地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 375-391.DOI: 10.13745/j.esf.sf.2025.3.34
收稿日期:
2025-02-11
修回日期:
2025-02-24
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*陈玖斌(1971—),男,博士,教授,博士生导师,主要从事金属稳定同位素环境地球化学研究。E-mail: 作者简介:
何 晟(1995—),男,博士研究生,主要从事金属稳定同位素环境地球化学研究。E-mail: shenghe@tju.edu.cn
基金资助:
HE Sheng(), CAI Hongming, YUAN Wei, CHEN Jiubin*(
)
Received:
2025-02-11
Revised:
2025-02-24
Online:
2025-03-25
Published:
2025-04-20
摘要:
河流是有毒重金属汞跨圈层循环的重要通道,因而明确河流汞的迁移转化对了解其全球生物地球化学循环和生态环境效应至关重要。近十五年来,具有独特“三维”分馏体系的汞同位素已被证实是示踪河流汞来源-转化-归趋的有效手段。成熟的前处理和分析方法是开展河流汞同位素研究的前提。本文首先概括了适用于河流不同形态汞提纯和浓缩以进行同位素检测方法,包括用于溶解态总汞同位素分析的离子交换树脂法和吹扫捕集法、用于颗粒态总汞同位素分析的热解法和消解法以及用于甲基汞同位素分析的蒸馏-气相色谱法和蒸馏-离子交换树脂法。其次,本文系统讨论了汞同位素在河流汞来源解析、过程示踪和归趋判定三方面的应用成果,包括:(1)汇总河流样品和储库汞同位素组成,并定量解析了河流不同形态汞的来源及各端员的贡献比例;(2)依据不同转化过程的同位素分馏系数,揭示汞在储库释放、河流迁移及入海过程中的地球化学行为及其控制因素;(3)整合河流和海洋样品汞同位素组成,明确河流汞的环境归趋和生态效应。最后,本文将汞同位素嵌入河流-近海汞通量模型,进而评估了近海汞源汇平衡状态。目前,河流汞同位素研究仍处于起步阶段,未来研究应继续发展不同形态汞同位素分析方法和分馏机理,厘清人类活动和气候变化双重影响下大型河流与土壤、大气、海洋和生物等系统或圈层互作中汞的地球化学循环,为制定汞环境保护政策提供科学依据。
中图分类号:
何晟, 蔡虹明, 袁玮, 陈玖斌. 河流汞同位素研究进展[J]. 地学前缘, 2025, 32(3): 375-391.
HE Sheng, CAI Hongming, YUAN Wei, CHEN Jiubin. Recent progress in mercury isotopes of the river system[J]. Earth Science Frontiers, 2025, 32(3): 375-391.
形态汞 | 方法名称 | 样品类型 | 优势 | 可能存在的问题 | 参考文献 |
---|---|---|---|---|---|
溶解态 总汞 | 离子交换树脂法 | 河水 | 富集、纯化大体积水体痕量汞 | 样品前处理周期长 | [ |
吹扫捕集法 | 河水 | 富集、纯化小体积水体汞 | 试剂使用量大,处理低浓度样品 时需控制空白 | [ | |
颗粒态 总汞 | 热解法 | 河流沉积物,悬浮颗 粒物,生物 | 富集、纯化颗粒物样品 | 前处理效率受管式炉数量、 降温速度等限制 | [ |
消解法 | 河流沉积物,悬浮颗 粒物,生物 | 批量快速处理少量(<1 g)样品 | 消解液需进一步富集纯化 | [ | |
甲基汞 | 蒸馏-气相色谱法 | 河流沉积物 | 分离沉积物样品甲基汞并 完成高精度同位素测试 | 回收率受乙基化效率影响 | [ |
蒸馏-离子 交换树脂法 | 河流沉积物、生物 | 不使用乙基化试剂,避免乙基化 过程产生的同位素分馏 | 样品前处理流程复杂,周期长 | [ |
表1 河流汞同位素分析方法总结
Table 1 Summary of methods for Hg isotopes analysis of river samples
形态汞 | 方法名称 | 样品类型 | 优势 | 可能存在的问题 | 参考文献 |
---|---|---|---|---|---|
溶解态 总汞 | 离子交换树脂法 | 河水 | 富集、纯化大体积水体痕量汞 | 样品前处理周期长 | [ |
吹扫捕集法 | 河水 | 富集、纯化小体积水体汞 | 试剂使用量大,处理低浓度样品 时需控制空白 | [ | |
颗粒态 总汞 | 热解法 | 河流沉积物,悬浮颗 粒物,生物 | 富集、纯化颗粒物样品 | 前处理效率受管式炉数量、 降温速度等限制 | [ |
消解法 | 河流沉积物,悬浮颗 粒物,生物 | 批量快速处理少量(<1 g)样品 | 消解液需进一步富集纯化 | [ | |
甲基汞 | 蒸馏-气相色谱法 | 河流沉积物 | 分离沉积物样品甲基汞并 完成高精度同位素测试 | 回收率受乙基化效率影响 | [ |
蒸馏-离子 交换树脂法 | 河流沉积物、生物 | 不使用乙基化试剂,避免乙基化 过程产生的同位素分馏 | 样品前处理流程复杂,周期长 | [ |
图1 已发表河流样品(沉积物,生物,河水和悬浮颗粒物)承浓度及其同位素组成 1.Cache 滔,美国;2.Yolo Bypass,美国;3.Cosumnes 河,美国;1.Yuba 河,美国;5.Wabigoon 河,加拿大;6.Saint Louis 河,美国;7.Mobile 河,美国;8.East Fork Poplar 溪,美国;9.Puyango-Tumb- es 河,秘鲁,厄瓜多尔;10.South 河,美国;11.Hackensack 河,美国;12.Amazon 河,巴西;13.Maroni,Oyapock,Mana,Sinnamary 和 Comte 河,法属圭亚那;14.Oyapock 河,法属圭亚那;15. Tartarugal Grande 和 Tartarugalzinho 河,巴西;16.Paraíba do Sul 河,巴西;17.Valdeazogues,Esteras 和 Zújar 河,西班牙;18.Lot 河,法国;19.Wutach 河,德国;20.Paglia 河,意大利;21.Idrijca河,斯诺文尼亚;22.大水溪,中国;23.东江,中国;24.Gumu 溪,韩国;25.Hycongsan 河,韩国;26.South Fork Eel 河,美国;27.Providence 苛,美国;28.雅鲁藏布江,中国;29.珠江河口,中国;30. Han,Gcum,Nakdong 和 Ycongsan 河,韩国;31.Mackenzic 河,加拿大;32.East Fork Poplar 溪,美国;33.Waccamaw 河,美国;34.Junscle,瑞典;35.Yenisci 河,俄罗斯;36.澜沦江和怒江,中国; 37.陈旗,中国;38.梅子滛,中国;39.珠江,中国。数据引自[11,30,35,40,43,48⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-81]。
Fig. 1 Published Hg concentrations and isotopes data of river samples including sediments,biota,river water and suspended particulate matters.Adapted from[11,30,35,40,43,48⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-81].
