地学前缘 ›› 2024, Vol. 31 ›› Issue (2): 64-76.DOI: 10.13745/j.esf.sf.2023.11.50
收稿日期:
2023-10-24
修回日期:
2023-11-10
出版日期:
2024-03-25
发布日期:
2024-04-18
通信作者:
*马 瑾(1978—),男,研究员,博士生导师,研究方向为土壤环境基准。E-mail: 作者简介:
王晓宇(1999—),男,硕士研究生,研究方向为土壤环境基准。E-mail: xiaoyv202202@163.com
基金资助:
WANG Xiaoyu(), QU Yajing, ZHAO Wenhao, MA Jin*(
)
Received:
2023-10-24
Revised:
2023-11-10
Online:
2024-03-25
Published:
2024-04-18
摘要:
土壤环境基准是土壤环境标准和土壤环境保护的基础。美国是世界上最早关注污染场地保护并开展土壤污染风险管控的国家之一,并形成了较为完善的体系,但我国在这方面还处于起步阶段。为此,本文以美国为例,综述其在土壤筛选值(SSLs)方面的研究,通过分析美国在土壤污染防治方面的法律法规和技术规范,系统梳理美国在SSLs方面的研究成果,从直接摄入、皮肤吸收、摄入污染地下水、吸入室外挥发物与颗粒物和蒸汽侵入5个方面阐述美国基于人体健康风险的SSLs制定的理论方法。在此基础上,为我国土壤环境基准研究提出了几点建议:进一步加强我国土壤环境基准研究工作,立足我国国情开展土壤环境基准研究,加强本土化参数研究和土壤环境基准研究规范化,以及协同开展土壤地下水环境基准研究,以期为我国土壤环境基准研究与制定提供参考。
中图分类号:
王晓宇, 屈雅静, 赵文浩, 马瑾. 美国场地土壤筛选值研究及其对中国土壤环境基准研究的启示[J]. 地学前缘, 2024, 31(2): 64-76.
WANG Xiaoyu, QU Yajing, ZHAO Wenhao, MA Jin. Soil screening levels in the United States and implication for soil evaluation in China[J]. Earth Science Frontiers, 2024, 31(2): 64-76.
图3 美国系列SSLs与特定场地污染物浓度的行动关系(据文献[47])
Fig.3 Relationship between SSLs and site-specific pollutant levels and corresponding remediation actions in USA. Adapted from [47].
暴露参数 性质 | 目标风险 水平TR | 危害商水平 THQ | 体重 BW/kg | 平均时间 AT/a | 暴露期 ED/a | 暴露频率 EF/(d·a-1) | 土壤摄入率 IR/(mg·d-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
默认值 | 居民住宅 | 10-6 | 1 | 15 | 6/70 | 6 | 350 | 200 | ||||
C/I | 10-6 | 1 | 70 | 25/70 | 25 | 225/250 | 100/50 | |||||
C/W | 10-6 | 1 | 70 | 70/特定场地 | 特定场地 | 特定场地 | 330 | |||||
暴露参数 性质 | 口服斜率因子SFo/ (kg·d·mg-1) | 口服参考 剂量RfDo/ (mg·kg-1·d-1) | 经年龄调整的土壤 摄入因子IFsoil/adj/ (mg·kg-1) | 经年龄调整的 皮肤因子SFS/ (mg·a·kg-1·次-1) | 经皮肤调整的致癌 斜率因子SFad/ (kg·d·mg-1) | 经皮肤调整的参考 剂量RfDad/ (mg·kg-1·d-1) | ||||||
默认值 | 居民住宅 | 特定化学物质 | 特定化学物质 | 114 | 360 | 特定化学物质 | 特定化学物质 | |||||
C/I | 特定化学物质 | 特定化学物质 | 特定化学物质 | 特定化学物质 | ||||||||
C/W | 特定化学物质 | 特定化学物质 | 特定化学物质 | 特定化学物质 | ||||||||
暴露参数 性质 | 事件发生频率 EV/(次·d-1) | 土壤皮肤黏附因子 AFss/(mg·cm-2) | 皮肤暴露面积 SA/cm2 | 皮肤吸收分数 ABSd | 亚慢性健康 限值HBLsc/ (mg·kg-1·d-1) | 经皮肤调整的亚慢 性健康限值HBLad/ (mg·kg-1·d-1) | ||||||
默认值 | 居民住宅 | 1 | 0.2/0.07 | 2 800 | 特定化学物质 | |||||||
C/I | 1/0 | 0.2 | 3 300 | 特定化学物质 | ||||||||
C/W | 1 | 0.3 | 3 300 | 特定化学物质 | 特定化学物质 | 特定化学物质 |
表1 多途径暴露下暴露参数及其默认值(据文献[35-36])
Table 1 Exposure parameters and default values under different exposure scenarios. Adapted from [35-36].
