地学前缘 ›› 2024, Vol. 31 ›› Issue (2): 157-172.DOI: 10.13745/j.esf.sf.2023.8.21
郑嘉睿(), 冷文鹏, 王佳佳, 智丽琴, 王硕, 李佳斌, 郭鹏*(
), 魏文侠*(
), 宋云
收稿日期:
2023-06-03
修回日期:
2023-07-02
出版日期:
2024-03-25
发布日期:
2024-04-18
通信作者:
*郭 鹏(1981—),男,副研究员,主要研究方向为污染土壤生物修复。E-mail: 作者简介:
郑嘉睿(1998—),女,硕士研究生,环境工程专业。E-mail: 2329268127@qq.com
基金资助:
ZHENG Jiarui(), LENG Wenpeng, WANG Jiajia, ZHI Liqin, WANG Shuo, LI Jiabin, GUO Peng*(
), WEI Wenxia*(
), SONG Yun
Received:
2023-06-03
Revised:
2023-07-02
Online:
2024-03-25
Published:
2024-04-18
摘要:
氯代烃(CAHs)是工农业生产中广泛应用的重要化工原料,其处置不当或意外泄漏使其成为土壤和地下水中最常检测出的有毒有害污染物之一,对人体和生态环境危害巨大。生物修复技术因具有绿色、经济、高效和无二次污染等优势,是氯代烃污染治理的理想技术手段。文章在分析CAHs的理化性质、在环境中的迁移特征和生物降解机制的基础上,对实验室小试、中试等不同规模的微生物修复研究实例、联合修复的进展和降解转化机制进行梳理,同时对CAHs污染生物修复技术的影响因素进行概述,最后,对CAHs污染微生物修复技术的研究进行展望,未来应在采用微孔芯片与极限稀释技术开展低丰度降解菌的挖掘与解析、研发太阳能加热-生物原位修复等高效联合修复技术并分析修复效果影响因素等方面开展研究,以期为CAHs污染的高效、绿色治理提供技术支持。
中图分类号:
郑嘉睿, 冷文鹏, 王佳佳, 智丽琴, 王硕, 李佳斌, 郭鹏, 魏文侠, 宋云. 氯代烃污染场地微生物修复技术研究进展[J]. 地学前缘, 2024, 31(2): 157-172.
ZHENG Jiarui, LENG Wenpeng, WANG Jiajia, ZHI Liqin, WANG Shuo, LI Jiabin, GUO Peng, WEI Wenxia, SONG Yun. Bioremediation technologies for cleaning up chlorinated-hydrocarbon contaminated sites—a review[J]. Earth Science Frontiers, 2024, 31(2): 157-172.
氯代烃 | 缩写 | 分子量/ (g·mol-1) | 密度ρ/ (g·mL-1) | 溶解度S/ (mg·L-1) | 蒸气压 p0/(133.322 Pa) | 亨利常数KH/ (101.325×10-3 kPa·m3·mol-1) | 辛醇-水分配 系数值的常 用对数lgKow | |
---|---|---|---|---|---|---|---|---|
氯代甲烷 | 氯甲烷 | CM | 50.5 | 0.92 | 5 235 | 4 275 | 9.6 | 0.91 |
二氯甲烷 | DCM | 84.9 | 1.33 | 13 200 | 415 | 1.7 | 1.25 | |
三氯甲烷 | CF | 119.4 | 1.49 | 8 200 | 196.8 | 3.8 | 1.97 | |
四氯化碳 | CT | 153.8 | 1.59 | 800 | 153.8 | 28.9 | 2.64 | |
氯代乙烷 | 氯乙烷 | CA | 64.5 | 0.90 | 5 700 | 120 | 1.8 | 1.43 |
1,2-二氯乙烷 | 1,2-DCA | 99.0 | 1.25 | 8 606 | 79.0 | 1.2 | 1.48 | |
1,1,2-三氯乙烷 | 1,1,2-TCA | 133.4 | 1.44 | 4 394 | 24.2 | 0.96 | 2.38 | |
1,1,1,2-四氯乙烷 | 1,1,1,2-TeCA | 167.9 | 1.54 | 1 100 | 11.9 | 2.4 | ||
氯代丙烷 | 1,2-二氯丙烷 | 1,2-DCP | 112.99 | 1.156 | 2 800 | 53.9 | 2.74 | 1.99 |
1,2,3-三氯丙烷 | 1,2,3-TCP | 147.43 | 1.387 | 1 750 | 3.1 | 34.5 | 2.27 | |
氯代乙烯 | 氯乙烯 | VC | 62.5 | 0.91 | 2 763 | 2 660 | 79.2 | 1.38 |
顺式-1,2-二氯乙烯 | cis-DCE | 96.9 | 1.28 | 3 500 | 203 | 7.4 | 1.86 | |
反式-1,2-二氯乙烯 | trans-DCE | 96.9 | 1.26 | 6 260 | 333 | 6.8 | 1.93 | |
三氯乙烯 | TCE | 131.4 | 1.46 | 1 100 | 74.2 | 11.7 | 2.53 | |
四氯乙烯 | PCE | 165.8 | 1.63 | 150 | 18.1 | 26.3 | 2.88 | |
氯代芳烃 | 氯苯 | CB | 112.56 | 1.106 | 497.9 | 11.8 | 3.79 | 2.84 |
1,2-二氯苯 | 1,2-DCB | 147 | 1.306 | 91 | 1.56 | 1.92 | 3.38 | |
1,4-二氯苯 | 1,4-DCB | 147 | 1.241 | 174 | 1.03 | 1.88 | 3.38 | |
1,2,3-三氯苯 | 1,2,3-TCB | 181.45 | 1.69 | 0.07 | 26.5 | 4.139 | ||
1,3,5-三氯苯 | 1,3,5-TCB | 181.45 | 1.45 | 0.58 | 5.24 | 4.04 | ||
六氯苯 | HCB | 284.79 | 1.8 | 0.005 | 6.11 | 5.5 |
表1 25 ℃下典型CAHs的理化性质(据文献[28])
Table 1 Physical and chemical properties of typical CAHs at 25 ℃. Adapted from [28].
