地学前缘 ›› 2024, Vol. 31 ›› Issue (5): 358-376.DOI: 10.13745/j.esf.sf.2024.2.6
曹建华1,2,3(), 杨慧1,2,3, 黄芬1,2,3, 张春来1,2,3, 张连凯4, 朱同彬1,2,3, 周孟霞1,2,3, 袁道先1,2,3
收稿日期:
2023-08-12
修回日期:
2024-01-16
出版日期:
2024-09-25
发布日期:
2024-10-11
作者简介:
曹建华(1963—),男,研究员,博士生导师,主要从事岩溶碳循环过程观测与机理的研究工作。E-mail: cjianhua@mail.cgs.gov.cn
基金资助:
CAO Jianhua1,2,3(), YANG Hui1,2,3, HUANG Fen1,2,3, ZHANG Chunlai1,2,3, ZHANG Liankai4, ZHU Tongbin1,2,3, ZHOU Mengxia1,2,3, YUAN Daoxian1,2,3
Received:
2023-08-12
Revised:
2024-01-16
Online:
2024-09-25
Published:
2024-10-11
摘要:
岩溶生态系统碳循环由陆地生物碳循环(植物光合作用驱动)和岩溶碳循环(碳酸盐岩溶解风化驱动)两部分组成。岩溶碳循环与陆地生物碳循环存在协同作用,岩溶碳循环过程对陆地淡水生态系统产生显著影响。岩溶碳汇主要发生在岩溶和生物紧密联系的植物根系-土壤-岩石相互融合的表层岩溶带,在快速交互的地下水系统和地表水系统中发生迁移转化过程。当前流域岩溶碳汇计量存在至少3个方面的问题:(1)全岩溶流域中来源于碳酸盐岩的碳和来源于大气/土壤中的碳比例不清;(2)部分岩溶流域碳酸盐岩和硅酸盐岩风化溶解产生碳汇的量如何区分;(3)水生植物光合作用生产的内源有机碳与陆地生态系统的外源有机碳的贡献大小如何。建议岩溶碳汇计算要以流域为单元,通过确定流域边界,查明地质结构,分析土地覆被配置,揭示岩溶碳循环及碳汇效应影响的主控因子,建立反演和正演模型,估算流域岩溶和生物碳汇的贡献,填补岩溶碳汇服务价值评估的空白。
中图分类号:
曹建华, 杨慧, 黄芬, 张春来, 张连凯, 朱同彬, 周孟霞, 袁道先. 岩溶碳汇原理、过程与计量[J]. 地学前缘, 2024, 31(5): 358-376.
CAO Jianhua, YANG Hui, HUANG Fen, ZHANG Chunlai, ZHANG Liankai, ZHU Tongbin, ZHOU Mengxia, YUAN Daoxian. The principle, process, and measurement of karst carbon sink[J]. Earth Science Frontiers, 2024, 31(5): 358-376.
图1 全球内陆水体碱度与水-气界面CO2通量与碳酸盐岩分布的空间对应关系(据文献[7-8]修改)
Fig.1 Spatial correspondence between global inland water alkalinity, water-air interface CO2 flux, and carbonate rock distribution. Adapted from [7-8].
图4 桂林毛村岩溶碳循环试验场岩溶碳汇指标对降水事件的响应(据文献[23])
Fig.4 Response of karst carbon sink indicators to precipitation events in the Maocun karst carbon cycle test site, Guilin. Adapted from [23].
图5 桂林盘龙洞洞穴空气CO2分压和滴水水体中CO2分压动态变化(据文献[36])
Fig.5 Dynamic changes in CO2 partial pressure in cave air and drip water in Panlong Cave, Guilin. Adapted from [36].