图2 河流样品(沉积物、生物、河水和悬浮颗粒物)汞同位素组成Δ199Hg-δ202Hg (a);Δ199Hg-Δ200Hg (b);数据来源见图1
Fig.2 Odd-MIF of Hg isotopes (Δ199Hg) versus MDF (δ202Hg) (a) and even-MIF (Δ200Hg) (b) for river samples including sediments, biota, river water and suspended particulate matters. Reference is shown in Fig.1
名称 | 通量a/ (Mg·a-1) | 通量范围a/ (Mg·a-1,四分位距) | δ202Hg/ ‰ | SD | Δ199Hg/ ‰ | SD | 数据量 | 参考文献 |
---|---|---|---|---|---|---|---|---|
河流输入 | 1 000 | 980~1 100 | -1.58 | 0.30 | -0.20 | 0.12 | 106 | [ |
远洋输入 | 900 | 460~1 800 | -0.34 | 0.35 | 0.12 | 0.09 | 21 | [ |
大气沉降 | 310 | 270~340 | -0.02 | 0.51 | 0.10 | 0.18 | 399 | [ |
沉积物再悬浮 | 42 | 20~89 | -1.53 | 0.33 | -0.19 | 0.17 | 231 | [ |
输入 | 2 252 | -0.87 | -0.03 | |||||
近海输出 | 1 300 | 820~2 100 | -0.43 | 0.65 | 0.03 | 0.16 | 41 | [ |
沉积作用 | 730 | 410~1 100 | -1.53 | 0.33 | -0.19 | 0.17 | 231 | [ |
单质汞挥发 | 220 | 97~410 | -0.76 | — | 0.18 | — | — | [ |
输出 | 2 250 | -0.82 | -0.03 |
表2 河流-近海汞通量和同位素组成
Table 2 Flux and isotope compositions of Hg input and output for river and coast
名称 | 通量a/ (Mg·a-1) | 通量范围a/ (Mg·a-1,四分位距) | δ202Hg/ ‰ | SD | Δ199Hg/ ‰ | SD | 数据量 | 参考文献 |
---|---|---|---|---|---|---|---|---|
河流输入 | 1 000 | 980~1 100 | -1.58 | 0.30 | -0.20 | 0.12 | 106 | [ |
远洋输入 | 900 | 460~1 800 | -0.34 | 0.35 | 0.12 | 0.09 | 21 | [ |
大气沉降 | 310 | 270~340 | -0.02 | 0.51 | 0.10 | 0.18 | 399 | [ |
沉积物再悬浮 | 42 | 20~89 | -1.53 | 0.33 | -0.19 | 0.17 | 231 | [ |
输入 | 2 252 | -0.87 | -0.03 | |||||
近海输出 | 1 300 | 820~2 100 | -0.43 | 0.65 | 0.03 | 0.16 | 41 | [ |
沉积作用 | 730 | 410~1 100 | -1.53 | 0.33 | -0.19 | 0.17 | 231 | [ |
单质汞挥发 | 220 | 97~410 | -0.76 | — | 0.18 | — | — | [ |
输出 | 2 250 | -0.82 | -0.03 |
[1] | DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: sources, pathways, and effects[J]. Environmental Science & Technology, 2013, 47(10): 4967-4983. |
[2] | MOREL F M M, KRAEPIEL A M L, AMYOT M. The chemical cycle and bioaccumulation of mercury[J]. Annual Review of Ecology and Systematics, 1998, 29(1): 543-566. |
[3] | KESSLER R. The minamata convention on mercury: a first step toward protecting future generations[J]. Environmental Health Perspectives, 2013, 121(10): A304-A309. |
[4] | LIN Y, WANG S X, STEINDAL E H, et al. Minamata convention on mercury: Chinese progress and perspectives[J]. National Science Review, 2017, 4(5): 677-679. |
[5] | 赵彬, 杨洋, 张昊, 等. 汞污染地块分级风险管控技术体系研究[J]. 地学前缘, 2024, 31(02): 1-12. |
[6] | LIU M D, ZHANG Q R, MAAVARA T, et al. Rivers as the largest source of mercury to coastal oceans worldwide[J]. Nature Geoscience, 2021, 14(9): 672-677. |
[7] | BRIGHAM M E, WENTZ D A, AIKEN G R, et al. Mercury cycling in stream ecosystems. 1. water column chemistry and transport[J]. Environmental Science & Technology, 2009, 43(8): 2720-2725. |
[8] | MARVIN-DIPASQUALE M, LUTZ M A, BRIGHAM M E, et al. Mercury cycling in stream ecosystems. 2. benthic methylmercury production and bed sediment-pore water partitioning[J]. Environmental Science & Technology, 2009, 43(8): 2726-2732. |
[9] | ULLRICH S M, LLYUSHCHENKO M A, USKOV G A, et al. Mercury distribution and transport in a contaminated river system in Kazakhstan and associated impacts on aquatic biota[J]. Applied Geochemistry, 2007, 22(12): 2706-2734. |