氯代烃 | 缩写 | 分子量/ (g·mol-1) | 密度ρ/ (g·mL-1) | 溶解度S/ (mg·L-1) | 蒸气压 p0/(133.322 Pa) | 亨利常数KH/ (101.325×10-3 kPa·m3·mol-1) | 辛醇-水分配 系数值的常 用对数lgKow | |
---|---|---|---|---|---|---|---|---|
氯代甲烷 | 氯甲烷 | CM | 50.5 | 0.92 | 5 235 | 4 275 | 9.6 | 0.91 |
二氯甲烷 | DCM | 84.9 | 1.33 | 13 200 | 415 | 1.7 | 1.25 | |
三氯甲烷 | CF | 119.4 | 1.49 | 8 200 | 196.8 | 3.8 | 1.97 | |
四氯化碳 | CT | 153.8 | 1.59 | 800 | 153.8 | 28.9 | 2.64 | |
氯代乙烷 | 氯乙烷 | CA | 64.5 | 0.90 | 5 700 | 120 | 1.8 | 1.43 |
1,2-二氯乙烷 | 1,2-DCA | 99.0 | 1.25 | 8 606 | 79.0 | 1.2 | 1.48 | |
1,1,2-三氯乙烷 | 1,1,2-TCA | 133.4 | 1.44 | 4 394 | 24.2 | 0.96 | 2.38 | |
1,1,1,2-四氯乙烷 | 1,1,1,2-TeCA | 167.9 | 1.54 | 1 100 | 11.9 | 2.4 | ||
氯代丙烷 | 1,2-二氯丙烷 | 1,2-DCP | 112.99 | 1.156 | 2 800 | 53.9 | 2.74 | 1.99 |
1,2,3-三氯丙烷 | 1,2,3-TCP | 147.43 | 1.387 | 1 750 | 3.1 | 34.5 | 2.27 | |
氯代乙烯 | 氯乙烯 | VC | 62.5 | 0.91 | 2 763 | 2 660 | 79.2 | 1.38 |
顺式-1,2-二氯乙烯 | cis-DCE | 96.9 | 1.28 | 3 500 | 203 | 7.4 | 1.86 | |
反式-1,2-二氯乙烯 | trans-DCE | 96.9 | 1.26 | 6 260 | 333 | 6.8 | 1.93 | |
三氯乙烯 | TCE | 131.4 | 1.46 | 1 100 | 74.2 | 11.7 | 2.53 | |
四氯乙烯 | PCE | 165.8 | 1.63 | 150 | 18.1 | 26.3 | 2.88 | |
氯代芳烃 | 氯苯 | CB | 112.56 | 1.106 | 497.9 | 11.8 | 3.79 | 2.84 |
1,2-二氯苯 | 1,2-DCB | 147 | 1.306 | 91 | 1.56 | 1.92 | 3.38 | |
1,4-二氯苯 | 1,4-DCB | 147 | 1.241 | 174 | 1.03 | 1.88 | 3.38 | |
1,2,3-三氯苯 | 1,2,3-TCB | 181.45 | 1.69 | 0.07 | 26.5 | 4.139 | ||
1,3,5-三氯苯 | 1,3,5-TCB | 181.45 | 1.45 | 0.58 | 5.24 | 4.04 | ||
六氯苯 | HCB | 284.79 | 1.8 | 0.005 | 6.11 | 5.5 |
图2 厌氧还原脱氯过程(A)、好氧共代谢过程(B)和异养同化过程(C)(据文献[54]修改)
Fig.2 CAH biodegradation mechanisms via anaerobic reduction dichlorination (A), aerobic cometabolism (B) and heterotrophic assimilation (C). Modified from [54].
污染物 | 微生物 | 微生物生长 温度/℃ (pH) | 需/厌氧 | 菌株分离位点 | 降解效果 |
---|---|---|---|---|---|
c-1,2-DCE/ t-1,2-DCE | Achromobacter xylosoxidans strain 2002-55549[ | 30(7.0) | 需氧 | 非洲污染土壤 | 7 d降解效率可达75% |
CB | Acinetobacter sp. CB001[ | 25(7.2) | 需氧 | 吉林石化公司污水处理 厂好氧活性污泥 | 120 h后降解效率 达到98.2% |
CH3Cl | Bacillus(GBB416)[ | 26(7.0) | 需氧 | 尼日利亚奥巴费米阿沃罗沃 大学垃圾场表层土 | 在4 h左右微生物可达 到生长最高峰 |
c-1,2-DCE | Burkholderia sp.[ | 35(7.5) | 需氧 | 尼日利亚和南非的工厂和 生活垃圾场周围污染土壤 | 降解效率可达59% |
c-1,2-DCE | Corynebacterium sp.[ | 需氧 | 尼日利亚和南非的工厂和 生活垃圾场周围污染土壤 | 降解效率可达86% | |
CB | Delftia tsuruhatensis LW26[ | 30(7.2) | 需氧 | 生物滴滤塔中生物膜 | 24 h后去除率达99%以上 |
1,2,3-TCB | Enterobacter sp. SA-2[ | 25(7.0) | 需氧 | 尼日利亚变压器车间 中深度约10 cm土壤 | 19 h后降解效率可达84% |
1,4-DCB | Flavobacterium sp. DEB-1[ | 30(7.8) | 需氧 | 常州化工厂污水处理 曝气池中活性污泥 | 24 h后降解效率可达 80%以上 |
c-1,2-DCE/ t-1,2-DCE | Klebsiella sp. HL1[ | 30(7.0) | 需氧 | 非洲污染土壤 | 7 d降解效率分别可达 75.00%和71.83% |
VC | Mycobacterium strain JS623[ | 30(7.2) | 需氧 | 沙质花园土壤 | |
1,1,2-TCA | Rhodococcus sp. PB1[ | 30 | 需氧 | 混合菌群 | 最终降解效率可达90%以上 |
VC | Pseudomonas EA1[ | 22 | 需氧 | 厄巴纳州、伊利诺斯州污水 处理厂活性污泥混合培养物 | 降解效率可达98.4%以上 |
TCE | Variovorax spp.[ | 22~24 | 需氧 | 污染场地深度2.4~2.7 m和 3.7~8.2 m土壤和白云石 | 100 d降解效率可达约90% |
TCE | Dehalococcoides ethenogenes strain 195[ | 34 | 厌氧 | 污水处理厂厌氧反应器 中消化器污泥 | TCE 20 d可单独完全降解、 共培养7 d可降解 |
表2 典型微生物强化的生长/降解最适条件和降解效果
Table 2 Optimal conditions and outcomes of CAH degradation under bioaugmentation
污染物 | 微生物 | 微生物生长 温度/℃ (pH) | 需/厌氧 | 菌株分离位点 | 降解效果 |
---|---|---|---|---|---|
c-1,2-DCE/ t-1,2-DCE | Achromobacter xylosoxidans strain 2002-55549[ | 30(7.0) | 需氧 | 非洲污染土壤 | 7 d降解效率可达75% |
CB | Acinetobacter sp. CB001[ | 25(7.2) | 需氧 | 吉林石化公司污水处理 厂好氧活性污泥 | 120 h后降解效率 达到98.2% |
CH3Cl | Bacillus(GBB416)[ | 26(7.0) | 需氧 | 尼日利亚奥巴费米阿沃罗沃 大学垃圾场表层土 | 在4 h左右微生物可达 到生长最高峰 |
c-1,2-DCE | Burkholderia sp.[ | 35(7.5) | 需氧 | 尼日利亚和南非的工厂和 生活垃圾场周围污染土壤 | 降解效率可达59% |
c-1,2-DCE | Corynebacterium sp.[ | 需氧 | 尼日利亚和南非的工厂和 生活垃圾场周围污染土壤 | 降解效率可达86% | |
CB | Delftia tsuruhatensis LW26[ | 30(7.2) | 需氧 | 生物滴滤塔中生物膜 | 24 h后去除率达99%以上 |
1,2,3-TCB | Enterobacter sp. SA-2[ | 25(7.0) | 需氧 | 尼日利亚变压器车间 中深度约10 cm土壤 | 19 h后降解效率可达84% |
1,4-DCB | Flavobacterium sp. DEB-1[ | 30(7.8) | 需氧 | 常州化工厂污水处理 曝气池中活性污泥 | 24 h后降解效率可达 80%以上 |
c-1,2-DCE/ t-1,2-DCE | Klebsiella sp. HL1[ | 30(7.0) | 需氧 | 非洲污染土壤 | 7 d降解效率分别可达 75.00%和71.83% |