暴露参数 性质 | 目标风险 水平TR | 危害商水平 THQ | 体重 BW/kg | 平均时间 AT/a | 暴露期 ED/a | 暴露频率 EF/(d·a-1) | 土壤摄入率 IR/(mg·d-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
默认值 | 居民住宅 | 10-6 | 1 | 15 | 6/70 | 6 | 350 | 200 | ||||
C/I | 10-6 | 1 | 70 | 25/70 | 25 | 225/250 | 100/50 | |||||
C/W | 10-6 | 1 | 70 | 70/特定场地 | 特定场地 | 特定场地 | 330 | |||||
暴露参数 性质 | 口服斜率因子SFo/ (kg·d·mg-1) | 口服参考 剂量RfDo/ (mg·kg-1·d-1) | 经年龄调整的土壤 摄入因子IFsoil/adj/ (mg·kg-1) | 经年龄调整的 皮肤因子SFS/ (mg·a·kg-1·次-1) | 经皮肤调整的致癌 斜率因子SFad/ (kg·d·mg-1) | 经皮肤调整的参考 剂量RfDad/ (mg·kg-1·d-1) | ||||||
默认值 | 居民住宅 | 特定化学物质 | 特定化学物质 | 114 | 360 | 特定化学物质 | 特定化学物质 | |||||
C/I | 特定化学物质 | 特定化学物质 | 特定化学物质 | 特定化学物质 | ||||||||
C/W | 特定化学物质 | 特定化学物质 | 特定化学物质 | 特定化学物质 | ||||||||
暴露参数 性质 | 事件发生频率 EV/(次·d-1) | 土壤皮肤黏附因子 AFss/(mg·cm-2) | 皮肤暴露面积 SA/cm2 | 皮肤吸收分数 ABSd | 亚慢性健康 限值HBLsc/ (mg·kg-1·d-1) | 经皮肤调整的亚慢 性健康限值HBLad/ (mg·kg-1·d-1) | ||||||
默认值 | 居民住宅 | 1 | 0.2/0.07 | 2 800 | 特定化学物质 | |||||||
C/I | 1/0 | 0.2 | 3 300 | 特定化学物质 | ||||||||
C/W | 1 | 0.3 | 3 300 | 特定化学物质 | 特定化学物质 | 特定化学物质 |
暴露参数 性质 | 目标土壤渗 滤液浓度 Cw/(mg·L-1) | 土-水分 配系数Kd/ (L·kg-1) | 充水土壤 孔隙度θw | 充气土壤 孔隙度θa | 干土容重 ρb/(kg·L-1) | 无量纲亨 利常数H | 渗透速率 I/(m·d-1) | 源的深度 ds/m | 暴露期 ED/a |
---|---|---|---|---|---|---|---|---|---|
默认值 | 与DAF有关 | 特定化学物质 | 0.3 | 1-θw-ρb/2.65 | 1.5 | 特定化学物质 | 0.18 | 特定场地 | 70 |
表2 迁移至地下水暴露途径下的暴露参数及其默认值(据文献[35,55])
Table 2 Exposure parameters and default values for groundwater exposure. Adapted from [35,55].