[10] | NEVADO J J B, MARTíN-DOIMEADIOS R C R, BERNARDO F J G, et al. Mercury in the Tapajos River basin, Brazilian Amazon: a review[J]. Environment International, 2010, 36(6): 593-608. |
[11] | HE S, CAI H M, SUN R Y, et al. Stable isotopes reveal the contribution of glacier melting to mercury budget in Tibetan rivers[J]. Environmental Science & Technology Letters, 2024, 12(1): 85-91. |
[12] | ZOLKOS S, KRABBENHOFT D P, SUSLOVA A, et al. Mercury export from Arctic great rivers[J]. Environmental Science & Technology, 2020, 54(7): 4140-4148. |
[13] | SCHUSTER P F, STRIEGL R G, AIKEN G R, et al. Mercury export from the Yukon River basin and potential response to a changing climate[J]. Environmental Science & Technology, 2011, 45(21): 9262-9267. |
[14] | RODRíGUEZ-GONZáLEZ P, EPOV V N, BRIDOU R, et al. Species-specific stable isotope fractionation of mercury during Hg(II) methylation by an anaerobic bacteria (Desulfobulbus propionicus) under dark conditions[J]. Environmental Science & Technology, 2009, 43(24): 9183-9188. |
[15] | JISKRA M, WIEDERHOLD J G, BOURDON B, et al. Solution speciation controls mercury isotope fractionation of Hg(II) sorption to goethite[J]. Environmental Science & Technology, 2012, 46(12): 6654-6662. |
[16] | ZHENG W, HINTELMANN H. Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio[J]. Geochimica Et Cosmochimica Acta, 2009, 73(22): 6704-6715. |
[17] |
ZHENG W, HINTELMANN H. Isotope fractionation of mercury during its photochemical reduction by low-molecular-weight organic compounds[J]. Journal of Physical Chemistry A, 2010, 114(12): 4246-4253.
DOI PMID |
[18] | ZHENG W, DEMERS J D, LU X, et al. Mercury stable isotope fractionation during abiotic dark oxidation in the presence of thiols and natural organic matter[J]. Environmental Science & Technology, 2019, 53(4): 1853-1862. |
[19] | ESTRADE N, CARIGNAN J, SONKE J E, et al. Mercury isotope fractionation during liquid-vapor evaporation experiments[J]. Geochimica Et Cosmochimica Acta, 2009, 73(10): 2693-2711. |
[20] |
MOTTA L C, KRITEE K, BLUM J D, et al. Mercury isotope fractionation during the photochemical reduction of Hg(II) coordinated with organic ligands[J]. Journal of Physical Chemistry A, 2020, 124(14): 2842-2853.
DOI PMID |
[21] | CHEN J B, HINTELMANN H, FENG X B, et al. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada[J]. Geochimica Et Cosmochimica Acta, 2012, 90: 33-46. |
[22] |
冯新斌, 尹润生, 俞奔, 等. 汞同位素地球化学概述[J]. 地学前缘, 2015, 22(5): 124-135.
DOI |
[23] | BLUM J D, SHERMAN L S, JOHNSON M W. Mercury isotopes in Earth and environmental sciences[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 249-269. |
[24] | FOUCHER D, OGRINC N, HINTELMANN H. Tracing mercury contamination from the Idrija mining region (Slovenia) to the gulf of Trieste using Hg isotope ratio measurements[J]. Environmental Science & Technology, 2009, 43(1): 33-39. |
[25] |
BERGQUIST B A, BLUM J D. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems[J]. Science, 2007, 318(5849): 417-420.
PMID |
[26] |
BLUM J D, BERGQUIST B A. Reporting of variations in the natural isotopic composition of mercury[J]. Analytical and Bioanalytical Chemistry, 2007, 388(2): 353-359.