样点 | T/℃ | pH | Ec/(μS·cm-1) | (mmol·L-1) | 水体中CO2物质的量浓度/ (mmol·L-1) | CO2逸出通量/ (mg·m-2·h-1) |
---|---|---|---|---|---|---|
A | 18.6 | 7.31 | 440 | 3.9 | 0.130 5 | 6 719.80 |
B | 18.6 | 7.326 | 439 | 3.9 | 0.094 5 | 4 309.16 |
C | 18.5 | 7.009 | 439 | 3.9 | 0.094 5 | 5 690.15 |
D | 18.6 | 6.985 | 439 | 4.0 | 0.094 5 | 4 361.60 |
E | 18.5 | 6.97 | 439 | 3.9 | 0.094 5 | 3 474.61 |
F | 18.3 | 6.915 | 437 | 3.9 | 0.094 5 | 2 935.89 |
表1 桂林寨底地下河出露地表后岩溶水体水化学及水-气界面CO2逸出动态(据文献[38])
Table 1 Dynamics of water chemistry and water-air interface CO2 evasion of karst water after emerging from the Zhaidi underground river in Guilin. Adapted from [38].
样点 | T/℃ | pH | Ec/(μS·cm-1) | (mmol·L-1) | 水体中CO2物质的量浓度/ (mmol·L-1) | CO2逸出通量/ (mg·m-2·h-1) |
---|---|---|---|---|---|---|
A | 18.6 | 7.31 | 440 | 3.9 | 0.130 5 | 6 719.80 |
B | 18.6 | 7.326 | 439 | 3.9 | 0.094 5 | 4 309.16 |
C | 18.5 | 7.009 | 439 | 3.9 | 0.094 5 | 5 690.15 |
D | 18.6 | 6.985 | 439 | 4.0 | 0.094 5 | 4 361.60 |
E | 18.5 | 6.97 | 439 | 3.9 | 0.094 5 | 3 474.61 |
F | 18.3 | 6.915 | 437 | 3.9 | 0.094 5 | 2 935.89 |
监测点 及类型 | CO2释放通量/(mg·m-2·h-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
岩溶水 | 外源水 | ||||||||
C1 | C2 | C3 | C4 | G1 | G2 | G3 | G4 | ||
雨季 | 146.78 | 170.42 | 218.91 | 179.61 | 15.40 | 11.99 | 21.31 | 16.82 | |
旱季 | 50.19 | 136.13 | 23.04 | 26.69 | 14.46 | 13.89 | 34.01 | 9.00 |
表2 漓江流域外源水和岩溶水水-气界面CO2释放通量对比表
Table 2 Comparison of CO2 release fluxes at the water-air interface between exogenous water and karst water in the Lijiang River basin
监测点 及类型 | CO2释放通量/(mg·m-2·h-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
岩溶水 | 外源水 | ||||||||
C1 | C2 | C3 | C4 | G1 | G2 | G3 | G4 | ||
雨季 | 146.78 | 170.42 | 218.91 | 179.61 | 15.40 | 11.99 | 21.31 | 16.82 | |
旱季 | 50.19 | 136.13 | 23.04 | 26.69 | 14.46 | 13.89 | 34.01 | 9.00 |
岩石类型 | 样品 件数 | CaO/MgO | 酸不溶物含量/% | 比溶解度 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | ||||
石灰岩 | 36 | 311.65 | 81.04 | 120.86 | 8.69 | 0.19 | 2.60 | 1.17 | 0.75 | 0.96 | ||
含硅质灰岩 | 3 | 123.13 | 77.70 | 107.12 | 18.82 | 13.07 | 13.07 | 0.93 | 0.82 | 0.86 | ||
硅质灰岩 | 2 | 98.11 | 81.04 | 89.57 | 36.20 | 35.81 | 35.81 | 0.80 | 0.24 | 0.52 | ||
含白云质灰岩 | 7 | 39.98 | 11.24 | 23.39 | 6.65 | 0.67 | 3.83 | 1.09 | 0.74 | 0.96 | ||
含灰质白云岩 | 4 | 1.75 | 1.60 | 1.67 | 8.33 | 2.39 | 4.77 | 0.72 | 0.51 | 0.68 | ||
灰质白云岩 | 2 | 3.86 | 2.75 | 3.31 | 3.83 | 0.62 | 2.24 | 0.92 | 0.44 | 0.61 | ||
白云岩 | 27 | 1.50 | 1.02 | 1.42 | 8.07 | 0.36 | 2.75 | 0.89 | 0.26 | 0.50 |
表3 不同类型碳酸盐岩比溶解度对比表(据文献[49])
Table 3 Comparison of specific solubility of different types of carbonate rocks. Adapted from [49].