暴露参数 性质 | 目标土壤渗 滤液浓度 Cw/(mg·L-1) | 土-水分 配系数Kd/ (L·kg-1) | 充水土壤 孔隙度θw | 充气土壤 孔隙度θa | 干土容重 ρb/(kg·L-1) | 无量纲亨 利常数H | 渗透速率 I/(m·d-1) | 源的深度 ds/m | 暴露期 ED/a |
---|---|---|---|---|---|---|---|---|---|
默认值 | 与DAF有关 | 特定化学物质 | 0.3 | 1-θw-ρb/2.65 | 1.5 | 特定化学物质 | 0.18 | 特定场地 | 70 |
暴露 参数性质 | 吸入单位风险 URF/(m3·μg-1) | 吸入参考浓度 RfC/(mg·m-3) | 表观扩散系数 DA/(cm2·s-1) | 暴露间隔T/s | 年平均风速 Um/(m·s-1) | 7 m风速的等效阈值 Ut/(m·s-1) | |||
---|---|---|---|---|---|---|---|---|---|
默认值 | 特定化学物质 | 特定化学物质 | 特定化学物质 | 9.5×108 | 4.69 | 11.32 | |||
暴露 参数性质 | 植被覆盖率V | 亚慢性土-气挥发系数 VFsc/(m3·kg-1) | 亚慢性颗粒物排放因子 PEFsc/(m3·kg-1) | 场外颗粒物排放因子 PEFoff/(m3·kg-1) | |||||
默认值 | 50% | 特定化学物质 | 特定场地 | 4.4×108 |
表3 吸入室外污染物暴露途径下的暴露参数及其默认值(据文献[36])
Table 3 Exposure parameters and default values for outdoor inhalation exposure. Adapted from [36].
暴露 参数性质 | 吸入单位风险 URF/(m3·μg-1) | 吸入参考浓度 RfC/(mg·m-3) | 表观扩散系数 DA/(cm2·s-1) | 暴露间隔T/s | 年平均风速 Um/(m·s-1) | 7 m风速的等效阈值 Ut/(m·s-1) | |||
---|---|---|---|---|---|---|---|---|---|
默认值 | 特定化学物质 | 特定化学物质 | 特定化学物质 | 9.5×108 | 4.69 | 11.32 | |||
暴露 参数性质 | 植被覆盖率V | 亚慢性土-气挥发系数 VFsc/(m3·kg-1) | 亚慢性颗粒物排放因子 PEFsc/(m3·kg-1) | 场外颗粒物排放因子 PEFoff/(m3·kg-1) | |||||
默认值 | 50% | 特定化学物质 | 特定场地 | 4.4×108 |
各类型对比项 | Q/Cwind | Q/ | Q/Coff |
---|---|---|---|
暴露情景 | C/I | C/I | C/W |
暴露受体 | 工人和园林设计师 | 工人和园林设计师 | 场外居民 |
挥发物/颗粒物 | 颗粒物 | 挥发物 | 颗粒物 |
表4 不同Q/C之间的异同点(据文献[58])
Table 4 Distinctions between three different dispersion factors (Q/C). Adapted from [58].
各类型对比项 | Q/Cwind | Q/ | Q/Coff |
---|---|---|---|
暴露情景 | C/I | C/I | C/W |
暴露受体 | 工人和园林设计师 | 工人和园林设计师 | 场外居民 |
挥发物/颗粒物 | 颗粒物 | 挥发物 | 颗粒物 |
[1] | 张耀丹, 邱琳琳, 杜文超, 等. 土壤环境基准的研究现状及展望[J]. 南京大学学报(自然科学), 2017, 53(2): 209-217. |
[2] | 冯承莲, 赵晓丽, 侯红, 等. 中国环境基准理论与方法学研究进展及主要科学问题[J]. 生态毒理学报, 2015, 10(1): 2-17. |
[3] | 赵晓丽, 赵天慧, 李会仙, 等. 中国环境基准研究重点方向探讨[J]. 生态毒理学报, 2015, 10(1): 18-30. |
[4] | 周启星. 环境基准研究与环境标准制定进展及展望[J]. 生态与农村环境学报, 2010, 26(1): 1-8. |
[5] | 葛峰, 徐坷坷, 刘爱萍, 等. 国外土壤环境基准研究进展及对中国的启示[J]. 土壤学报, 2021, 58(2): 331-343. |
[6] | 龙涛, 林玉锁, 陈樯. 我国土壤环境基准研究的历程与展望[J]. 生态与农村环境学报, 2023, 39(3): 273-281. |
[7] | WIERSMA Y F. Environmental benchmarks vs. ecological benchmarks for assessment and monitoring in Canada: is there a difference?[J]. Environmental Monitoring and Assessment, 2005, 100(1/2/3): 1-9. |
[8] | WU Y H, ZHAO W H, MA J, et al. Human health risk-based soil environmental criteria (SEC) for park soil in Beijing, China[J]. Environmental Research, 2022, 212: 113384. |
[9] | 周启星, 罗义, 祝凌燕. 环境基准值的科学研究与我国环境标准的修订[J]. 农业环境科学学报, 2007, 26(1): 1-5. |
[10] | 卢纯惠. 大气质量基准与大气质量标准[J]. 环境保护, 1985, 13(2): 9-10. |
[11] | 中华人民共和国环境保护部. 关于发布《国家环境基准管理办法(试行)》的公告[EB/OL]. (2017-04-20)[2023-08-09]. http://www.mee.gov.cn/gkml/hbb/bgg/201704/t20170425_412875.htm. |
[12] | 邱荟圆, 李博, 祖艳群. 土壤环境基准的研究和展望[J]. 中国农学通报, 2020, 36(18): 67-72. |
[13] | 夏家淇. 土壤砷的环境基准研究[J]. 农村生态环境, 1993(4): 1-4. |
[14] | 徐猛, 颜增光, 贺萌萌, 等. 不同国家基于健康风险的土壤环境基准比较研究与启示[J]. 环境科学, 2013, 34(5): 1667-1678. |
[15] | ZHANG S, HAN Y Y, PENG J Y, et al. Human health risk assessment for contaminated sites: a retrospective review[J]. Environment International, 2023, 171: 107700. |
[16] | AHMAD M I, MAHAMOOD M, JAVED M, et al. Toxicology and human health: environmental exposures and biomarkers[M]. Singapore: Springer Nature, 2023. |
[17] | 马瑾. 世界主要发达国家土壤环境基准与标准理论方法研究[M]. 北京: 科学出版社, 2021: 248-273. |
