||
Thermomyces (Humicola) insolens cutinase | insolens cutinase | [ |
表4 PET降解酶及基因
Table 4 Degradation enzymes and genes of PET
种类 | 微生物 | 酶 | 基因名称/编码 | 参考文献 | |
---|---|---|---|---|---|
细菌 | Pseudomonas mendocina ATCC 53552 | PmC | [ | ||
Ideonella sakaiensis 201-F6 | IsPETase | ISF6_4831 | [ | ||
Oleispira antarctica RB-8 | PET5 | LipA | [ | ||
Moraxella sp. TA144 | lip1 | Mors1 | [ | ||
Vibrio gazogenes | PET6 | BSQ33_03270 | [ | ||
Polyangium brachysporum | PET12 | AAW51_2473 | [ | ||
PET2 | lipIAF5-2 | [ | |||
Pseudomonas pseudoalcaligenes DSM 50188 | PpCutA | [ | |||
Pseudomonas pelagia DSM 25163 | PpelaLip | [ | |||
Pseudomonas aestusnigri VGXO14 | PE-H | B7O88_11480 | [ | ||
Pseudomonas pseudoalcaligenes | PpEst | [ | |||
HR29 bacterium | BhrPETase | LCC | [ | ||
Bacillus subtilis 4P3-11 | BsEstB | [ | |||
Aequorivita sp. CIP111184 | PET27 | [ | |||
Kaistella jeonii | PET30 | [ | |||
Thermoanaerobacterales | PHL-7 | [ | |||
Exiguobacterium sp. | ON627837 | [ | |||
放线菌 | Thermobifida fusca DSM43793 | BTA-1, BTA-2 | TfH | [ | |
Thermobifida cellulosilytica DSM44535 | Thc_Cut1, Thc_Cut2 | [ | |||
Thermobifida fusca DSM44342 | TfH42_Cut1 | [ | |||
Thermobifida fusca strain YX | WSH03-11 | Tfu_0883, Tfu_0882 | [ | ||
Thermobifida fusca | TfCut_2 (Cut2-kw3) | [ | |||
Thermobifida fusca NRRL B-8184 | Cut1, Cut2 | [ | |||
Thermobifida alba AHL119 | Est119 | est2 | [ | ||
Thermobifida curvata DSM43183 | Tcur_1278, Tcur0390 | [ | |||
Thermobifida halotolerans | Thh_Est | [ | |||
Saccharomonospora viridis AHK190 | Cut190 | [ | |||
真菌 | Pseudozyma antarctica | lipase B CalB | [ | ||
Fusarium solani | FsC | [ | |||
Thermomyces (Humicola) insolens cutinase | insolens cutinase | [ |
[1] | GUMEL A M, ANNUAR M S M, CHISTI Y. Recent advances in the production, recovery and applications of polyhydroxyalkanoates[J]. Journal of Polymers and the Environment, 2013, 21(2): 580-605. |
[2] |
THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838-838.
PMID |
[3] | OTHMAN A R, HASAN H A, MUHAMAD M H, et al. Microbial degradation of microplastics by enzymatic processes: a review[J]. Environmental Chemistry Letters, 2021, 19(4): 3057-3073. |
[4] | HARTMANN N B, HÜFFER T, THOMPSON R C, et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris[J]. Environmental Science & Technology, 2019, 53(3): 1039-1047. |
[5] | SUN Q, REN S Y, NI H G. Incidence of microplastics in personal care products: an appreciable part of plastic pollution[J]. Science of the Total Environment, 2020, 742: 140218. |
[6] | OSMAN A I, HOSNY M, ELTAWEIL A S, et al. Microplastic sources, formation, toxicity and remediation: a review[J]. Environmental Chemistry Letters, 2023, 21(4): 2129-2169. |
[7] | DI PIPPO F, VENEZIA C, SIGHICELLI M, et al. Microplastic associated biofilms in lentic Italian ecosystems[J]. Water Research, 2020, 187: 116429. |
[8] | CHEN Y, AWASTHI A K, WEI F, et al. Single-use plastics: production, usage, disposal, and adverse impacts[J]. Science of The Total Environment, 2021, 752: 141772. |
[9] |
CARR S A, LIU J, TESORO A G. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water Research, 2016, 91: 174-182.