VC | Mycobacterium strain JS623[ | 30(7.2) | 需氧 | 沙质花园土壤 | |
1,1,2-TCA | Rhodococcus sp. PB1[ | 30 | 需氧 | 混合菌群 | 最终降解效率可达90%以上 |
VC | Pseudomonas EA1[ | 22 | 需氧 | 厄巴纳州、伊利诺斯州污水 处理厂活性污泥混合培养物 | 降解效率可达98.4%以上 |
TCE | Variovorax spp.[ | 22~24 | 需氧 | 污染场地深度2.4~2.7 m和 3.7~8.2 m土壤和白云石 | 100 d降解效率可达约90% |
TCE | Dehalococcoides ethenogenes strain 195[ | 34 | 厌氧 | 污水处理厂厌氧反应器 中消化器污泥 | TCE 20 d可单独完全降解、 共培养7 d可降解 |
[1] | XIAO Z X, JIANG W, CHEN D, et al. Bioremediation of typical chlorinated hydrocarbons by microbial reductive dechlorination and its key players: a review[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110925. |
[2] | LIN X Q, LI Z L, LIANG B, et al. Accelerated microbial reductive dechlorination of 2, 4, 6-trichlorophenol by weak electrical stimulation[J]. Water Research, 2019, 162: 236-245. |
[3] | 陆强, 李辉, 林匡飞, 等. 上海浦东某氯代烃场地地下水污染现状调查[J]. 环境科学学报, 2016, 36(5): 1730-1737. |
[4] | HEIDRICH S, WEIß H, KASCHL A. Attenuation reactions in a multiple contaminated aquifer in Bitterfeld (Germany)[J]. Environmental Pollution, 2004, 129(2): 277-288. |
[5] | 安琼, 董元华, 王辉, 等. 南京地区土壤中有机氯农药残留及其分布特征[J]. 环境科学学报, 2005, 25(4): 470-474. |
[6] | 邵波, 刘勇, 李鑫, 等. 长三角地区土壤中有机氯农药残留量及其分布特征[J]. 环境化学, 2018, 37(4): 824-835. |
[7] | WANG S Q, CHEN S Y, WANG Y, et al. Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): a perfect marriage for the remediation of organohalide pollutants?[J]. Biotechnology Advances, 2016, 34(8): 1384-1395. |
[8] | 王慧玲, 王峰, 张学平, 等. 气相抽提法去除土壤中挥发性有机污染物现场试验研究[J]. 科学技术与工程, 2015, 15(10): 238-242, 246. |
[9] | 赵中华. 含氯有机污染土壤热脱附及联合处置研究[D]. 杭州: 浙江大学, 2018. |
[10] | 王静, 张峰, 刘路. 多相抽提技术的发展现状与展望[J]. 广州化工, 2019, 47(8): 14-18. |
[11] | 宋震宇, 杨伟, 王文茜, 等. 氯代烃污染地下水修复技术研究进展[J]. 环境科学与管理, 2014, 39(4): 95-99. |
[12] | 王泓泉. 污染地下水可渗透反应墙(PRB)技术研究进展[J]. 环境工程技术学报, 2020, 10(2): 251-259. |
[13] | LEE M, KANG H, DO W. Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site[J]. Water Research, 2005, 39(1): 139-146. |
[14] | 冯俊生, 张俏晨. 土壤原位修复技术研究与应用进展[J]. 生态环境学报, 2014, 23(11): 1861-1867. |
[15] | HERON G, PARKER K, GALLIGAN J, et al. Thermaltreatment of eight CVOC source zones to near nondetect concentrations[J]. Groundwater Monitoring and Remediation, 2009, 29(3): 56-65. |
[16] | 杨玉洁, 王春雨, 沙雪华, 等. 烃类污染土壤热强化气相抽提技术的脱附动力学[J]. 环境工程学报, 2019, 13(10): 2328-2335. |
[17] | 王磊, 龙涛, 张峰, 等. 用于土壤及地下水修复的多相抽提技术研究进展[J]. 生态与农村环境学报, 2014, 30(2): 137-145. |
[18] | 张云达, 顾春杰, 何健, 等. 多相抽提技术在有机复合污染场地治理中的应用[J]. 上海建设科技, 2018(1): 71-74. |
[19] | BORTONI S F, SCHLOSSER R T, BARBOSA M C. Numerical modeling of multiphase extraction (MPE) aiming at LNAPL recovery in tropical soils[J]. Water, 2019, 11(11): 2248. |
[20] | YANG Z H, OU J H, DONG C D, et al. Remediation of TCE-contaminated groundwater using KMnO4 oxidation: laboratory and field-scale studies[J]. Environmental Science and Pollution Research, 2019, 26(33): 34027-34038. |
[21] | WEST M R, KUEPER B H. Numerical simulation of DNAPL source zone remediation with in situ chemical oxidation (ISCO)[J]. Advances in Water Resources, 2012, 44: 126-139. |
[22] | HENDERSON A D, DEMOND A H. Long-term performance of zero-valent iron permeable reactive barriers: a critical review[J]. Environmental Engineering Science, 2007, 24(4): 401-423. |
[23] | RITTER K, ODZIEMKOWSKI M S, SIMPGRAGA R, et al. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron[J]. Journal of Contaminant Hydrology, 2003, 65(1/2): 121-136. |
[24] | FARRELL J, KASON M, MELITAS N, et al. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene[J]. Environmental Science and Technology, 2000, 34(3): 514-521. |
[25] | SHARMA P, KOSTARELOS K, LENSCHOW S, et al. Surfactant flooding makes a comeback: results of a full-scale, field implementation to recover mobilized NAPL[J]. Journal of Contaminant Hydrology, 2020, 230: 103602. |
[26] | 任加国, 郜普闯, 徐祥健, 等. 地下水氯代烃污染修复技术研究进展[J]. 环境科学研究, 2021, 34(7): 1641-1653. |
[27] | 付全凯, 王琪, 姜林. 氯代烃污染土壤的纳米零价铁厌氧修复研究[J]. 环境科学与技术, 2019, 42(8): 110-117. |
[28] | CWIERTNY D M, SCHERER M M. Chlorinated solvent chemistry: structures, nomenclature and properties[M]// SERDP/ESTCP environmental remediation technology. New York: Springer, 2010: 29-37. |