[18] | 吴颐杭, 杨书慧, 刘奇缘, 等. 荷兰人体健康土壤环境基准与标准研究及其对我国的启示[J]. 环境科学研究, 2022, 35(1): 265-275. |
[19] | 张百灵. 中美土壤污染防治立法比较及对我国的启示[J]. 山东农业大学学报(社会科学版), 2011, 13(1): 79-84, 124. |
[20] | 尹志军. 美国环境法史论[D]. 北京: 中国政法大学, 2005. |
[21] | American Society for Testing and Materials. Standard guide for risk-based corrective action[R/OL]. (2017-08-16)[2023-09-30]. http://www.astm.org/e2081-00.html. |
[22] | US Environmental Protection Agency. Short sheet: ieubk model soil/dust ingestion rates[S/OL]. (1999-12-01)[2023-08-15]. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=90181206.txt. |
[23] | Office of Solid Waste and Emergency Response, US Environmental Protection Agency (USEPA). Review of adult lead models evaluation of models for assessing human health risks associated with lead exposures at non-residential areas of superfund and other hazardous waste sites[M]. Washington DC: USEPA, 2001. |
[24] | US Environmental Protection Agency. This is superfund: a community guide to EPA’s superfund program[EB/OL]. (2011-08-01)[2023-08-15]. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100O285.txt. |
[25] | 周启星, 安婧, 何康信. 我国土壤环境基准研究与展望[J]. 农业环境科学学报, 2011, 30(1): 1-6. |
[26] | 中华人民共和国国务院. 关于印发土壤污染防治行动计划的通知[EB/OL]. (2016-05-31)[2023-08-05]. https://www.mee.gov.cn/zcwj/gwywj/201811/t20181129_676582.shtml. |
[27] | 中华人民共和国生态环境部. 关于发布《土壤环境质量农用地土壤污染风险管控标准(试行)》等两项国家环境质量标准的公告[EB/OL]. (2018-07-03)[2023-08-17]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201807/t20180703_629589.html. |
[28] | 中华人民共和国生态环境部. 建设用地土壤污染风险管控和修复监测技术导则: HJ 25.2—2019[S]. 北京: 中国环境出版集团, 2019. |
[29] | US Environmental Protection Agency. What is the national environmental policy act?[EB/OL]. (2022-10-26)[2023-08-18]. https://www.epa.gov/nepa/what-national-environmental-policy-act. |
[30] | Office of Resource Conservation and Recovery, Program Management,Communications, and Analysis Office, US Environmental Protection Agency (USEPA). RCRA orientation manual[M]. Washington DC: USEPA, 2014. |
[31] | US Environmental Protection Agency. Summary of the toxic substances control act[EB/OL]. (2023-09-29)[2023-10-02]. https://www.epa.gov/laws-regulations/summary-toxic-substances-control-act. |
[32] | US Environmental Protection Agency. History of the toxics release inventory (TRI) program[EB/OL]. (2023-05-18)[2023-08-20]. https://www.epa.gov/toxics-release-inventory-tri-program/history-toxics-release-inventory-tri-program. |
[33] | Office of Solid Waste and Emergency Response, US Environmental Protection Agency (USEPA). Soil screening guidance: technical background document[M]. Washington DC: USEPA, 1996. |
[34] | Office of Solid Waste and Emergency Response, US Environmental Protection Agency (USEPA). Soil screening guidance: fact sheet[M]. Washington DC: USEPA, 1996. |
[35] | Office of Solid Waste and Emergency Response, US Environmental Protection Agency (USEPA). Soil screening guidance: user’s guide[M]. 2nd ed. Washington DC: USEPA, 1996. |
[36] | Office of Solid Waste and Emergency Response, US Environmental Protection Agency (USEPA). Supplemental guidance for developing soil screening levels for superfund sites[M]. Washington DC: USEPA, 2002. |
[37] | National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency (USEPA). Exposure factors handbook: 2011[M]. Washington DC: USEPA, 2011. |