PMID |
[27] | 郑旺, 赵亚秋, 孙若愚, 等. 汞的稳定同位素分馏机理[J]. 矿物岩石地球化学通报, 2021, 40(5): 1087-1110. |
[28] | CHEN J B, HINTELMANN H, DIMOCK B. Chromatographic pre-concentration of Hg from dilute aqueous solutions for isotopic measurement by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(9): 1402-1409. |
[29] | WOERNDLE G E, TSUI M T K, SEBESTYEN S D, et al. New insights on ecosystem mercury cycling revealed by stable isotopes of mercury in water flowing from a headwater peatland catchment[J]. Environmental Science & Technology, 2018, 52(4): 1854-1861. |
[30] | JANSSEN S E, TATE M T, KRABBENHOFT D P, et al. The influence of legacy contamination on the transport and bioaccumulation of mercury within the Mobile River basin[J]. Journal of Hazardous Materials, 2021, 404(Pt A): 124097-124097. |
[31] |
JANSSEN S E, LEPAK R F, TATE M T, et al. Rapid pre-concentration of mercury in solids and water for isotopic analysis[J]. Analytica Chimica Acta, 2019, 1054: 95-103.
DOI PMID |
[32] | LI K, LIN C J, YUAN W, et al. An improved method for recovering and preconcentrating mercury in natural water samples for stable isotope analysis[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2303-2313. |
[33] |
YIN H Q, YAO H, YUAN W, et al. Determination of the isotopic composition of aqueous mercury in a paddy ecosystem using diffusive gradients in thin films[J]. Analytical Chemistry, 2023, 95(33): 12290-12297.
DOI PMID |
[34] | LIU J, LIU Z, YANG S. Studying the availability of mercury using the DGT technique[M]. Methylmercury Accumulation in Rice. CRC Press: 141-156. |
[35] | DONOVAN P M, BLUM J D, SINGER M B, et al. Methylmercury degradation and exposure pathways in streams and wetlands impacted by historical mining[J]. Science of the Total Environment, 2016, 568: 1192-1203. |
[36] | CROWTHER E R, DEMERS J D, BLUM J D, et al. Use of sequential extraction and mercury stable isotope analysis to assess remobilization of sediment-bound legacy mercury[J]. Environmental Science-Processes & Impacts, 2021, 23(5): 756-775. |
[37] | HUANG Q, LIU Y L, CHEN J B, et al. An improved dual-stage protocol to pre-concentrate mercury from airborne particles for precise isotopic measurement[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 957-966. |
[38] | SUN R Y, ENRICO M, HEIMBüRGER L E, et al. A double-stage tube furnace-acid-trapping protocol for the pre-concentration of mercury from solid samples for isotopic analysis[J]. Analytical and Bioanalytical Chemistry, 2013, 405(21): 6771-6781. |
[39] | DEMERS J D, BLUM J D, ZAK D R. Mercury isotopes in a forested ecosystem: implications for air-surface exchange dynamics and the global mercury cycle[J]. Global Biogeochemical Cycles, 2013, 27(1): 222-238. |
[40] | SONKE J E, SCHäFER J, CHMELEFF J, et al. Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries[J]. Chemical Geology, 2010, 279(3-4): 90-100. |
[41] | JANSSEN S E, RIVA-MURRAY K, DEWILD J F, et al. Chemical and physical controls on mercury source signatures in stream fish from the northeastern United States[J]. Environmental Science & Technology, 2019, 53(17): 10110-10119. |
[42] | ZHANG L, YIN Y G, LI Y B, et al. Mercury isotope fractionation during methylmercury transport and transformation: a review focusing on analytical method, fractionation characteristics, and its application[J]. Science of the Total Environment, 2022, 841: 156558. |
[43] | TSUI M T K, BLUM J D, KWON S Y, et al. Sources and transfers of methylmercury in adjacent river and forest food webs[J]. Environmental Science & Technology, 2012, 46(20): 10957-10964. |
[44] | JANSSEN S E, JOHNSON M W, BLUM J D, et al. Separation of monomethylmercury from estuarine sediments for mercury isotope analysis[J]. Chemical Geology, 2015, 411: 19-25. |
[45] | ROSERA T J, JANSSEN S E, TATE M T, et al. Methylmercury stable isotopes: new insights on assessing aquatic food web bioaccumulation in legacy impacted regions[J]. ACS ES & T Water, 2022, 2(5): 701-709. |
[46] | GRATZ L E, KEELER G J, BLUM J D, et al. Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air[J]. Environmental Science & Technology, 2010, 44(20): 7764-7770. |
[47] |
ROSERA T J, JANSSEN S E, TATE M T, et al. Isolation of methylmercury using distillation and anion-exchange chromatography for isotopic analyses in natural matrices[J]. Analytical and Bioanalytical Chemistry, 2020, 412(3): 681-690.