DOI PMID |
[10] | THOMPSON R C, COURTENE-JONES W, BOUCHER J, et al. Twenty years of microplastic pollution research: what have we learned?[J]. Science, 2024, 386(6720): eadl2746. |
[11] | ALI S S, ELSAMAHY T, KOUTRA E, et al. Degradation of conventional plastic wastes in the environment: a review on current status of knowledge and future perspectives of disposal[J]. Science of The Total Environment, 2021, 771: 144719. |
[12] | WONG J K H, LEE K K, TANG K H D, et al. Microplastics in the freshwater and terrestrial environments: prevalence, fates, impacts and sustainable solutions[J]. Science of The Total Environment, 2020, 719: 137512. |
[13] | RIOS MENDOZA L M, BALCER M. Microplastics in freshwater environments: a review of quantification assessment[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 402-408. |
[14] | WANG Z, QIN Y, LI W, et al. Microplastic contamination in freshwater: first observation in Lake Ulansuhai, Yellow River basin, China[J]. Environmental Chemistry Letters, 2019, 17(4): 1821-1830. |
[15] | CHIA R W, LEE J-Y, KIM H, et al. Microplastic pollution in soil and groundwater: a review[J]. Environmental Chemistry Letters, 2021, 19(6): 4211-4224. |
[16] | RAZEGHI N, HAMIDIAN A H, WU C, et al. Microplastic sampling techniques in freshwaters and sediments: a review[J]. Environmental Chemistry Letters, 2021, 19(6): 4225-4252. |
[17] | SCHWABL P, KÖPPEL S, KÖNIGSHOFER P, et al. Detection of various microplastics in human stool[J]. Annals of Internal Medicine, 2019, 171(7): 453-457. |
[18] | SONG Q, ZHANG Y, JU C, et al. Microbial strategies for effective microplastics biodegradation: insights and innovations in environmental remediation[J]. Environmental Research, 2024, 263: 120046. |
[19] | LI C, SHI Y, ZHU W, et al. A low-impact nature-based solution for reducing aquatic microplastics from freshwater ecosystems[J]. Water Research, 2025, 268, 122632. |
[20] |
HUANG W, XIA X. Element cycling with micro(nano)plastics[J]. Science, 2024, 385(6712): 933-935.
DOI PMID |
[21] | SUN Y, WU M, ZANG J, et al. Plastisphere microbiome: methodology, diversity, and functionality[J]. iMeta, 2023, 2(2): e101. |
[22] | KOELMANS A A, REDONDO-HASSELERHARM P E, NOR N H M, et al. Risk assessment of microplastic particles[J]. Nature Reviews Materials, 2022, 7(2): 138-152. |
[37] | YANG J, YANG Y, WU W M, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms[J]. Environmental Science & Technology, 2014, 48(23): 13776-13784. |
[38] | PATHAK V M, NAVNEET. Exploitation of bacterial strains for microplastics (LDPE) biodegradation[J]. Chemosphere, 2023, 316: 137845. |
[39] | NOVOTNÝ Č, MALACHOVÁ K, ADAMUS G, et al. Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens[J]. International Biodeterioration & Biodegradation, 2018, 132: 259-267. |
[40] | LYU L, FANG K, HUANG X, et al. Polyethylene is degraded by the deep-sea Acinetobacter venetianus bacterium[J]. Environmental Chemistry Letters, 2024, 22(4): 1591-1597. |
[41] | MUHONJA C N, MAKONDE H, MAGOMA G, et al. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite nairobi-Kenya[J]. PLoS One, 2018, 13(7): e0198446. |
[42] | MOHANRASU K, PREMNATH N, SIVA PRAKASH G, et al. Exploring multi potential uses of marine bacteria; an integrated approach for PHB production, PAHs and polyethylene biodegradation[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 185: 55-65. |
[43] | SHAHNAWAZ M, SANGALE M K, ADE A B. Rhizosphere of Avicennia marina (Forsk. ) Vierh. as a landmark for polythene degrading bacteria[J]. Environmental Science and Pollution Research, 2016, 23(14): 14621-14635. |
[44] | SKARIYACHAN S, MANJUNATHA V, SULTANA S, et al. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene[J]. Environmental Science and Pollution Research, 2016, 23(18): 18307-18319. |
[45] | MOR R, SIVAN A. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber[J]. Biodegradation, 2008, 19(6): 851-858. |
[46] | AUTA H S, EMENIKE C U, JAYANTHI B, et al. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment[J]. Marine Pollution Bulletin, 2018, 127: 15-21. |
[47] | WANG Z, LI Y, BAI L, et al. Biodegradation of polypropylene microplastics by Bacillus pasteurii isolated from a gold mine tailing[J]. Emerging Contaminants, 2025, 11(1): 100397. |
[23] | 丁贺宁, 惠彩, 龙於洋, 等. 不同环境介质中塑料际病原菌的赋存与传播研究进展[J/OL]. 中国环境科学. (2025-01-21)[2025-02-06]. https://doi.org/10.19674/j.cnki.issn1000-6923.20250121.005 |
[24] |
SHAH A A, HASAN F, HAMEED A, et al. Biological degradation of plastics: a comprehensive review[J]. Biotechnology Advances, 2008, 26(3): 246-265.