[29] | BIZIUK M, PRZYJAZNY A. Methods of isolation and determination of volatile organohalogen compounds in natural and treated waters[J]. Journal of Chromatography A, 1996, 733(1/2): 417-448. |
[30] | PAGAN M, COOPER W J, JOENS J A. Kinetic studies of the homogeneous abiotic reactions of several chlorinated aliphatic compounds in aqueous solution[J]. Applied Geochemistry, 1998, 13(6): 779-785. |
[31] | HUANG B B, LEI C, WEI C H, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment: sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71: 118-138. |
[32] | BEAMER P I, LUIK C E, ABRELL L, et al. Concentration of trichloroethylene in breast milk and household water from Nogales, Arizona[J]. Environmental Science and Technology, 2012, 46(16): 9055-9061. |
[33] | TARDIFF R G, CARSON M L. Derivation of a reference dose and drinking water equivalent level for 1, 2, 3-trichloropropane[J]. Foodand Chemical Toxicology, 2010, 48(6): 1488-1510. |
[34] | 胡黎明, 邢巍巍, 吴照群. 多孔介质中非水相流体运移的数值模拟[J]. 岩土力学, 2007, 28(5): 951-955. |
[35] | BOURG A C, MOUVET C, LERNER D N. A review of the attenuation of trichloroethylene in soils and aquifers[J]. Quarterly Journal of Engineering Geology, 1992, 25(4): 359-370. |
[36] | QIAO WJ, LIU G P, LI M Y, et al. Complete reductive dechlorination of 4-hydroxy-chlorothalonil by dehalogenimonas populations[J]. Environmental Science and Technology, 2022, 56(17): 12237-12246. |
[37] | 邓亚平, 郑菲, 施小清, 等. 多孔介质中DNAPLs运移行为研究进展[J]. 南京大学学报(自然科学), 2016, 52(3): 409-420. |
[38] | LAMICHHANE S, BAL KRISHNA K C, SARUKKALIGE R. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: a review[J]. Journal of Environmental Management, 2017, 199: 46-61. |
[39] | ALDHALEAI A, TSAI P A. Effect of acationic surfactant on droplet wetting on superhydrophobic surfaces[J]. Langmuir, 2020, 36(16): 4308-4316. |
[40] | 郑菲, 高燕维, 施小清, 等. 地下水流速及介质非均质性对重非水相流体运移的影响[J]. 水利学报, 2015, 46(8): 925-933. |
[41] | NIJENHUIS I, KUNTZE K. Anaerobic microbial dehalogenation of organohalides: state of the art and remediation strategies[J]. Current Opinion in Biotechnology, 2016, 38: 33-38. |
[42] | JESUS J, FRASCARI D, POZDNIAKOVA T, et al. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: a review[J]. Journal of Hazardous Materials, 2016, 309: 37-52. |
[43] | 张浩, 邢志林, 汪军, 等. 异养同化降解氯代烃的研究现状、微生物代谢特性及展望[J]. 生物工程学报, 2020, 36(6): 1083-1100. |
[44] | ABE Y, ARAVENA R, ZOPFI J, et al. Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods[J]. Journal of Contaminant Hydrology, 2009, 107(1/2): 10-21. |
[45] | FUTAGAMI T, MORONO Y, TERADA T, et al. Dehalogenation activities and distribution of reductive dehalogenase homologous genes in marine subsurface sediments[J]. Applied and Environmental Microbiology, 2009, 75(21): 6905-6909. |
[46] | KRZMARZICK M J, CRARY B B, HARDING J J, et al. Natural niche for organohalide-respiring Chloroflexi[J]. Applied and Environmental Microbiology, 2012, 78(2): 393-401. |
[47] | YANG Y, HIGGINS S A, YAN J, et al. Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes[J]. The ISME Journal, 2017, 11(12): 2767-2780. |
[48] | RICHARDSON R E. Genomic insights into organohalide respiration[J]. Current Opinion in Biotechnology, 2013, 24(3): 498-505. |
[49] | MEN Y J, FEIL H, VERBERKMOES N C, et al. Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses[J]. The ISME Journal, 2012, 6(2): 410-421. |
[50] | AULENTA F, MAJONE M, TANDOI V. Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions[J]. Journal of Chemical Technologyand Biotechnology, 2006, 81(9): 1463-1474. |
[51] | 王琪, 刘辉, 姜林, 等. 共存氯苯类同系物对六氯苯厌氧降解活性的影响[J]. 环境科学, 2014, 35(4): 1358-1365. |
[52] | MCLEAN J E, ERVIN J, ZHOU J, et al. Biostimulation and bioaugmentation to enhance reductive dechlorination of TCE in a long-term flow through column study[J]. Groundwater Monitoring and Remediation, 2015, 35(3): 76-88. |
[53] | 崔逸儒, 杨毅, 严俊, 等. 脱卤单胞菌属在厌氧降解有机氯化物及污染场地修复应用中的研究进展[J]. 生物工程学报, 2021, 37(10): 3565-3577. |