岩石类型 | 样品 件数 | CaO/MgO | 酸不溶物含量/% | 比溶解度 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | ||||
石灰岩 | 36 | 311.65 | 81.04 | 120.86 | 8.69 | 0.19 | 2.60 | 1.17 | 0.75 | 0.96 | ||
含硅质灰岩 | 3 | 123.13 | 77.70 | 107.12 | 18.82 | 13.07 | 13.07 | 0.93 | 0.82 | 0.86 | ||
硅质灰岩 | 2 | 98.11 | 81.04 | 89.57 | 36.20 | 35.81 | 35.81 | 0.80 | 0.24 | 0.52 | ||
含白云质灰岩 | 7 | 39.98 | 11.24 | 23.39 | 6.65 | 0.67 | 3.83 | 1.09 | 0.74 | 0.96 | ||
含灰质白云岩 | 4 | 1.75 | 1.60 | 1.67 | 8.33 | 2.39 | 4.77 | 0.72 | 0.51 | 0.68 | ||
灰质白云岩 | 2 | 3.86 | 2.75 | 3.31 | 3.83 | 0.62 | 2.24 | 0.92 | 0.44 | 0.61 | ||
白云岩 | 27 | 1.50 | 1.02 | 1.42 | 8.07 | 0.36 | 2.75 | 0.89 | 0.26 | 0.50 |
图9 毛村地下河流域监测点分布和水体总 HCO 3 -的动态变化特征
Fig.9 Distribution of monitoring points and dynamic characteristics of total HCO 3 - in the Maocun underground river basin
图10 桂林毛村岩溶区石灰土与碎屑岩区红壤土壤呼吸排碳动态对比(据文献[66])
Fig.10 Dynamic comparison of soil respiration carbon emissions between limestone soils in the Maocun karst area and red soils in clastic rock areas. Adapted from [66].
图13 漓江流域雨季-旱季水体中 HCO 3 -浓度及其碳稳定同位素值的对比
Fig.13 Comparison of HCO 3 - concentration and its carbon stable isotope values in the water bodies of the Lijiang River basin during rainy and dry seasons
[1] | 刘宝君. 沉积岩石学[M]. 北京: 地质出版社, 1980. |
[2] | 曹建华. 岩溶见证人与生物圈的演替[J]. 人与生物圈, 2019(5): 42-47. |
[3] | CAO J H, HU B, GROVES C, et al. Karst dynamic system and the carbon cycle[J]. Zeitschrift Für Geomorphologie, Supplementary Issues, 2016, 60(2): 35-55. |
[4] | GOLDSCHEIDER N, CHEN Z, AULER A S, et al. Global distribution of carbonate rocks and Karst water resources[J]. Hydrogeology Journal, 2020, 28(5): 1661-1677. |
[5] | CIAIS P, SABINE C, BALA G, et al. Carbon and other biogeochemical cycles[M]//Climate change 2013-the physical science basis. Cambridge: Cambridge University Press, 2014: 465-570. |
[6] |
蒲俊兵, 蒋忠诚, 袁道先, 等. 岩石风化碳汇研究进展: 基于IPCC第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
DOI |
[7] | MARCÉ R, OBRADOR B, MORGUÍ J A, et al. Carbonate weathering as a driver of CO2 supersaturation in lakes[J]. Nature Geoscience, 2015, 8(2): 107-111. |