DOI PMID |
[25] | RAMSPERGER A F R M, NARAYANA V K B, GROSS W, et al. Environmental exposure enhances the internalization of microplastic particles into cells[J]. Science Advances, 2020, 6(50): eabd1211. |
[26] | COLE M, LINDEQUE P, FILEMAN E, et al. Microplastic ingestion by zooplankton[J]. Environmental Science & Technology, 2013, 47(12): 6646-6655. |
[27] | LI T, LU M, XU B, et al. Multiple perspectives reveal the gut toxicity of polystyrene microplastics on Eisenia fetida: insights into community signatures of gut bacteria and their translocation[J]. Science of The Total Environment, 2022, 838: 156352. |
[28] |
SMITH M, LOVE D C, ROCHMAN C M, et al. Microplastics in seafood and the implications for human health[J]. Current Environmental Health Reports, 2018, 5(3): 375-386.
DOI PMID |
[29] | AUTA H S, EMENIKE C U, FAUZIAH S H. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation[J]. Environmental Pollution, 2017, 231: 1552-1559. |
[30] | KATHIRESAN K. Polythene and plastic-degrading microbes in an Indian mangrove soil[J]. Revista de Biología Tropical, 2003, 51(3-4): 629-633. |
[31] | FARZI A, DEHNAD A, SHIRZAD N, et al. Biodegradation of high density polyethylene using Streptomyces species[J]. Journal of Coastal Life Medicine, 2017, 5(11): 474-479. |
[32] | RAJANDAS H, PARIMANNAN S, SATHASIVAM K, et al. A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation[J]. Polymer Testing, 2012, 31(8): 1094-1099. |
[33] | MIDHUN K D, KALYANI L T, GIRIJASANKAR G, et al. Biodegradation of low density polyethylene (LDPE) by a new biosurfactant-producing thermophilic Streptomyces coelicoflavus NBRC 15399T[J]. African Journal of Biotechnology, 2015, 14(4): 327-340. |
[48] | HABIB S, IRUTHAYAM A, ABD SHUKOR M Y, et al. Biodeterioration of untreated polypropylene microplastic particles by antarctic bacteria[J]. Polymers, 2020, 12(11): 2616. |
[49] | JEON J M, PARK S J, CHOI T R, et al. Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove[J]. Polymer Degradation and Stability, 2021, 191: 109662. |
[50] | LAWRENCE OMUNAKWE A, THOMAS OSAHON N. Biodegradation of polypropylene by bacterial isolates from the organs of a fish, Liza grandisquamis harvested from Ohiakwu estuary in Rivers State, Nigeria[J]. World Journal of Advanced Research and Reviews, 2020, 7(2): 258-263. |
[51] | OLIYA P, SINGH S, GOEL N, et al. Polypropylene degradation potential of microbes isolated from solid waste dumping site[J]. Pollution Research, 2020, 39(2): 268-277. |
[52] | FARZI A, DEHNAD A, FOTOUHI A F. Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process[J]. Biocatalysis and Agricultural Biotechnology, 2019, 17: 25-31. |
[53] | SARKHEL R, SENGUPTA S, DAS P, et al. Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine source[J]. Journal of Polymer Research, 2019, 27(1): 16-16. |
[54] |
ZHANG Z, PENG H, YANG D, et al. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae[J]. Nature Communications, 2022, 13(1): 5360.