[54] | XING Z L, SU X, ZHANG X P, et al. Direct aerobic oxidation (DAO) of chlorinated aliphatic hydrocarbons: a review of key DAO bacteria, biometabolic pathways and in situ bioremediation potential[J]. Environment International, 2022, 162: 107165. |
[55] | SMIDT H, DE VOS W M. Anaerobic microbial dehalogenation[J]. Annual Review of Microbiology, 2004, 58: 43-73. |
[56] | YANG Y, SANFORD R, YAN J, et al. Roles of organohalide-respiring dehalococcoidia in carbon cycling[J]. mSystems, 2020, 5(3): e00719-e00757. |
[57] | MATTES T E, JIN Y O, LIVERMORE J, et al. Abundance and activity of vinyl chloride (VC)-oxidizing bacteria in a dilute groundwater VC plume biostimulated with oxygen and ethene[J]. Applied Microbiology and Biotechnology, 2015, 99(21): 9267-9276. |
[58] | FRASCARI D, ZANAROLI G, DANKO A S. In situ aerobic cometabolism of chlorinated solvents: a review[J]. Journal of Hazardous Materials, 2015, 283: 382-399. |
[59] | 杨旭, 邢志林, 张丽杰. 填埋场氯代烃生物降解过程的机制转化与调控研究及展望[J]. 微生物学报, 2017, 57(4): 468-479. |
[60] | ELANGO V, KURTZ H D, FREEDMAN D L. Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates[J]. Chemosphere, 2011, 84(2): 247-253. |
[61] | FRASCARI D, CAPPELLETTI M, FEDI S, et al. 1, 1, 2, 2-Tetrachloroethane aerobic cometabolic biodegradation in slurry and soil-free bioreactors: a kinetic study[J]. Biochemical Engineering Journal, 2010, 52(1): 55-64. |
[62] | 滕菲, 杨雪莲, 李凤梅, 等. 微生物对环境中难降解有机污染物共代谢作用[J]. 微生物学杂志, 2016, 36(3): 80-85. |
[63] | LIU S, ZHAO T T, XING Z L, et al. Advances in biotic and abiotic mutual promoting mechanism for chlorinated aliphatic hydrocarbons degradation[J]. Chinese Journal of Biotechnology, 2018, 34(4): 510-524. |
[64] | TOM KUO M C, LIANG K F, HAN Y L, et al. Pilot studies for in situ aerobic cometabolism of trichloroethylene using toluene-vapor as the primary substrate[J]. Water Research, 2004, 38(19): 4125-4134. |
[65] | 赵建国, 李亚鹤, 杨浩洁, 等. 基于不同共代谢碳源降解4-氯苯酚的研究[J]. 环境污染与防治, 2019, 41(3): 270-273, 278. |
[66] | 戴青华, 曹晓丹, 孙向武. 1, 4-二氯苯降解菌的分离及其降解特性研究[J]. 环境工程学报, 2009, 3(12): 2219-2222. |
[67] | OLANIRAN A O, OKOH A I, AJISEBUTU S, et al. The aerobic dechlorination activities of two bacterial species isolated from a refuse dumpsite in Nigeria[J]. International Microbiology, 2002, 5(1): 21-24. |
[68] | ADEBUSOYE S A, PICARDAL F W, ILORI M O, et al. Aerobic degradation of di- and trichlorobenzenes by two bacteria isolated from polluted tropical soils[J]. Chemosphere, 2007, 66(10): 1939-1946. |
[69] | REHFUSS M, URBAN J. Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources[J]. Systematic and Applied Microbiology, 2005, 28(8): 695-701. |
[70] | TAYLOR A E, DOLAN M E, BOTTOMLEY P J, et al. Utilization of fluoroethene as a surrogate for aerobic vinyl chloride transformation[J]. Environmental Science and Technology, 2007, 41(18): 6378-6383. |
[71] | SCHAEFER J K, GOODWIN K D, MCDONALD I R, et al. Leisingera methylohalidivorans gen. nov., sp. nov., a marine methylotroph that grows on methyl bromide[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(Pt 3): 851-859. |
[72] | 刘洪霞, 朱润晔, 欧阳杜娟, 等. 二氯甲烷降解菌Methylobacterium rhodesianum H13的分离鉴定及降解特性研究[J]. 环境科学, 2013, 34(9): 3613-3619. |
[73] | WU S J, HU Z H, ZHANG L L, et al. A novel dichloromethane-degrading Lysinibacillus sphaericus strain wh22 and its degradative plasmid[J]. Applied Microbiology and Biotechnology, 2009, 82(4): 731-740. |
[74] | JIN Y O, MATTES T E. Adaptation of aerobic, ethene-assimilating Mycobacterium strains to vinyl chloride as a growth substrate[J]. Environmental Science and Technology, 2008, 42(13): 4784-4789. |
[75] | MUNDLE S O C, SPAIN J C, LACRAMPE-COULOUME G, et al. Branched pathways in the degradation of cDCE by cytochrome P450 in Polaromonas sp. JS666[J]. Science of the Total Environment, 2017, 605/606: 99-105. |
[76] | 李明堂, 郝林琳, 崔俊涛, 等. 好氧氯苯降解菌的分离鉴定[J]. 微生物学报, 2010, 50(5): 586-592. |
[77] | 叶杰旭, 林彤晖, 骆煜昊, 等. 1株氯苯高效降解菌的分离鉴定及降解特性[J]. 环境科学, 2017, 38(2): 802-808. |