DOI PMID |
[48] | ZHANG Y Y, CHEN J B, ZHENG W, et al. Mercury isotope compositions in large anthropogenically impacted Pearl River, South China[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110229. |
[49] | GEHRKE G E, BLUM J D, MARVIN-DIPASQUALE M. Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes[J]. Geochimica Et Cosmochimica Acta, 2011, 75(3): 691-705. |
[50] | DONOVAN P M, BLUM J D, SINGER M B, et al. Isotopic composition of inorganic mercury and methylmercury downstream of a historical gold mining region[J]. Environmental Science & Technology, 2016, 50(4): 1691-1702. |
[51] | MCGOVARIN S, HINTELMANN H. Tracking mercury sources in the Wabigoon River: use of stable mercury isotopes in bioindicator organisms[J]. Chemosphere, 2024, 365: 143376. |
[52] | JANSSEN S E, HOFFMAN J C, LEPAK R F, et al. Examining historical mercury sources in the Saint Louis River estuary: how legacy contamination influences biological mercury levels in Great Lakes coastal regions[J]. Science of the Total Environment, 2021, 779: 146284. |
[53] | DONOVAN P M, BLUM J D, DEMERS J D, et al. Identification of multiple mercury sources to stream sediments near Oak Ridge, TN, USA[J]. Environmental Science & Technology, 2014, 48(7): 3666-3674. |
[54] |
SCHUDEL G, MISERENDINO R A, VEIGA M M, et al. An investigation of mercury sources in the Puyango-Tumbes River: using stable Hg isotopes to characterize transboundary Hg pollution[J]. Chemosphere, 2018, 202: 777-787.
DOI PMID |
[55] | WASHBURN S J, BLUM J D, DEMERS J D, et al. Isotopic characterization of mercury downstream of historic industrial contamination in the South River, Virginia[J]. Environmental Science & Technology, 2017, 51(19): 10965-10973. |
[56] | WASHBURN S J, BLUM J D, KURZ A Y, et al. Spatial and temporal variation in the isotopic composition of mercury in the South River, VA[J]. Chemical Geology, 2018, 494: 96-108. |
[57] |
REINFELDER J R, JANSSEN S E. Tracking legacy mercury in the Hackensack River estuary using mercury stable isotopes[J]. Journal of Hazardous Materials, 2019, 375: 121-129.
DOI PMID |
[58] | ARAUJO B F, HINTELMANN H, DIMOCK B, et al. Mercury speciation and Hg stable isotope ratios in sediments from Amazon floodplain lakes-Brazil[J]. Limnology and Oceanography, 2018, 63(3): 1134-1145. |
[59] | NITSCHKE N, GUEDRON S, TESSIER E, et al. Evaluation of the Hg contamination from gold mining in French Guiana at the watershed scale using Hg isotopic composition in river sediments[J]. ACS ES & T Water, 2024, 4(8): 3443-3452. |
[60] |
GOIX S, MAURICE L, LAFFONT L, et al. Quantifying the impacts of artisanal gold mining on a tropical river system using mercury isotopes[J]. Chemosphere, 2019, 219: 684-694.
DOI PMID |
[61] | MISERENDINO R A, GUIMARDES J R D, SCHUDEL G, et al. Mercury pollution in Amapa, Brazil: mercury amalgamation in artisanal and small-scale gold mining or land-cover and land-use changes?[J]. ACS Earth and Space Chemistry, 2018, 2(5): 441-450. |
[62] |
ARAUJO B F, HINTELMANN H, DIMOCK B, et al. Concentrations and isotope ratios of mercury in sediments from shelf and continental slope at Campos basin near Rio de Janeiro, Brazil[J]. Chemosphere, 2017, 178: 42-50.
DOI PMID |
[63] | JIMéNEZ-MORENO M, BARRE J P G, PERROT V, et al. Sources and fate of mercury pollution in Almaden mining district (Spain): evidences from mercury isotopic compositions in sediments and lichens[J]. Chemosphere, 2016, 147: 430-438. |
[64] | SCHWAB L, ROTHE F M, MCLAGAN D S, et al. Large extent of mercury stable isotope fractionation in contaminated stream sediments induced by changes of mercury binding forms[J]. Frontiers in Environmental Chemistry, 2022, 3: 1058890. |
[65] | PRIBIL M J, RIMONDI V, COSTAGLIOLA P, et al. Assessing mercury distribution using isotopic fractionation of mercury processes and sources adjacent and downstream of a legacy mine district in Tuscany, Italy[J]. Applied Geochemistry, 2020, 117: 104600. |
[66] | BAPTISTA-SALAZAR C, HINTELMANN H, BIESTER H. Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area[J]. Environmental Science-Processes & Impacts, 2018, 20(4): 621-631. |
[67] | YIN R S, FENG X B, WANG J X, et al. Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China[J]. Chemical Geology, 2013, 336: 72-79. |
[68] | LIU J L, FENG X B, YIN R S, et al. Mercury distributions and mercury isotope signatures in sediments of Dongjiang, the Pearl River Delta, China[J]. Chemical Geology, 2011, 287(1-2): 81-89. |
[69] | KIM Y G, KWON S Y, WASHBURN S J, et al. Environmental forensics approach to source investigation in a mercury contaminated river: insights from mercury stable isotopes[J]. Journal of Hazardous Materials, 2024, 461: 132559. |
[70] | TSUI M T K, BLUM J D, FINLAY J C, et al. Variation in terrestrial and aquatic sources of methylmercury in stream predators as revealed by stable mercury isotopes[J]. Environmental Science & Technology, 2014, 48(17): 10128-10135. |
[71] | KWON S Y, BLUM J D, CHEN C Y, et al. Mercury isotope study of sources and exposure pathways of methylmercury in estuarine food webs in the northeastern US[J]. Environmental Science & Technology, 2014, 48(17): 10089-10097. |
[72] | LIU C B, HUA X B, LIU H W, et al. Tracing aquatic bioavailable Hg in three different regions of China using fish Hg isotopes[J]. Ecotoxicology and Environmental Safety, 2018, 150: 327-334. |
[73] |
YIN R S, FENG X B, ZHANG J J, et al. Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China[J]. Chemosphere, 2016, 147: 173-179.