DOI PMID |
[55] | RODRÍGUEZ-FONSECA M F, RUIZ-BALAGUERA S, VALERO M F, et al. Freshwater-derived Streptomyces: prospective polyvinyl chloride (PVC) biodegraders[J]. The Scientific World Journal, 2022, 2022(1): 6420003. |
[56] | KHANDARE S D, CHAUDHARY D R, JHA B. Bioremediation of polyvinyl chloride (PVC) films by marine bacteria[J]. Marine Pollution Bulletin, 2021, 169: 112566. |
[57] | PATHAK V M, NAVNEET. Review on the current status of polymer degradation: a microbial approach[J]. Bioresources and Bioprocessing, 2017, 4(1): 15-15. |
[58] |
LOBELLE D, CUNLIFFE M. Early microbial biofilm formation on marine plastic debris[J]. Marine Pollution Bulletin, 2011, 62(1): 197-200.
DOI PMID |
[59] | MOHARANA S, DEY S, PRIYADARSINI S, et al. Identification and characterization of microplastic pollutants from the marine sediments of Paradeep coast of Bay of Bengal, India for their sustainable management[M]. Cham: Springer Nature Switzerland, 2024: 57-73. |
[60] | KANG M G, KWAK M J, KIM Y. Polystyrene microplastics biodegradation by gut bacterial Enterobacter hormaechei from mealworms under anaerobic conditions: anaerobic oxidation and depolymerization[J]. Journal of Hazardous Materials, 2023, 459: 132045. |
[61] | GAJENDIRAN A, KRISHNAMOORTHY S, ABRAHAM J. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil[J]. 3 Biotech, 2016, 6(1): 52. |
[62] | ZHANG J, GAO D, LI Q, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella[J]. Science of The Total Environment, 2020, 704: 135931. |
[63] | J M R DA LUZ, M DA SILVA, L F DOS SANTOS, et al. Plastics polymers degradation by fungi[M]. Rijeka: IntechOpen, 2019: 261-274. |
[64] | EL SHAFEI H A, ABD EL NASSER N H, KANSOH A L, et al. Biodegradation of disposable polyethylene by fungi and Streptomyces species[J]. Polymer Degradation and Stability, 1998, 62(2): 361-365. |
[65] | PAÇO A, DUARTE K, DA COSTA J P, et al. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum[J]. Science of The Total Environment, 2017, 586: 10-15. |
[66] | SOWMYA H V, RAMALINGAPPA, KRISHNAPPA M, et al. Degradation of polyethylene by Trichoderma harzianum: SEM, FTIR, and NMR analyses[J]. Environmental Monitoring and Assessment, 2014, 186(10): 6577-6586. |
[67] | SATHIYABAMA M, BOOMIJA R V, SATHIYAMOORTHY T, et al. Mycodegradation of low-density polyethylene by Cladosporium sphaerospermum, isolated from platisphere[J]. Scientific Reports, 2024, 14(1): 8351. |
[68] | CHAUDHARY A K, VIJAYAKUMAR R P. Studies on biological degradation of polystyrene by pure fungal cultures[J]. Environment, Development and Sustainability, 2020, 22(5): 4495-4508. |
[34] | SIVAN A, SZANTO M, PAVLOV V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber[J]. Applied Microbiology and Biotechnology, 2006, 72(2): 346-352. |
[35] | ABRAHAM J, GHOSH E, MUKHERJEE P, et al. Microbial degradation of low density polyethylene[J]. Environmental Progress & Sustainable Energy, 2017, 36(1): 147-154. |
[36] | USHA R, SANGEETHA T, PALANISWAMY M. Screening of polyethylene degrading microorganisms from garbage soil[J]. Libyan Agriculture Research Center Journal International, 2011, 2(4): 200-204. |
[69] | YANTO D H Y, KRISHANTI N P R A, ARDIATI F C, et al. Biodegradation of styrofoam waste by ligninolytic fungi and bacteria[J]. IOP Conference Series: Earth and Environmental Science, 2019, 308(1): 012001. |
[70] |
JEYAKUMAR D, CHIRSTEEN J, DOBLE M. Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes[J]. Bioresource Technology, 2013, 148: 78-85.