[38] | USDOE Oak Ridge National Laboratory. Regional screening levels[EB/OL]. (2022-11-18)[2023-08-10]. http://www.epa.gov/risk/regional-screening-levels-rsls. |
[39] | National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency (USEPA). Update for chapter 5 of the exposure factors handbook: soil and dust ingestion[M]// Exposure factors handbook: 2011. Washington DC: USEPA, 2017: 1-3. |
[40] | US Environmental Protection Agency. TRI-listed chemicals[EB/OL]. (2023-08-14)[2023-08-25]. https://www.epa.gov/toxics-release-inventory-tri-program/tri-listed-chemicals. |
[41] | Office of Solid Waste and Emergency Response, US Environmental Protection Agency (USEPA). Generic SSLs[M]// Supplemental guidance for developing soil screening levels for superfund sites. Washington DC: USEPA, 2002: 1-4. |
[42] | Office of Solid Waste and Emergency Response, US Environmental Protection Agency (USEPA). Detailed site-specific approaches for developing inhalation SSLs[M]// Supplemental guidance for developing soil screening levels for superfund sites. Washington DC: USEPA, 2002: 9-42. |
[43] | US Environmental Protection Agency. Regional removal management levels (RMLs) user’s guide[EB/OL]. (2022-11-18)[2023-08-23]. https://www.epa.gov/risk/regional-removal-management-levels-rmls-users-guide. |
[44] | Office of Emergency and Remedial Response, Environmental Protection Agency (USEPA). Development of risk-based preliminary remediation goals[M]// Risk assessment guidance for superfund: volume 1: human health evaluation manual. Washington DC: USEPA, 1991: 1-64. |
[45] | US Environmental Protection Agency. Calculating preliminary remediation goals (PRGs)[EB/OL]. (2023-06-21)[2023-08-23]. https://www.epa.gov/risk/calculating-preliminary-remediation-goals-prgs. |
[46] | US Environmental Protection Agency. Regional screening levels (RSLs) : user’s guide[EB/OL]. (2023-05-04)[2023-08-23]. http://www.epa.gov/risk/regional-screening-levels-rsls-users-guide. |
[47] | US Environmental Protection Agency. Regional removal management levels (RMLs) frequent questions[EB/OL]. (2022-11-18)[2023-08-23]. https://www.epa.gov/risk/regional-removal-management-levels-rmls-frequent-questions. |
[48] | YU Y Q, LUO H Q, YANG J Y. Health risk of fluorine in soil from a phosphorus industrial area based on the in-vitro oral, inhalation, and dermal bioaccessibility[J]. Chemosphere, 2022, 294: 133714. |
[49] | CALABRESE E J, BARNES R, STANEK E J, et al. How much soil do young children ingest: an epidemiologic study[J]. Regulatory Toxicology and Pharmacology, 1989, 10(2): 123-137. |
[50] | DAVIS S, WALLER P, BUSCHBOM R, et al. Quantitativeestimates of soil ingestion in normal children between the ages of 2 and 7 years: population-based estimates using aluminum, silicon, and titanium as soil tracer elements[J]. Archives of Environmental Health: An International Journal, 1990, 45(2): 112-122. |
[51] | VAN WIJNEN J H, CLAUSING P, BRUNEKREEF B. Estimated soil ingestion by children[J]. Environmental Research, 1990, 51(2): 147-162. |
[52] | Office of Research and Development, US Environmental Protection Agency (USEPA). Dermal exposure assessment: principles and applications[M]. Washington DC: USEPA, 1992. |