DOI PMID |
[74] | YANG Y H, KWON S Y, TSUI M T K, et al. Ecological traits of fish for mercury biomonitoring: insights from compound-specific nitrogen and stable mercury isotopes[J]. Environmental Science & Technology, 2022, 56(15): 10808-10817. |
[75] | CAMPEAU A, EKLöF K, SOERENSEN A L, et al. Sources of riverine mercury across the Mackenzie River basin; inferences from a combined Hg-C isotopes and optical properties approach[J]. Science of the Total Environment, 2022, 806: 150808. |
[76] | DEMERS J D, BLUM J D, BROOKS S C, et al. Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA[J]. Environmental Science-Processes & Impacts, 2018, 20(4): 686-707. |
[77] | TSUI M T K, UZUN H, RUECKER A, et al. Concentration and isotopic composition of mercury in a blackwater river affected by extreme flooding events[J]. Limnology and Oceanography, 2020, 65(9): 2158-2169. |
[78] | JISKRA M, WIEDERHOLD J G, SKYLLBERG U, et al. Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes[J]. Environmental Science-Processes & Impacts, 2017, 19(10): 1235-1248. |
[79] |
ARAUJO B F, OSTERWALDER S, SZPONAR N, et al. Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere[J]. Nature Communications, 2022, 13(1): 4956.
DOI PMID |
[80] | LI R L, YAN J Y, WANG C, et al. Mercury sources, transport, and transformation in rainfall-runoff processes: mercury isotope approach[J]. Water Research, 2024, 261: 122044. |
[81] | YAN J Y, LI R L, ALI M U, et al. Mercury migration to surface water from remediated mine waste and impacts of rainfall in a karst area-evidence from Hg isotopes[J]. Water Research, 2023, 230: 119592. |
[82] | MASON R P, SULLIVAN K A. Mercury and methylmercury transport through an urban watershed[J]. Water Research, 1998, 32(2): 321-330. |
[83] | GRIGAL D. Inputs and outputs of mercury from terrestrial watersheds: a review[J]. Environmental Reviews, 2002, 10(1): 1-39. |
[84] | LIU M D, ZHANG Q R, LUO Y, et al. Impact of water-induced soil erosion on the terrestrial transport and atmospheric emission of mercury in China[J]. Environmental Science & Technology, 2018, 52(12): 6945-6956. |
[85] | GAO X, YUAN W, CHEN J B, et al. Tracing the source and transport of Hg during pedogenesis in strongly weathered tropical soil using Hg isotopes[J]. Geochimica Et Cosmochimica Acta, 2023, 361: 101-112. |
[86] | BRADLEY P M, JOURNEY C A, LOWERY M A, et al. Shallow groundwater mercury supply in a coastal plain stream[J]. Environmental Science & Technology, 2012, 46(14): 7503-7511. |
[87] | YUAN S L, ZHANG Y Y, CHEN J B, et al. Large variation of mercury isotope composition during a single precipitation event at Lhasa City, Tibetan Plateau, China[J]. Procedia Earth and Planetary Science, 2015, 13: 282-286 |
[88] | YUAN S L, CHEN J B, CAI H M, et al. Sequential samples reveal significant variation of mercury isotope ratios during single rainfall events[J]. Science of the Total Environment, 2018, 624: 133-144. |
[89] | OBRIST D, AGNAN Y, JISKRA M, et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution[J]. Nature, 2017, 547(7662): 201-204. |
[90] | ZHENG W, CHANDAN P, STEFFEN A, et al. Mercury stable isotopes reveal the sources and transformations of atmospheric Hg in the high Arctic[J]. Applied Geochemistry, 2021, 131: 105002. |
[91] | SHERMAN L S, BLUM J D, JOHNSON K P, et al. Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight[J]. Nature Geoscience, 2010, 3(3): 173-177. |
[92] | DOUGLAS T A, BLUM J D. Mercury isotopes reveal atmospheric gaseous mercury deposition directly to the Arctic coastal snowpack[J]. Environmental Science & Technology Letters, 2019, 6(4): 235-242. |
[93] | ZHENG W, OBRIST D, WEIS D, et al. Mercury isotope compositions across North American forests[J]. Global Biogeochemical Cycles, 2016, 30(10): 1475-1492. |
[94] | WANG X, LUO J, YIN R S, et al. Using mercury isotopes to understand mercury accumulation in the montane forest floor of the eastern Tibetan Plateau[J]. Environmental Science & Technology, 2017, 51(2): 801-809. |
[95] | MOYNIER F, JACKSON M G, ZHANG K, et al. The mercury isotopic composition of Earth’s mantle and the use of mass independently fractionated Hg to test for recycled crust[J]. Geophysical Research Letters, 2021, 48(17): e2021GL094301. |
[96] | YIN R S, CHEN D, PAN X, et al. Mantle Hg isotopic heterogeneity and evidence of oceanic Hg recycling into the mantle[J]. Nature Communications, 2022, 13(1): 1-7. |
[97] | JISKRA M, WIEDERHOLD J G, SKYLLBERG U, et al. Mercury deposition and Re-emission pathways in boreal forest soils investigated with Hg isotope signatures[J]. Environmental Science & Technology, 2015, 49(12): 7188-7196. |
[98] | LIU N T, CAI X Y, JIA L Y, et al. Quantifying mercury distribution and source contribution in surface soil of Qinghai-Tibetan Plateau using mercury isotopes[J]. Environmental Science & Technology, 2023, 57(14): 5903-5912. |
[99] | BALDWIN A K, JANSSEN S E, TATE M T, et al. Mercury sources and budget for the Snake River above a hydroelectric reservoir complex[J]. Science of the Total Environment, 2024, 907: 167961. |
[100] | CHEN J B, HINTELMANN H, ZHENG W, et al. Isotopic evidence for distinct sources of mercury in lake waters and sediments[J]. Chemical Geology, 2016, 426: 33-44. |
[101] | 张媛媛. 大型人为干扰河流珠江中的汞及其稳定同位素地球化学研究[D]. 北京: 中国科学院大学, 2020. |