[8] | AMIOTTE SUCHET P, PROBST J L, LUDWIG W. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans[J]. Global Biogeochemical Cycles, 2003, 17(2): 1038. |
[9] | 曹建华, 杨慧, 康志强. 区域碳酸盐岩溶蚀作用碳汇通量估算初探: 以珠江流域为例[J]. 科学通报, 2011, 56(26): 2181-2187. |
[10] | 吴卫华, 郑洪波, 杨杰东, 等. 中国河流流域化学风化和全球碳循环[J]. 第四纪研究, 2011, 31(3): 397-407. |
[11] | 中国地质科学院岩溶地质研究所. 岩溶碳循环调查与碳汇效应评价指南: DZ/T 0375—2021[S]. 北京: 地质出版社, 2021. |
[12] | 章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, 30(4): 368-371. |
[13] | MERKEL B, PLANER-FRIEDRICH B, NORDSTROM D K. Groundwater geochemistry: a practical guide to modeling of natural and contaminated aquatic systems[M]. Berlin: Springer, 2005. |
[14] | MACPHERSON G L, ROBERTS J A, BLAIR J M, et al. Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA[J]. Geochimica et Cosmochimica Acta, 2008, 72(23): 5581-5599. |
[15] | 朱明秋, 曹建华, 郭芳. 基于碳酸盐岩风化的碳源分析及土壤的影响作用机制[J]. 中国岩溶, 2007, 26(3): 202-206. |
[16] | 赵敏, 曾成, 刘再华. 土地利用变化对岩溶地下水溶解无机碳及其稳定同位素组成的影响[J]. 地球化学, 2009, 38(6): 565-572. |
[17] | BAKALOWICZ M. Epikarst[M]//WHITE,WILLIAM B. Encyclopedia of Caves. Amsterdam: Elsevier, 2012: 284-288. |
[18] | WILLIAMS P W. The role of the subcutaneous zone in Karst hydrology[J]. Journal of Hydrology, 1983, 61(1/2/3): 45-67. |
[19] | 覃小群, 蒋忠诚. 表层岩溶带及其水循环的研究进展与发展方向[J]. 中国岩溶, 2005, 24(3): 250-254. |
[20] | 章程, 袁道先, 曹建华, 等. 典型表层岩溶泉短时间尺度动态变化规律研究[J]. 地球学报, 2004, 25(4): 467-471. |
[21] | FORD D, WILLIAMS P W. Karst geomorphology and hydrology[M]. London: Unwin Hyman, 1989. |
[22] | 蒋忠诚. 中国南方表层岩溶带的特征及形成机理[J]. 热带地理, 1998, 18(4): 322-326. |
[23] | 唐伟, 康志强, 殷建军, 等. 降雨条件下岩溶碳汇的动态变化特征: 以桂林毛村地下河为例[J]. 地球与环境, 2011, 39(2): 161-166. |
[24] | LIU Y, LIU Z, ZHANG J, et al. Experimental study on the utilization of DIC by Oocystis solitaria Wittr and its influence on the precipitation of calcium carbonate in karst and non-karst waters[J]. Carbonates and Evaporites. 2010, 25(1): 21-26. |
[25] |
ZENG S B, LIU Z H, KAUFMANN G. Sensitivity of the global carbonate weathering carbon-sink flux to climate and land-use changes[J]. Nature Communications, 2019, 10: 5749.
DOI PMID |
[26] |
ADAMCZYK K, PRÉMONT-SCHWARZ M, PINES D, et al. Real-time observation of carbonic acid formation in aqueous solution[J]. Science, 2009, 326(5960): 1690-1694.