[53] | WESTERR C, MAIBACH H I, SEDIK L, et al. Percutaneous absorption of pentachlorophenol from soil[J]. Toxicological Sciences, 1993, 20(1): 68-71. |
[54] | Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency (USEPA). Supplemental guidance for dermal risk assessment[M]// Risk assessment guidance for superfund: volume 1: human health evaluation manual. Washington DC: USEPA, 2004: 1-156. |
[55] | Office of Solid Waste and Emergency Response, US Environmental Protection Agency (USEPA). SSL equations for residential scenario[M]// Supplemental guidance for developing soil screening levels for superfund sites. Washington DC: USEPA, 2022: 5-16. |
[56] | Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency (USEPA). Supplemental guidance for inhalation risk assessment[M]// Risk assessment guidance for superfund: volume 1: human health evaluation manual. Washington DC: USEPA, 2009: 13-28. |
[57] | Office of Emergency and Remedial Response, US Environmental Protection Agency (USEPA). Risk assessment guidance for superfund: volume 1: human health evaluation manual (Part A)[M]. Washington DC: USEPA, 1989: 1-291. |
[58] | Office of Solid Waste and Emergency Response, US Environmental Protection Agency (USEPA). Dispersion factor calculations[M]// Supplemental guidance for developing soil screening levels for superfund sites. Washington DC: USEPA, 2002: 1-4. |
[59] | US Environmental Protection Agency. Vapor intrusion screening level calculator[EB/OL]. (2023-06-12)[2023-08-27]. https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator. |
[60] | US Environmental Protection Agency. Regional screening levels (RSLs): generic tables[EB/OL]. (2022-12-05)[2023-08-27]. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables. |
[61] | Office of Solid Waste and Emergency Response, Office of Superfund Remediation and Technology Innovation,US Environmental Protection Agency (USEPA). Vapor intrusion screening level (VISl) calculator user’s guide[R]. Washington DC: USEPA, 2014: 1-10. |
[62] | Office of Solid Waste and Emergency Response, US Environmental Protection Agency (USEPA). Draft guidance for evaluating the vapor intrusion to indoor air pathway from groundwater and soils (Subsurface vapor intrusion guidance)[R]. Washington DC: USEPA, 2002: 1-178. |
[63] | 中华人民共和国第十三届全国人民代表大会常务委员会. 中华人民共和国土壤污染防治法[S/OL]. (2018-08-31)[2023-08-29]. https://www.mee.gov.cn/ywgz/fgbz/fl/201809/t20180907549845.shtml. |
[64] | 中华人民共和国生态环境部办公厅. 关于印发《环境基准工作方案(2023—2025年)》的通知[EB/OL]. (2023-02-27)[2023-08-29]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/t202302271017713.html. |
[65] | 魏潇淑, 柏杨巍, 王晓伟, 等. 国内外土壤污染防治法律法规与技术规范概述及思考[J]. 环境工程技术学报, 2023, 13(5): 1643-1651. |
[66] | 马杰. 我国挥发性有机污染地块调查评估中存在的问题及对策建议[J]. 环境工程学报, 2021, 15(1): 3-7. |
[1] | 夏腾, 张家铭, 李书鹏, 郭丽莉, 王祺, 毛德强. 有机污染场地原位修复过程的地球物理动态监测与分析[J]. 地学前缘, 2024, 31(3): 432-442. |
[2] | 蒿梦秋月, 刘大庆, 闫振飞, 冯承莲. 基于生态风险的土壤短链氯化石蜡环境基准研究[J]. 地学前缘, 2024, 31(2): 54-63. |
[3] | 丁祥, 袁贝, 杜平, 刘虎鹏, 张云慧, 陈娟. 典型矿冶城市土壤重金属累积驱动因子研究和概率风险评估[J]. 地学前缘, 2024, 31(2): 31-41. |
[4] | 王萌, 俞磊, 秦璐瑶, 孙晓艺, 王静, 刘佳晓, 陈世宝. 土壤环境基准的科学问题与研究方法:以Cd为例[J]. 地学前缘, 2024, 31(2): 147-156. |
[5] | 张小刚, 张芳, 李书鹏, 韦云霄, 侯德义, 李广贺. 污染场地原位热修复技术与能效分析[J]. 地学前缘, 2022, 29(3): 200-206. |
[6] | 朱辉, 叶淑君, 吴吉春, 徐海珍. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘, 2021, 28(5): 26-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||