DOI PMID |
[71] | RAJAN A, AMEEN F, JAMBULINGAM R, et al. Biodegradation of polyurethane by fungi isolated from industrial wastewater: a sustainable approach to plastic waste management[J]. Polymers, 2024, 16(10): 1411. |
[72] | ASMITA K, SHUBHAMSINGH T, TEJASHREE S. Isolation of plastic degrading micro-organisms from soil samples collected at various locations in Mumbai, India[J]. International Research Journal of Environment Sciences, 2015, 4(3): 77-85. |
[73] | RONKVIST A M, XIE W, LU W, et al. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate)[J]. Macromolecules, 2009, 42(14): 5128-5138. |
[74] | ALI M I, AHMED S, JAVED I, et al. Biodegradation of starch blended polyvinyl chloride films by isolated Phanerochaete chrysosporium PV1[J]. International Journal of Environmental Science and Technology, 2014, 11(2): 339-348. |
[75] | KHATOON N, JAMAL A, ALI M I. Lignin peroxidase isoenzyme: a novel approach to biodegrade the toxic synthetic polymer waste[J]. Environmental Technology, 2019, 40(11): 1366-1375. |
[76] |
KIM D Y, RHEE Y H. Biodegradation of microbial and synthetic polyesters by fungi[J]. Applied Microbiology and Biotechnology, 2003, 61(4): 300-308.
PMID |
[77] | OSMAN M, SATTI S M, LUQMAN A, et al. Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil[J]. Journal of Polymers and the Environment, 2018, 26(1): 301-310. |
[78] | SAMAT A F, CARTER D, ABBAS A. Biodeterioration of pre-treated polypropylene by Aspergillus terreus and Engyodontium album[J]. npj Materials Degradation, 2023, 7(1): 28-28. |
[79] |
RUSSELL J R, HUANG J, ANAND P, et al. Biodegradation of polyester polyurethane by endophytic fungi[J]. Applied and Environmental Microbiology, 2011, 77(17): 6076-6084.
DOI PMID |
[80] | SHEIK S, CHANDRASHEKAR K R, SWAROOP K, et al. Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi[J]. International Biodeterioration & Biodegradation, 2015, 105: 21-29. |
[81] | NIU L, WANG Y, LI Y, et al. Occurrence, degradation pathways, and potential synergistic degradation mechanism of microplastics in surface water: a review[J]. Current Pollution Reports, 2023, 9(2): 312-326. |
[82] | VIMAL KUMAR R, KANNA G R, ELUMALAI S. Biodegradation of polyethylene by green photosynthetic microalgae[J]. Journal of Bioremediation & Biodegradation, 2017, 8(1): 1000381. |
[83] |
CUNHA C, FARIA M, NOGUEIRA N, et al. Marine vs freshwater microalgae exopolymers as biosolutions to microplastics pollution[J]. Environmental Pollution, 2019, 249: 372-380.
DOI PMID |
[84] | ZIANI K, IONIŢĂ-MÎNDRICAN C-B, MITITELU M, et al. Microplastics: a real global threat for environment and food safety: a state of the art review[J]. Nutrients, 2023, 15(3): 617. |
[85] | CUNHA C, SILVA L, PAULO J, et al. Microalgal-based biopolymer for nano- and microplastic removal: a possible biosolution for wastewater treatment[J]. Environmental Pollution, 2020, 263: 114385. |
[86] | DSOUZA G C, SHERIFF R S, ULLANAT V, et al. Fungal biodegradation of low-density polyethylene using consortium of Aspergillus species under controlled conditions[J]. Heliyon, 2021, 7(5): e07008. |
[87] | NOWAK B, PAJĄK J, DROZD-BRATKOWICZ M, et al. Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions[J]. International Biodeterioration & Biodegradation, 2011, 65(6): 757-767. |
[88] | MIAO L, WANG P, HOU J, et al. Distinct community structure and microbial functions of biofilms colonizing microplastics[J]. Science of The Total Environment, 2019, 650: 2395-2402. |
[89] | GIACOMUCCI L, RADDADI N, SOCCIO M, et al. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus[J]. New Biotechnology, 2019, 52: 35-41. |
[90] | SKARIYACHAN S, TASKEEN N, KISHORE A P, et al. Novel consortia of Enterobacter and Pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene[J]. Journal of Environmental Management, 2021, 284: 112030. |
[91] | ELSAMAHY T, SUN J Z, ELSILK S E, et al. Biodegradation of low-density polyethylene plastic waste by a constructed tri-culture yeast consortium from wood-feeding termite: degradation mechanism and pathway[J]. Journal of Hazardous Materials, 2023, 448: 130944. |
[92] | EFREMENKO E, STEPANOV N, SENKO O, et al. Using fungi in artificial microbial consortia to solve bioremediation problems[J]. Microorganisms, 2024, 12(3): 470-470. |
[93] |
PARK S Y, KIM C G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222: 527-533.