DOI PMID |
[27] | 章程. 不同土地利用下的岩溶作用强度及其碳汇效应[J]. 科学通报, 2011, 56(26): 2174-2180. |
[28] | CAO J H, WU X, HUANG F, et al. Global significance of the carbon cycle in the Karst dynamic system: evidence from geological and ecological processes[J]. China Geology, 2018, 1(1): 17-27. |
[29] | 黄芬, 吴夏, 杨慧, 等. 桂林毛村地下河流域岩溶关键带碳循环研究[J]. 广西科学, 2018, 25(5): 515-523. |
[30] | BÖGLI A. Karst hydrology and physical speleology[M]. Heidelberg: Springer Berlin Heidelberg, 1980. |
[31] | 韩行瑞. 岩溶水文地质学[M]. 北京: 科学出版社, 2015. |
[32] | JIANG G, GUO F, LO K F, et al. Water balance analysis of a vadose stream to discern hillslope hydrology in bare karst area (Southwest China). Karst without Boundaries[M]. America: CRC Press, 2016. |
[33] | 曹建华, 袁道先, 潘根兴, 等. 岩溶动力系统中的生物作用机理初探[J]. 地学前缘, 2001, 8(1): 203-209. |
[34] | 李彬, 袁道先. 岩溶区碳循环与大气CO2的源汇关系: 以贵州岩溶区为例[J]. 中国岩溶, 1996, 15(1): 41-49. |
[35] | 朱晓燕. 立足岩溶地质基础, 深化全球气候变化研究: 《岩溶洞穴环境及石笋古气候记录》书评[J]. 中国岩溶, 2017, 36(6): 867. |
[36] | 张美良, 朱晓燕, 吴夏, 等. 岩溶洞穴环境及石笋古气候记录[M]. 北京: 地质出版社, 2017. |
[37] | 王培, 曹建华, 邵景力. 典型水生植物对岩溶水生生态系统无机碳稳定性影响研究[J]. 地球学报, 2017, 38(增刊1): 51-54. |
[38] | 王培. 典型水生植物对岩溶水生生态系统无机碳稳定性影响研究[D]. 北京: 中国地质大学(北京), 2016. |
[39] | 王修华. 漓江流域水化学和水-气界面CO2通量特征及其控制因素研究[D]. 北京: 中国地质大学(北京), 2018. |
[40] | 王修华, 曹建华, 吴夏, 等. 漓江流域河流水体离子组成特征及来源[J]. 水文, 2019, 39(3): 68-74. |
[41] | 郭芳, 姜光辉, 康志强. 亚热带典型岩溶水系统的碳汇效应对比研究[J]. 中国岩溶, 2011, 30(4): 403-409. |
[42] | 张陶. 典型岩溶区溪流中硝酸盐动态变化及其影响因素研究[D]. 重庆: 西南大学, 2015: 1-61. |
[43] | 章程, 汪进良, 蒲俊兵. 地下河出口河流水化学昼夜动态变化: 生物地球化学过程的控制[J]. 地球学报, 2015, 36(2): 197-203. |
[44] | 莫雪. 亚热带典型岩溶地表溪流溶解无机碳变化过程及其影响因素[D]. 重庆: 西南大学, 2015. |
[45] | AMIOTTE SUCHET P, PROBST J L. CO2 flux consumed by chemical weathering of continents: influences of drainage and lithology[J]. Comptes Rendus-Academie des Sciences, Serie II, 1993, 317(2): 615-622. |
[46] | GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology. 1999, 159(1/2/3/4): 3-30. |
[47] |
黄奇波, 覃小群, 刘朋雨, 等. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
DOI |
[48] | 曹建华. 岩溶地质: 为“一带一路” 增添一抹色彩[J]. 地球, 2022(3): 37-43. |
[49] | 聂跃平. 碳酸盐岩性因素控制下喀斯特发育特征: 以黔中南为例[J]. 中国岩溶, 1994(1): 31-36. |
[50] | 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1986. |
[51] | 周宁, 刘波. 鄂西南岩溶地区表层岩溶带发育强度变化规律研究[J]. 中国岩溶, 2009, 28(1): 1-6. |
[52] | 陈宏峰, 张发旺, 何愿, 等. 地质与地貌条件对岩溶系统的控制与指示[J]. 水文地质工程地质, 2016, 43(5): 42-47. |
[53] | 任美锷, 刘振中, 王飞燕, 等. 岩溶学概论[M]. 北京: 商务印书馆, 1983. |
[54] | 蒋忠诚, 蒋小珍, 雷明堂. 运用GIS和溶蚀试验数据估算中国岩溶区大气CO2的汇[J]. 中国岩溶, 2000, 19(3): 212-217. |
[55] | 李汇文, 王世杰, 白晓永, 等. 中国石灰岩化学风化碳汇时空演变特征分析[J]. 中国科学: 地球科学, 2019, 49(6): 986-1003. |