[78] | MONFERRÁN M V, ECHENIQUE J R, WUNDERLIN D A. Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer[J]. Chemosphere, 2005, 61(1): 98-106. |
[79] | LIANG Y, LIU X K, SINGLETARY M A, et al. Relationships between the abundance and expression of functional genes from vinyl chloride (VC)-degrading bacteria and geochemical parameters at VC-contaminated sites[J]. Environmental Science and Technology, 2017, 51(21): 12164-12174. |
[80] | LIANG Y, COOK L J, MATTES T E. Temporal abundance and activity trends of vinyl chloride (VC)-degrading bacteria in a dilute VC plume at Naval Air Station Oceana[J]. Environmental Science and Pollution Research, 2017, 24(15): 13760-13774. |
[81] | WANG M W, ZHAO Z Q, NIU J F, et al. Potential of crystalline and amorphous ferric oxides for biostimulation of anaerobic digestion[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(1): 697-708. |
[82] | HENRY B M. Biostimulation foranaerobic bioremediation of chlorinated solvents[M]// SERDP/ESTCP environmental remediation technology. New York: Springer, 2010: 357-423. |
[83] | ATASHGAHI S, LU Y, ZHENG Y, et al. Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol[J]. Environmental Microbiology, 2017, 19(3): 968-981. |
[84] | WILSON J T, WILSON B H. Biotransformation of trichloroethylene in soil[J]. Applied and Environmental Microbiology, 1985, 49(1): 242-243. |
[85] | 艾铄, 赵天涛, 张丽杰, 等. 双塞头固定化细胞反应器降解TCE[J]. 应用与环境生物学报, 2017, 23(5): 900-906. |
[86] | MOLINS S, MAYER K U, AMOS R T, et al. Vadose zone attenuation of organic compounds at a crude oil spill site: interactions between biogeochemical reactions and multicomponent gas transport[J]. Journal of Contaminant Hydrology, 2010, 112(1/2/3/4): 15-29. |
[87] | OLANIRAN A O, PILLAY D, PILLAY B. Haloalkane and haloacid dehalogenases from aerobic bacterial isolates indigenous to contaminated sites in Africa demonstrate diverse substrate specificities[J]. Chemosphere, 2004, 55(1): 27-33. |
[88] | JIN Y O, CHEUNG S, COLEMAN N V, et al. Association of missense mutations in epoxyalkane coenzyme M transferase with adaptation of Mycobacterium sp. strain JS623 to growth on vinyl chloride[J]. Applied and Environmental Microbiology, 2010, 76(11): 3413-3419. |
[89] | FRASCARI D, PINELLI D, NOCENTINI M, et al. A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp. PB1[J]. Biochemical Engineering Journal, 2008, 42(2): 139-147. |
[90] | VERCE M F, FREEDMAN D L. Modeling the kinetics of vinyl chloride cometabolism by an ethane-grown Pseudomonas sp.[J]. Biotechnology and Bioengineering, 2000, 71(4): 274-285. |
[91] | MAYMÓ-GATELL X, CHIEN Y T, GOSSETT J M, et al. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene[J]. Science, 1997, 276(5318): 1568-1571. |
[92] | OLANIRAN A O, PILLAY D, PILLAY B. Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated from contaminated sites in Africa[J]. Chemosphere, 2008, 73(1): 24-29. |
[93] | QIAO W J, LUO F, LOMHEIM L, et al. Natural attenuation and anaerobic benzene detoxification processes at a chlorobenzene-contaminated industrial site inferred from field investigations and microcosm studies[J]. Environmental Science and Technology, 2018, 52(1): 22-31. |
[94] | MECKENSTOCK R U, SAFINOWSKI M, GRIEBLER C. Anaerobic degradation of polycyclic aromatic hydrocarbons[J]. FEMS Microbiology Ecology, 2004, 49(1): 27-36. |
[95] | BOUZID I, PINO HERRERA D, DIERICK M, et al. A new foam-based method for the (bio)degradation of hydrocarbons in contaminated vadose zone[J]. Journal of Hazardous Materials, 2021, 401: 123420. |
[96] | KURT Z, SPAIN J C. Biodegradation of chlorobenzene, 1, 2-dichlorobenzene, and 1, 4-dichlorobenzene in the vadose zone[J]. Environmental Science and Technology, 2013, 47(13): 6846-6854. |
[97] | GONG T, XU X Q, CHE Y, et al. Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1, 2, 3-trichloropropane[J]. Scientific Reports, 2017, 7: 7064. |
[98] | RIHA B D, NOONKESTER J V, LOONEY B B, et al. Application of biodegradable oils (VOSTM) for treatment of chlorinated ethenes in the vadose zone-12085[C]. Phoenix: WM2012 Conference, 2012. |