DOI PMID |
[94] | SHAHNAWAZ M, SANGALE M K, ADE A B. Analysis of the plastic degradation products[M]. Singapore: Springer Singapore, 2019: 93-101. |
[95] | JIANG P, ZHAO S, ZHU L, et al. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary[J]. Science of The Total Environment, 2018, 624: 48-54. |
[96] | NIU L, ZHAO S, CHEN Y, et al. Diversity and potential functional characteristics of phage communities colonizing microplastic biofilms[J]. Environmental Research, 2023, 219: 115103. |
[97] | LI R, ZHU L, CUI L, et al. Viral diversity and potential environmental risk in microplastic at watershed scale: evidence from metagenomic analysis of plastisphere[J]. Environment International, 2022, 161: 107146. |
[98] | ABE M, KOBAYASHI K, HONMA N, et al. Microbial degradation of poly(butylene succinate) by Fusarium solani in soil environments[J]. Polymer Degradation and Stability, 2010, 95(2): 138-143. |
[99] | KUČIĆ GRGIĆ D, MILOLOŽA M, OCELIĆ BULATOVIĆ V, et al. Screening the efficacy of a microbial consortium of bacteria and fungi isolated from different environmental samples for the degradation of LDPE/TPS films[J]. Separations, 2023, 10(2): 79. |
[100] | ZHANG M, TAN M, JI R, et al. Current situation and ecological effects of microplastic pollution in soil[J]. Reviews of Environmental Contamination and Toxicology, 2022, 260(1): 11. |
[101] | CAI L, WANG J, PENG J, et al. Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments[J]. Science of The Total Environment, 2018, 628-629: 740-747. |
[102] | XU T, WANG X, SHI Q, et al. Review of soil microplastic degradation pathways and remediation techniques[J]. International Journal of Environmental Research, 2024, 18(5): 77-77. |
[103] | TAN Q, YANG L, WEI F, et al. Comparative life cycle assessment of polyethylene agricultural mulching film and alternative options including different end-of-life routes[J]. Renewable and Sustainable Energy Reviews, 2023, 178: 113239. |
[104] | ARKATKAR A, ARUTCHELVI J, BHADURI S, et al. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia[J]. International Biodeterioration & Biodegradation, 2009, 63(1): 106-111. |
[105] |
LUCAS N, BIENAIME C, BELLOY C, et al. Polymer biodegradation: mechanisms and estimation techniques: a review[J]. Chemosphere, 2008, 73(4): 429-442.
DOI PMID |
[106] | JACQUIN J, CHENG J, ODOBEL C, et al. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the “plastisphere”[J]. Frontiers in Microbiology, 2019, 10: 865. |
[107] | VAKSMAA A, POLERECKY L, DOMBROWSKI N, et al. Polyethylene degradation and assimilation by the marine yeast Rhodotorula mucilaginosa[J]. ISME Communications, 2023, 3(1): 68-68. |
[108] | ASIANDU A P, WAHYUDI A, SARI S W. Aquatic plastics waste biodegradation using plastic degrading microbes[J]. Journal of microbiology, biotechnology and food sciences, 2022, 11(5): e3724. |
[109] | JIA H, ZHANG M, WENG Y, et al. Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil[J]. Journal of Environmental Sciences, 2021, 103: 50-58. |
[110] | TU C, CHEN T, ZHOU Q, et al. Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater[J]. Science of The Total Environment, 2020, 734: 139237. |
[111] | GUO W, LI D, CHEN B, et al. Microbial colonization on four types of microplastics to form biofilm differentially affecting organic contaminant biodegradation[J]. Chemical Engineering Journal, 2025, 503: 158060. |
[112] |
SÁNCHEZ C. Lignocellulosic residues: biodegradation and bioconversion by fungi[J]. Biotechnology Advances, 2009, 27(2): 185-194.