[102] | OUTRIDGE P M, MASON R P, WANG F, et al. Updated global and oceanic mercury budgets for the United Nations global mercury assessment 2018[J]. Environmental Science & Technology, 2018, 52(20): 11466-11477. |
[103] | SUN R Y, HINTELMANN H, WIKLUND J A, et al. Mercury isotope variations in lake sediment cores in response to direct mercury emissions from non-ferrous metal smelters and legacy mercury remobilization[J]. Environmental Science & Technology, 2022, 56(12): 8266-8277. |
[104] | RUDD J W M, KELLY C A, SELLERS P, et al. Why the English-Wabigoon river system is still polluted by mercury 57 years after its contamination[J]. Facets, 2021, 6: 2002-2027. |
[105] | LAFFONT L, SONKE J E, MAURICE L, et al. Hg speciation and stable isotope signatures in human hair as a tracer for dietary and occupational exposure to mercury[J]. Environmental Science & Technology, 2011, 45(23): 9910-9916. |
[106] | SMITH R S, WIEDERHOLD J G, JEW A D, et al. Stable Hg isotope signatures in creek sediments impacted by a former Hg mine[J]. Environmental Science & Technology, 2015, 49(2): 767-776. |
[107] | FOUCHER D, HINTELMANN H, AL T A, et al. Mercury isotope fractionation in waters and sediments of the Murray Brook mine watershed (New Brunswick, Canada): tracing mercury contamination and transformation[J]. Chemical Geology, 2013, 336: 87-95. |
[108] | GAI K, HOELEN T P, HSU-KIM H, et al. Mobility of four common mercury species in model and natural unsaturated soils[J]. Environmental Science & Technology, 2016, 50(7): 3342-3351. |
[109] | 蔡虹明. 特定自然水环境过程中汞同位素分馏[D]. 北京: 中国科学院大学, 2016. |
[110] |
ZHENG W, HINTELMANN H. Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light[J]. Journal of Physical Chemistry A, 2010, 114(12): 4238-4245.
DOI PMID |
[111] | WASHBURN S J, BLUM J D, DONOVAN P M, et al. Isotopic evidence for mercury photoreduction and retention on particles in surface waters of central California, USA[J]. Science of the Total Environment, 2019, 674: 451-461. |
[112] | LAURIER F J G, COSSA D, GONZALEZ J L, et al. Mercury transformations and exchanges in a high turbidity estuary: the role of organic matter and amorphous oxyhydroxides[J]. Geochimica Et Cosmochimica Acta, 2003, 67(18): 3329-3345. |
[113] | 王丽娟. 工业污染海湾沉积物汞的来源和迁移转化的同位素示踪[D]. 天津: 天津大学, 2023. |
[114] | LIU Y L, CHEN J B, LIU J F, et al. Coprecipitation of mercury from natural iodine-containing seawater for accurate isotope measurement[J]. Analytical Chemistry, 2021, 93(48): 15905-15912. |
[115] | YIN R S, FENG X B, CHEN B W, et al. Identifying the sources and processes of mercury in subtropical estuarine and ocean sediments using Hg isotopic composition[J]. Environmental Science & Technology, 2015, 49(3): 1347-1355. |
[116] | MENG M, SUN R Y, LIU H W, et al. An integrated model for input and migration of mercury in Chinese coastal sediments[J]. Environmental Science & Technology, 2019, 53(5): 2460-2471. |
[117] | JUNG S, KWON S Y, LI M L, et al. Elucidating sources of mercury in the west coast of Korea and the Chinese marginal seas using mercury stable isotopes[J]. Science of the Total Environment, 2022, 814: 152598. |
[118] | LI M L, SCHARTUP A T, VALBERG A P, et al. Environmental origins of methylmercury accumulated in subarctic estuarine fish indicated by mercury stable isotopes[J]. Environmental Science & Technology, 2016, 50(21): 11559-11568. |
[119] | JANSSEN S E, KOTALIK C J, EAGLES-SMITH C A, et al. Mercury isotope values in shoreline spiders reveal the transfer of aquatic mercury sources to terrestrial food webs[J]. Environmental Science & Technology Letters, 2023, 10(10): 891-896. |
[120] | JISKRA M, HEIMBURGER-BOAVIDA L E, DESGRANGES M M, et al. Mercury stable isotopes constrain atmospheric sources to the ocean[J]. Nature, 2021, 597(7878): 678-682. |
[121] | HE M J, LV S P, YIN R S, et al. Continuous flow-double purge and trap method for preconcentrating mercury in large volumes of seawater for stable isotope analysis[J]. Analytical Chemistry, 2024, 96(7): 2767-2773. |
[122] | MOTTA L C, BLUM J D, JOHNSON M W, et al. Mercury cycling in the North Pacific subtropical gyre as revealed by mercury stable isotope ratios[J]. Global Biogeochemical Cycles, 2019, 33(6): 777-794. |
[123] | STROK M, BAYA P A, DIETRICH D, et al. Mercury speciation and mercury stable isotope composition in sediments from the Canadian Arctic Archipelago[J]. Science of the Total Environment, 2019, 671: 655-665. |
[124] | SUN R Y, JISKRA M, AMOS H M, et al. Modelling the mercury stable isotope distribution of Earth surface reservoirs: implications for global Hg cycling[J]. Geochimica Et Cosmochimica Acta, 2019, 246: 156-173. |
[125] | ZHENG W, FOUCHER D, HINTELMANN H. Mercury isotope fractionation during volatilization of Hg(0) from solution into the gas phase[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(9): 1097-1104. |
[126] | YANG S C, LI P, SUN K F, et al. Mercury isotope compositions in seawater and marine fish revealed the sources and processes of mercury in the food web within differing marine compartments[J]. Water Research, 2023, 241: 120150. |
[127] |
FENG X B, JIANG H M, QIU G L, et al. Geochemical processes of mercury in Wujiangdu and Dongfeng reservoirs, Guizhou, China[J]. Environmental Pollution, 2009, 157(11): 2970-2984.