[56] | 蒋忠诚, 袁道先, 曹建华, 等. 中国岩溶碳汇潜力研究[J]. 地球学报, 2012, 33(2): 129-134. |
[57] | 康志强, 袁道先, 常勇, 等. 岩溶碳汇的主控因子: 水循环[J]. 吉林大学学报(地球科学版), 2011, 41(5): 1542-1547. |
[58] | 袁道先, 刘再华, 林玉石, 等. 中国岩溶动力系统[M]. 北京: 地质出版社, 2002. |
[59] | BUHMANN D, DREYBRODT W. The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas: 1.Open system[J]. Chemical Geology, 1985, 48: 189-211 |
[60] | 刘再华,DREYBRODT W. 流动CO2-H2O系统中方解石溶解动力学机制: 扩散边界层效应和CO2转换控制[J]. 地质学报, 1998, 72(4): 340-348. |
[61] | 史婷婷. 岩溶流域水循环过程碳汇效应研究[D]. 武汉: 中国地质大学(武汉), 2012. |
[62] | 黄芬, 唐伟, 汪进良, 等. 外源水对岩溶碳汇的影响: 以桂林毛村地下河为例[J]. 中国岩溶, 2011, 30(4): 417-421. |
[63] | CAO J H, WANG F X. Reform of carbonate rock subsurface by crustose lichens and its environmental significance[J]. Acta Geologica Sinica (English Edition), 1998, 72(1): 94-99. |
[64] | 谢树成, 殷鸿福, 史晓颖, 等. 地球生物学: 生命与地球环境的相互作用和协同演化[M]. 北京: 科学出版社, 2011. |
[65] | 曹建华, 袁道先, 潘根兴, 等. 不同植被下土壤碳转移对岩溶动力系统中碳循环的影响[J]. 地球与环境, 2004, 32(1): 90-96. |
[66] | 中国地质科学院岩溶地质研究所. 岩溶流域碳循环监测及增汇评价指南: GB/T 43932—2024[S]. 北京: 中国标准出版社, 2024. |
[67] | 曹建华, 蒋忠诚, 袁道先, 等. 岩溶动力系统与全球变化研究进展[J]. 中国地质, 2017, 44(5): 874-900. |
[68] | 曹建华, 周莉, 杨慧, 等. 桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J]. 第四纪研究, 2011, 31(3): 431-437. |
[69] | 蓝家程, 肖时珍, 杨龙, 等. 石漠化治理对岩溶作用强度的影响及其碳汇效应[J]. 水土保持学报, 2016, 30(3): 244-249. |
[70] | 姜光辉, 张强. 峰丛洼地自然封育过程岩溶水溶解无机碳的变化: 以桂林丫吉试验场为例[J]. 中国岩溶, 2011, 30(4): 397-402. |
[71] | ZENG Q R, LIU Z H, CHEN B, et al. Carbonate weathering-related carbon sink fluxes under different land uses: a case study from the Shawan Simulation Test Site, Puding, Southwest China[J]. Chemical Geology, 2017, 474: 58-71. |
[72] | 李文华. 中国当代生态学研究: 可持续发展生态卷[M]. 北京: 科学出版社, 2013. |
[73] | 袁道先, 章程. 岩溶作用与碳循环: IGCP379最终报告[R]. 中国地质科学院岩溶地质研究所, 2002. |
[74] | 方精云, 柯金虎, 唐志尧, 等. 生物生产力的“4P” 概念、 估算及其相互关系[J]. 植物生态学报, 2001, 25(4): 414-419. |
[75] | YANG Q, YANG Z F, FILIPPELLI G M, et al. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China[J]. Chemical Geology, 2021, 567: 120081. |
[76] | WEN Y B, LI W, YANG Z F, et al. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the Karst Region, Southwestern China[J]. Environmental Pollution, 2020, 258: 113645. |
[77] | 王培, 胡清菁, 王朋辉, 等. 桂林寨底地下河沉水植物群落结构调查及影响因子分析[J]. 水生态学杂志, 2015, 36(1): 34-39. |
[78] | 张陶, 李建鸿, 蒲俊兵, 等. 小球藻对岩溶水体Ca2+、$\mathrm{HCO}_{3}^{-}$利用效率实验研究[J]. 中国岩溶, 2018, 37(1): 81-90. |
[79] | YANG M X, LIU Z H, SUN H L, et al. Organic carbon source tracing and DIC fertilization effect in the Pearl River: insights from lipid biomarker and geochemical analysis[J]. Applied Geochemistry, 2016, 73: 132-141. |