[99] | SCHEUTZ C, BROHOLM M M, DURANT N D, et al. Fieldevaluation of biological enhanced reductive dechlorination of chloroethenes in clayey till[J]. Environmental Science and Technology, 2010, 44(13): 5134-5141. |
[100] | LI X Q, ELLIOTT D, ZHANG W X. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects[J]. Critical Reviews in Solid State and Material Sciences, 2006, 31(4): 111-122. |
[101] | XIE Y K, DONG H R, ZENG G M, et al. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: a review[J]. Journal of Hazardous Materials, 2017, 321: 390-407. |
[102] | DONG H R, XIE Y K, ZENG G M, et al. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron[J]. Chemosphere, 2016, 144: 1682-1689. |
[103] | WEI Y T, WU S C, YANG S W, et al. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1, 2-dichloroethane[J]. Journal of Hazardous Materials, 2012, 211/212: 373-380. |
[104] | TOSCO T, PAPINI M P, VIGGI C C, et al. Nanoscale zerovalent iron particles for groundwater remediation: a review[J]. Journal of Cleaner Production, 2014, 77: 10-21. |
[105] | CHEN Z Z, TANG X J, QIAO W J, et al. Nanoscale zero-valent iron reduction coupled with anaerobic dechlorination to degrade hexachlorocyclohexane isomers in historically contaminated soil[J]. Journal of Hazardous Materials, 2020, 400: 123298. |
[106] | CHAPELLE F H, BRADLEY P M, CASEY C C. Behavior of a chlorinated ethene plume following source-area treatment with Fenton’s reagent[J]. Groundwater Monitoring and Remediation, 2005, 25(2): 131-141. |
[107] | DOLINOVÁ I, CZINNEROVÁ M, DVOŘÁK L, et al. Dynamics of organohalide-respiring bacteria and their genes following in-situ chemical oxidation of chlorinated ethenes and biostimulation[J]. Chemosphere, 2016, 157: 276-285. |
[108] | BRUSTAD E M, ARNOLD F H. Optimizing non-natural protein function with directed evolution[J]. Current Opinion in Chemical Biology, 2011, 15(2): 201-210. |
[109] | 廖茜. 环境污染物1, 2, 3-三氯丙烷降解途径的构建及优化[D]. 成都: 电子科技大学, 2018. |
[110] | LEONARD E, AJIKUMAR P K, THAYER K, et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13654-13659. |
[111] | BOGALE T F, GUL I, WANG L, et al. Biodegradation of 1, 2, 3-trichloropropane to valuable (S)-2, 3-DCP using a one-pot reaction system[J]. Catalysts, 2019, 10(1): 3. |
[112] | 诸毅. 多相抽提和强化原位生物修复联合修复技术应用[J]. 广州化工, 2022, 50(11): 114-117. |
[113] | CHILDS J D, ACOSTA E, KNOX R, et al. Improving the extraction of tetrachloroethylene from soil columns using surfactant gradient systems[J]. Journal of Contaminant Hydrology, 2004, 71(1/2/3/4): 27-45. |
[114] | XU Z Q, HUANG J Y, FU R B, et al. Enhanced trichloroethylene degradation in the presence of surfactant: pivotal role of Fe(II)/nZVI catalytic synergy in persulfate system[J]. Separation and Purification Technology, 2021, 272: 118885. |
[115] | RAMSBURG C A, PENNELL K D. Experimental and economic assessment of two surfactant formulations for source zone remediation at a former dry cleaning facility[J]. Groundwater Monitoring and Remediation, 2001, 21(4): 68-82. |
[116] | NĚMEČEK J, STEINOVÁ J, ŠPÁNEK R, et al. Thermally enhanced in situ bioremediation of groundwater contaminated with chlorinated solvents: a field test[J]. Science of the Total Environment, 2018, 622/623: 743-755. |
[117] | VAN DER PLOEG J, VAN HALL G, JANSSEN D B. Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene[J]. Journal of Bacteriology, 1991, 173(24): 7925-7933. |
[118] | RYOO D, SHIM H, CANADA K, et al. Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1[J]. Nature Biotechnology, 2000, 18(7): 775-778. |
[119] | VARZAGHANI N B, SHOKROLLAHZADEH S, FARAZMAND A. Biodegradation of tetrachloroethylene by a newly isolated aerobic Sphingopyxis ummariensis VR13[J]. Korean Journal of Chemical Engineering, 2019, 36(8): 1305-1312. |
[120] | MATTES T E, ALEXANDER A K, COLEMAN N V. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution[J]. FEMS Microbiology Reviews, 2010, 34(4): 445-475. |