DOI PMID |
[1] | 褚宴佳, 何宝南, 陈珍, 何江涛. 基于随机森林模型识别浅层地下水TDS异常的方法研究[J]. 地学前缘, 2025, 32(2): 456-468. |
[2] | 赵增锋, 王楚尤, 邱小琮, 周瑞娟, 杨强强, 赵睿智. 宁夏清水河流域地表水水化学特征及高氟水成因机制[J]. 地学前缘, 2024, 31(6): 462-473. |
[3] | 孙彩云, 郑冰清, 李俊, 符洪铭, 孙荣卿, 刘红豪, 廖祖莹, 江红生, 吴振斌, 夏世斌, 王培. 沉水植物对岩溶碳汇稳定性影响研究[J]. 地学前缘, 2024, 31(5): 430-439. |
[4] | 陈发家, 肖琼, 胡祥云, 郭永丽, 孙平安, 张宁. 典型岩溶小流域碳酸盐岩风化过程及其碳汇效应[J]. 地学前缘, 2024, 31(5): 449-459. |
[5] | 陈康, 丁永康, 张笑晨. 基于地理探测器的滏阳河流域植被覆盖时空变化与驱动力分析[J]. 地学前缘, 2023, 30(5): 526-540. |
[6] | 张元福, 王敏, 张森, 孙世坦, 李鑫鑫, 袁晓冬, 黄云英, 张晓晗. 现代河流扇的全球分布、类型及控制因素[J]. 地学前缘, 2023, 30(4): 389-404. |
[7] | 何朝飞, 骆成彦, 陈伏龙, 龙爱华, 唐豪. 基于CMIP6多模式的和田河流域未来气候变化预估[J]. 地学前缘, 2023, 30(3): 515-528. |
[8] | 吴家望, 姚胜男, Amalia FILIPPIDI, 刘志飞, Gert J. DE LANGE. 全新世东地中海的陆源碎屑输入及其水文气候变化:海盆尺度地球化学分析[J]. 地学前缘, 2022, 29(4): 156-167. |
[9] | 胡义明, 陈腾, 罗序义, 唐超, 梁忠民. 基于机器学习模型的淮河流域中长期径流预报研究[J]. 地学前缘, 2022, 29(3): 284-291. |
[10] | 韩志慧, 马腾, 沈帅, 杜尧, 武显仓, 刘文辉. 汉江下游河流渗滤系统原生劣质地下水分布特征及影响因素研究[J]. 地学前缘, 2021, 28(5): 35-48. |
[11] | 王春光, 刘军省, 耿浩, 贾晗, 殷显阳, 迟昊轩. 铜陵矿区主要河流水质分析与污染评价[J]. 地学前缘, 2021, 28(4): 175-183. |
[12] | 刘维明, 周丽琴, 陈晓清, 周震, Wolfgang SCHWANGHART, 胡旭东, 李雪梅, 张小刚. 雅砻江流域河道高程剖面上的堰塞坝印记[J]. 地学前缘, 2021, 28(2): 58-70. |
[13] | 张永双, 刘筱怡, 吴瑞安, 郭长宝, 任三绍. 青藏高原东缘深切河谷区古滑坡:判识、特征、时代与演化[J]. 地学前缘, 2021, 28(2): 94-105. |
[14] | 张自力, 朱筱敏, 廖凤英, 李琦, 张锐锋, 曹兰柱, 施瑞生. 断陷盆地缓坡带河流沉积砂体定量表征及控制因素分析:以霸县凹陷文安斜坡东营组三段为例[J]. 地学前缘, 2021, 28(1): 141-154. |
[15] | 赵新苗, 唐索寒, 李津, 朱祥坤, 王辉, 李志汉, 张宏福. 钛同位素地球化学综述[J]. 地学前缘, 2020, 27(3): 68-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||