[80] | 刘长礼, 林良俊, 宋超, 等. 土地利用变化对典型碳酸盐岩流域风化碳汇的影响: 以云南小江岩溶流域研究为例[J]. 中国地质, 2011, 38(2): 479-488. |
[81] | AUCOUR A M, SHEPPARD S M F, GUYOMAR O, et al. Use of 13C to trace origin and cycling of inorganic carbon in the Rhône River system[J]. Chemical Geology, 1999, 159(1/2/3/4): 87-105. |
[82] | HUANG F, ZHANG C, XIE Y, et al. Inorganic carbon flux and its source in the karst catchment of Maocun, Guilin, China[J]. Environmental Earth Sciences. 2015, 74(2): 1079-1089. |
[83] | 张清华. 漓江流域外源水对岩溶无机碳通量的影响[D]. 桂林: 桂林理工大学, 2018. |
[84] | 陶贞, 高全洲, 刘昆. 流域化学风化过程的碳汇能力[J]. 第四纪研究, 2011, 31(3): 408-416. |
[85] | JONATHAN J C, NINA F C. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism[J]. Marine and Freshwater Research, 2001, 52: 101-110. |
[86] | GALY A, FRANCE-LANORD C. Weathering processes in the Ganges-Brahmaputra Basin and the riverine alkalinity budget[J]. Chemical Geology, 1999, 159(1/2/3/4): 31-60. |
[87] | 刘再华, DREYBRODT W, 刘洹. 大气CO2汇: 硅酸盐风化还是碳酸盐风化的贡献[J]. 第四纪研究, 2011, 31(3): 426-430. |
[88] | CAO J H, YUAN D X, GROVES C, et al. Carbon fluxes and sinks: the consumption of atmospheric and soil CO2 by carbonate rock dissolution[J]. Acta Geologica Sinica (English Edition), 2012, 86(4): 963-972. |
[89] | HARTMANN J, JANSEN N, DÜRR H H, et al. Global CO2-consumption by chemical weathering: what is the contribution of highly active weathering regions?[J]. Global and Planetary Change, 2009, 69(4): 185-194. |
[90] | GOMBERT P. Role of karstic dissolution in global carbon cycle[J]. Global and Planetary Change, 2002, 33(1/2): 177-184. |
[91] | SPITZY A, ITTEKKOT V. Dissolved and particulate organic matter in rivers[A]. In ocean margin processes in global change. New York: Wiley-Interscience, 1991: 5-17. |
[92] | LERMAN A, MACKENZIE F T. CO2 air-sea exchange due to calcium carbonate and organic matter storage, and its implications for the global carbon cycle[J]. Aquatic Geochemistry, 2005, 11(4): 345-390. |
[93] | WATERSON E J, CANUEL E A. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and δ13CTOC analyses[J]. Organic Geochemistry, 2008, 39(4): 422-439. |
[94] | 赵海娟, 肖琼, 吴夏, 等. 漓江地表水体有机碳来源[J]. 环境科学, 2017, 38(8): 3200-3208. |
[95] | KRKLEC K, DOMÍNGUEZ-VILLAR D, PERICA D. Use of rock tablet method to measure rock weathering and landscape denudation[J]. Earth-Science Reviews, 2021, 212: 103449. |
[96] | 刘再华, 吴孔运, 汪进良, 等. 非岩溶流水中碳酸盐岩试块的侵蚀速率及其控制因素: 以湖南郴州礼家洞为例[J]. 地球化学, 2006, 35(1): 103-110. |
[97] | AMIOTTE SUCHET P, PROBST J L. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2)[J]. Tellus B: Chemical and Physical Meteorology, 1995, 47(1/2): 273-280. |