[121] | DISTEFANO T D, GOSSETT J M, ZINDER S H. Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture[J]. Applied and Environmental Microbiology, 1992, 58(11): 3622-3629. |
[122] | 李海明, 陈鸿汉, 郑西来. 某城市工业区浅层地下水CAHs污染特征[J]. 地学前缘, 2005, 12(增刊1): 132-138. |
[123] | WANG C, QU L R, YANG L M, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon[J]. Global Change Biology, 2021, 27(10): 2039-2048. |
[124] | 谢佳, 马晓航, 代嫣然, 等. 有机质对城市湿地微生物丰度的影响[J]. 生物技术通报, 2017, 33(10): 217-224. |
[125] | 解雪峰, 项琦, 吴涛, 等. 滨海湿地生态系统土壤微生物及其影响因素研究综述[J]. 生态学报, 2021, 41(1): 1-12. |
[126] | MUKHERJEE P, ROY P. Purification and identification of trichloroethylene induced proteins from Stenotrophomonas maltophilia PM102 by immuno-affinity-chromatography and MALDI-TOF Mass spectrometry[J]. SpringerPlus, 2013, 2(1): 207. |
[127] | 马欣程, 徐红霞, 孙媛媛, 等. 氯代烃污染场地生物自然衰减修复研究进展[J]. 中国环境科学, 2022, 42(11): 5285-5298. |
[128] | 温丽莲. 三氯乙烯厌氧生物还原及与高氯酸盐同步脱氯机制研究[D]. 杭州: 浙江大学, 2018. |
[129] | AMOS B K, RITALAHTI K M, CRUZ-GARCIA C, et al. Oxygen effect on Dehalococcoides viability and biomarker quantification[J]. Environmental Science and Technology, 2008, 42(15): 5718-5726. |
[130] | 郭莹, 崔康平. 硫酸盐还原对三氯乙烯生物降解的影响[J]. 环境工程学报, 2014, 8(10): 4159-4162. |
[131] | 李烨, 潘涛, 刘菲, 等. 四氯乙烯在不同地下水环境的生物共代谢降解[J]. 岩矿测试, 2012, 31(4): 682-688. |
[132] | 李明堂. 第二松花江典型氯代烃类污染物的微生物降解研究[D]. 长春: 东北师范大学, 2008. |
[133] | LIEN P J, YANG Z H, CHANG Y M, et al. Enhanced bioremediation of TCE-contaminated groundwater with coexistence of fuel oil: effectiveness and mechanism study[J]. Chemical Engineering Journal, 2016, 289: 525-536. |
[134] | ZHANG X D, LUO M Y, DENG S P, et al. Field study of microbial community structure and dechlorination activity in a multi-solvents co-contaminated site undergoing natural attenuation[J]. Journal of Hazardous Materials, 2022, 423: 127010. |
[135] | 周玲. PCE及低氯代烯烃在不同环境下生物降解性能研究[D]. 天津: 天津大学, 2018. |
[136] | 赵天涛, 邢志林, 张丽杰, 等. 氯代烯烃胁迫下菌群SWA1的降解活性及群落结构[J]. 中国环境科学, 2017, 37(12): 4637-4648. |
[137] | SING H, LÖFFLER F E, FATHEPURE B Z. Aerobic biodegradation of vinyl chloride by a highly enriched mixed culture[J]. Biodegradation, 2004, 15(3): 197-204. |
[138] | SCHMIDT K R, GAZA S, VOROPAEV A, et al. Aerobic biodegradation of trichloroethene without auxiliary substrates[J]. Water Research, 2014, 59: 112-118. |
[139] | MAJOR D W, MCMASTER M L, COX E E, et al. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene[J]. Environmental Science and Technology, 2002, 36: 5106-5116. |
[140] | CUPPLES A M, SPORMANN A M, MCCARTY P L. Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms[J]. Environmental Science and Technology, 2004, 38(18): 4768-4774. |
[1] | 曹建华, 杨慧, 黄芬, 张春来, 张连凯, 朱同彬, 周孟霞, 袁道先. 岩溶碳汇原理、过程与计量[J]. 地学前缘, 2024, 31(5): 358-376. |
[2] | 王汉雨, 周永章, 许娅婷, 王维曦, 曹伟, 刘永强, 贺炬翔, 陆可飞. 基于微服务架构的城市土壤污染物联网监测及可视化系统研发[J]. 地学前缘, 2024, 31(4): 165-182. |
[3] | 严丽萍, 谢先明, 汤振华. 基于物质来源解析的汕头市土壤重金属环境容量研究[J]. 地学前缘, 2024, 31(4): 403-416. |
[4] | 何佳汇, 毛海如, 薛洋, 廖福, 高柏, 饶志, 杨扬, 刘媛媛, 王广才. 赣抚平原东北部地下水硝酸盐浓度变化特征及成因[J]. 地学前缘, 2024, 31(3): 360-370. |
[5] | 刘海, 魏伟, 宋阳, 潘杨, 李迎春. 霍邱县城湖泊沉积物重金属污染特征、潜在生态风险及来源[J]. 地学前缘, 2024, 31(3): 420-431. |
[6] | 夏腾, 张家铭, 李书鹏, 郭丽莉, 王祺, 毛德强. 有机污染场地原位修复过程的地球物理动态监测与分析[J]. 地学前缘, 2024, 31(3): 432-442. |
[7] | 赵彬, 杨洋, 张昊, 金远亮, 侯德义. 汞污染地块分级风险管控技术体系研究[J]. 地学前缘, 2024, 31(2): 1-12. |
[8] | 李杉杉, 张荣, 费杨, 梁家辉, 杨兵, 王萌, 师华定, 陈世宝. Fe对稻田土壤重金属迁移转化影响机制及研究进展[J]. 地学前缘, 2024, 31(2): 103-110. |
[9] | 俞磊, 孙晓艺, 秦璐瑶, 王静, 王萌, 陈世宝. 基于作物Cd富集系数的土壤有效态Cd化学浸提方法筛选[J]. 地学前缘, 2024, 31(2): 111-120. |
[10] | 祝富杰, 曲龙泽, 李平, 魏文侠, 李培中, 王立夫, 李本行, 王姣, 任更波, 吴志能, 马小东. 恶臭污染的测定方法与预测模型研究进展[J]. 地学前缘, 2024, 31(2): 13-19. |
[11] | 王萌, 俞磊, 秦璐瑶, 孙晓艺, 王静, 刘佳晓, 陈世宝. 土壤环境基准的科学问题与研究方法:以Cd为例[J]. 地学前缘, 2024, 31(2): 147-156. |
[12] | 刘贺, 宋树贤, 孙梅, 李双双, 于小晶, 戴九兰. 土壤和植物中微塑料研究现状分析及检测方法研究进展[J]. 地学前缘, 2024, 31(2): 183-195. |
[13] | 刘永兵, 宿俊杰, 郭威, 王英男, 殷亚秋. 冀北花岗岩地区坡积-冲洪积型污染耕地土壤治理比较研究[J]. 地学前缘, 2024, 31(2): 196-203. |
[14] | 吕良华, 乔文静, 张晗, 叶淑君, 吴吉春, 王水, 蒋建东. 脱卤杆菌介导的厌氧微生物富集菌群对1,2,4-三氯苯的降解特性[J]. 地学前缘, 2024, 31(2): 472-480. |
[15] | 王晓宇, 屈雅静, 赵文浩, 马瑾. 美国场地土壤筛选值研究及其对中国土壤环境基准研究的启示[J]. 地学前缘, 2024, 31(2): 64-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||