DOI PMID |
[113] | OLICÓN-HERNÁNDEZ D R, GONZÁLEZ-LÓPEZ J, ARANDA E. Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds[J]. Frontiers in Microbiology, 2017, 8: 1792. |
[114] | TIWARI N, SANTHIYA D, SHARMA J G. Microbial remediation of micro-nano plastics: current knowledge and future trends[J]. Environmental Pollution, 2020, 265: 115044. |
[115] | HUANG X, LI Y, SHU Z, et al. High-efficiency degradation of PET plastics by glutathione s-transferase under mild conditions[J]. Environmental Science & Technology, 2024, 58(30): 13358-13369. |
[116] | SHIN J, KIM J-E, LEE Y-W, et al. Fungal cytochrome P450s and the P450 complement (CYPome) of Fusarium graminearum[J]. Toxins, 2018, 10(3): 112. |
[117] |
WEI R, ZIMMERMANN W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?[J]. Microbial Biotechnology, 2017, 10(6): 1308-1322.
DOI PMID |
[118] | AHMED T, SHAHID M, AZEEM F, et al. Biodegradation of plastics: current scenario and future prospects for environmental safety[J]. Environmental Science and Pollution Research, 2018, 25(8): 7287-7298. |
[119] |
ZHU B, CHEN Y, WEI N. Engineering biocatalytic and biosorptive materials for environmental applications[J]. Trends in Biotechnology, 2019, 37(6): 661-676.
DOI PMID |
[120] | FERREIRA R D G, AZZONI A R, FREITAS S. Techno-economic analysis of the industrial production of a low-cost enzyme using E. coli: the case of recombinant β-glucosidase[J]. Biotechnology for Biofuels, 2018, 11(1): 81-81. |
[121] |
YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199.
DOI PMID |
[122] | DANSO D, SCHMEISSER C, CHOW J, et al. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes[J]. Applied and Environmental Microbiology, 2018, 84(8): e02773-17. |
[123] | INGLIS G D, YANKE L J, SELINGER L B. Cutinolytic esterase activity of bacteria isolated from mixed-plant compost and characterization of a cutinase gene from Pseudomonas pseudoalcaligenes[J]. Canadian Journal of Microbiology, 2011, 57(11): 902-913. |
[124] | HAERNVALL K, ZITZENBACHER S, WALLIG K, et al. Hydrolysis of ionic phthalic acid based polyesters by wastewater microorganisms and their enzymes[J]. Environmental Science & Technology, 2017, 51(8): 4596-4605. |
[125] | BOLLINGER A, THIES S, KNIEPS-GRÜNHAGEN E, et al. A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri: structural and functional insights[J]. Frontiers in Microbiology, 2020, 11: 114. |
[126] | HAERNVALL K, ZITZENBACHER S, YAMAMOTO M, et al. A new arylesterase from Pseudomonas pseudoalcaligenes can hydrolyze ionic phthalic polyesters[J]. Journal of Biotechnology, 2017, 257: 70-77. |
[127] | XI X, NI K, HAO H, et al. Secretory expression in Bacillus subtilis and biochemical characterization of a highly thermostable polyethylene terephthalate hydrolase from bacterium HR29[J]. Enzyme and Microbial Technology, 2021, 143: 109715. |
[128] | RIBITSCH D, HEUMANN S, TROTSCHA E, et al. Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis[J]. Biotechnology Progress, 2011, 27(4): 951-960. |
[129] | ZHANG H, PEREZ-GARCIA P, DIERKES R F, et al. The bacteroidetes Aequorivita sp. and Kaistella jeonii produce promiscuous esterases with PET-hydrolyzing activity[J]. Frontiers in Microbiology, 2021, 12: 803896. |
[130] | SONNENDECKER C, OESER J, RICHTER P K, et al. Low carbon footprint recycling of post-consumer PET plastic with a metagenomic polyester hydrolase[J]. Chemistry Sustainability Energy Materials, 2022, 15(9): e202101062. |
[131] | TRIPATHY B, SAHOO P P, SUNDARAY H, et al. In-vitro biodegradation of discarded marine microplastics across the eastern coast of the Bay of Bengal, India using Exiguobacterium sp.[J]. Environmental Chemistry and Ecotoxicology, 2024, 6: 236-247. |
[132] | KLEEBERG I, HETZ C, KROPPENSTEDT R M, et al. Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates[J]. Applied and Environmental Microbiology, 1998, 64(5): 1731-1735. |
[133] | HERRERO ACERO E, RIBITSCH D, STEINKELLNER G, et al. Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida[J]. Macromolecules, 2011, 44(12): 4632-4640. |
[134] |
CHEN S, TONG X, WOODARD R W, et al. Identification and characterization of bacterial cutinase[J]. Journal of Biological Chemistry, 2008, 283(38): 25854-25862.