[98] | DREYBRODT W, BUHMANN D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion[J]. Chemical Geology, 1991, 90(1/2): 107-122. |
[99] | SWEETING M M. Karst landforms[J]. Nature, 1977, 269(5631): 840. |
[100] | 刘再华. 碳酸盐岩岩溶作用对大气CO2沉降的贡献[J]. 中国岩溶, 2000, 19(4): 293-300. |
[101] | PULINA M. Preliminary studies on denudation in SW Spitsbergen[J]. Bulletin de l’Academie Polonaise des Sciences, Serie des Sciences Techniques, 1974, 22, 83-99. |
[102] | JENNINGS J N. Karst geomorphology[M]. New York: B. Blackwell, 1985. |
[103] | MUNHOVEN G, FRANÇOIS L M. Glacial-interglacial changes in continental weathering: possible implications for atmospheric CO2[M]//RAINER ZAHN,THOMAS F. PEDERSEN, MICHAEL A. KAMINSKI, et al. Carbon cycling in the glacial ocean: constraints on the ocean’s role in global change. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994: 39-58. |
[104] | LIU Z H, MACPHERSON G L, GROVES C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49. |
[105] | 曾成, 赵敏, 杨睿, 等. 岩溶作用碳汇强度计算的溶蚀试片法和水化学径流法比较: 以陈旗岩溶泉域为例[J]. 水文地质工程地质, 2014, 41(1): 106-111. |
[106] | 邱冬生, 庄大方, 胡云锋, 等. 中国岩石风化作用所致的碳汇能力估算[J]. 地球科学: 中国地质大学学报, 2004, 29(2): 177-182, 190. |
[107] | HARRIS N L, GIBBS D A, BACCINI A, et al. Global maps of twenty-first century forest carbon fluxes[J]. Nature Climate Change, 2021, 11: 234-240. |
[108] | ZHI W, LI L, DONG W, et al. Distinct source water chemistry shapes contrasting 108 concentration-discharge patterns[J]. Water Resources Research, 2019, 55(5): 4233-4251. |
[109] | 蒋忠诚. 中国南方表层岩溶系统的碳循环及其生态效应[J]. 第四纪研究, 2000, 20(4): 325-334. |
[110] | 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学D辑: 地球科学, 2007(6): 804-812. |
[111] | BAO C, LI L, SHI Y N, et al. Understanding watershed hydrogeochemistry: 1. Development of RT-Flux-PIHM[J]. Water Resources Research, 2017, 53(3): 2328-2345. |
[112] | 吴沿友. 喀斯特适生植物固碳增汇策略[J]. 中国岩溶, 2011, 30(4): 461-465. |
[113] | 吴沿友, 邢德科, 赵宽, 等. 植物的喀斯特适生性检测原理和技术[M]. 北京: 科学出版社, 2018. |
[114] |
王红梅, 谢树成, 赖旭龙, 等. 分子地质微生物学研究方法述评[J]. 地球科学进展, 2005, 20(6): 664-670.
DOI |
[115] | 彭希, 刘丛强, 王宝利, 等. 筑坝对喀斯特河流水体溶解性无机碳地球化学行为的影响[J]. 科学通报, 2014, 59(4): 366-373. |
[1] | 孙彩云, 郑冰清, 李俊, 符洪铭, 孙荣卿, 刘红豪, 廖祖莹, 江红生, 吴振斌, 夏世斌, 王培. 沉水植物对岩溶碳汇稳定性影响研究[J]. 地学前缘, 2024, 31(5): 430-439. |
[2] | 张春来, 杨慧, 黄芬, 邱成, 朱同彬. 亚热带季风区边缘坡立谷河流水化学特征及外源水的增汇效应:以广西马山县清波河流域为例[J]. 地学前缘, 2024, 31(5): 377-386. |
[3] | 于奭, 蒲俊兵, 刘凡, 杨慧. 岩溶碳汇效应对植被的响应研究进展[J]. 地学前缘, 2023, 30(4): 418-428. |
[4] | 曾成, 何春, 肖时珍, 刘再华, 陈旺光, 何江湖. 湿润亚热带典型白云岩流域的岩溶无机碳汇强度[J]. 地学前缘, 2022, 29(3): 179-188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||