DOI PMID |
[135] | ROTH C, WEI R, OESER T, et al. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca[J]. Applied Microbiology and Biotechnology, 2014, 98(18): 7815-7823. |
[136] | HEGDE K, VEERANKI V D. Production optimization and characterization of recombinant cutinases from Thermobifida fusca sp. NRRL B-8184[J]. Applied Biochemistry and Biotechnology, 2013, 170(3): 654-675. |
[137] | KITADOKORO K, THUMARAT U, NAKAMURA R, et al. Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76A resolution[J]. Polymer Degradation and Stability, 2012, 97(5): 771-775. |
[138] | WEI R, OESER T, THEN J, et al. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata[J]. AMB Express, 2014, 4: 44. |
[139] | RIBITSCH D, HERRERO ACERO E, GREIMEL K, et al. A new esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA)[J]. Polymers, 2012, 4(1): 617-629. |
[140] | KAWAI F, ODA M, TAMASHIRO T, et al. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190[J]. Applied Microbiology and Biotechnology, 2014, 98(24): 10053-10064. |
[141] | CARNIEL A, VALONI É, NICOMEDES J, et al. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid[J]. Process Biochemistry, 2017, 59: 84-90. |
[142] | NOMURA N, SHIGENO-AKUTSU Y, NAKAJIMA-KAMBE T, et al. Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35[J]. Journal of Fermentation and Bioengineering, 1998, 86(4): 339-345. |
[143] | YANG Y, YANG J, JIANG L. Comment on “A bacterium that degrades and assimilates poly(ethylene terephthalate)”[J]. Science, 2016, 353(6301): 759-759. |
[144] | 钟越. Amycolatopsis orientalis ZEL-1的聚乙烯降解特性及其基于转录组测序的降解关键基因和代谢通路研究[D]. 成都: 四川师范大学, 2017: 1-113. |
[145] | SILVA C, DA S, SILVA N, et al. Engineered Thermobifida fusca cutinase with increased activity on polyester substrates[J]. Biotechnology Journal, 2011, 6(10): 1230-1239. |
[146] | MA Y, YAO M, LI B, et al. Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering[J]. Engineering, 2018, 4(6): 888-893. |
[147] | FURUKAWA M, KAWAKAMI N, TOMIZAWA A, et al. Efficient degradation of poly(ethylene terephthalate) with Thermobifida fusca cutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches[J]. Scientific Reports, 2019, 9(1): 16038. |
[148] | SHAO H, CHEN M, FEI X, et al. Complete genome sequence and characterization of a polyethylene biodegradation strain, Streptomyces Albogriseolus LBX-2[J]. Microorganisms, 2019, 7(10): 379. |
[149] | NILPA P, CHINTAN K, SAYYED R Z, et al. Formation of recombinant bifunctional fusion protein: a newer approach to combine the activities of two enzymes in a single protein[J]. PLoS One, 2022, 17(4): e0265969. |
[1] | 刘贺, 宋树贤, 孙梅, 李双双, 于小晶, 戴九兰. 土壤和植物中微塑料研究现状分析及检测方法研究进展[J]. 地学前缘, 2024, 31(2): 183-195. |
[2] | 郑嘉睿, 冷文鹏, 王佳佳, 智丽琴, 王硕, 李佳斌, 郭鹏, 魏文侠, 宋云. 氯代烃污染场地微生物修复技术研究进展[J]. 地学前缘, 2024, 31(2): 157-172. |
[3] | 梁凯旋, 刘菲, 张莉. 高氯酸盐自然衰减的柱实验研究[J]. 地学前缘, 2022, 29(3): 207-216. |
[4] | 宋欢,罗锡明,张莉,何宝南,李佳蔚,王一鹏. 微塑料对水中甲基橙的吸附特征分析[J]. 地学前缘, 2019, 26(6): 19-27. |
[5] | 刘章月, 秦明宽, 蔡根庆, 刘红旭, 耿英英. 新疆巴什布拉克地区有机地球化学特征及其对铀成矿的控制[J]. 地学前缘, 2015, 22(4): 212-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||