地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 156-167.DOI: 10.13745/j.esf.sf.2022.1.10
吴家望1,2,3(), 姚胜男1, Amalia FILIPPIDI2, 刘志飞3, Gert J. DE LANGE2,3
收稿日期:
2021-09-15
修回日期:
2021-12-15
出版日期:
2022-07-25
发布日期:
2022-07-28
作者简介:
吴家望(1987—),男,博士,副教授,海洋地球化学专业,主要从事海洋地质与古海洋学研究。E-mail: wujiaw5@mail.sysu.edu.cn; jwwu@tongji.edu.cn
基金资助:
WU Jiawang1,2,3(), YAO Shengnan1, Amalia FILIPPIDI2, LIU Zhifei3, Gert J. DE LANGE2,3
Received:
2021-09-15
Revised:
2021-12-15
Online:
2022-07-25
Published:
2022-07-28
摘要:
地中海位于非洲季风气候和欧洲温带气候的交界处,同时接受周边地区岩石性质和风化状况差异极大的碎屑物质,所以是研究地球表层水文循环的理想区域。前人的认识集中于撒哈拉风尘和尼罗河输入,往往忽视了其他的陆源碎屑沉积,尤其对不同水文气候条件下的潜在变化缺乏考虑。针对形成于全新世非洲湿润期的腐泥层S1页岩沉积,并结合采自岩心顶部的晚全新世/现代沉积物,文章从18个站位选取了30个样品开展碎屑组分的地球化学分析,通过在具有不同干湿环境背景的时间片段上开展盆地尺度的对比(约9.5~8.9 ka vs. 约1.7~0 ka),探讨全新世东地中海的陆源碎屑输入模式。Ti/Al、Zr/Al、Ca/Al、Y/Al都清晰显示了经向和纬向上的梯度变化,可用作撒哈拉风尘的可靠指标;这些碎屑元素之间的差异反映了北非风尘来源和传送路径的变化。这些风尘指标在南-北向上的一致变化指示了副热带高压与西风带的交互界限为36°N,该界限在全新世应稳定存在。与风尘相反,河流输入的指标值在早全新世时显著高于现代,并呈现不同的地理分布。K/Al具有西高东低、北高南低的分布特征,指示了地中海北部沿岸地区的河流输入。根据与Ti/Al、K/Al的差异,利用(Cr+Ni)/Al可较好地识别被增强的季风降雨所激活的北非古河流沉积。河流输入在早全新世时显著上升,但不同河流系统的影响范围差异很大,受制于源区水文气候、表层洋流搬运等因素。
中图分类号:
吴家望, 姚胜男, Amalia FILIPPIDI, 刘志飞, Gert J. DE LANGE. 全新世东地中海的陆源碎屑输入及其水文气候变化:海盆尺度地球化学分析[J]. 地学前缘, 2022, 29(4): 156-167.
WU Jiawang, YAO Shengnan, Amalia FILIPPIDI, LIU Zhifei, Gert J. DE LANGE. Terrigenous detrital inputs and hydroclimate changes in the Holocene eastern Mediterranean Sea: A basin-wide geochemical view[J]. Earth Science Frontiers, 2022, 29(4): 156-167.
岩心 | 取样方式 | 地理位置 | 站位水深/m | 航次信息 |
---|---|---|---|---|
BC07 | 箱式 | 33°40.0'N, 32°40.0'E | 893 | RV Marion Dufresne 1994 |
SL29 | 箱式 | 33°23.4'N, 32°30.2'E | 1 587 | RV Logachev 1999 |
SL09 | 箱式 | 34°17.2'N, 31°31.4'E | 2 302 | RV Logachev 1999 |
BC19 | 箱式 | 33°47.9'N, 28°36.5'E | 2 750 | RV Marion Dufresne 1991 |
BC03 | 箱式 | 33°22.5'N, 24°46.0'E | 2 180 | RV Marion Dufresne 1994 |
SL125 | 箱式 | 33°39.4'N, 24°33.0'E | 1 946 | RV Logachev 1999 |
SL73 | 箱式 | 39°39.7'N, 24°30.7'E | 339 | RV Logachev 1999 |
SL114 | 箱式 | 35°17.2'N, 21°24.5'E | 3 390 | RV Logachev 1999 |
SL139 | 箱式 | 34°16.1'N, 19°49.8'E | 3 293 | RV Logachev 1999 |
BP15 | 箱式 | 32°46.7'N, 19°52.6'E | 665 | RV Pelagia 2001 |
BP18 | 箱式 | 33°06.0'N, 19°46.4'E | 1 850 | RV Pelagia 2001 |
AP1 | 重力 | 39°13.0'N, 19°06.8'E | 811 | RV Urania 1998 |
MP50 | 活塞 | 39°29.0'N, 18°31.0'E | 775 | RV Pelagia 2009 |
KC01 | 活塞 | 36°15.3'N, 17°44.3'E | 3 643 | RV Marion Dufresne 1991 |
UM42 | 箱式 | 34°57.2'N, 17°51.8'E | 1 375 | RV Urania 1994 |
CP10 | 箱式 | 34°32.7'N, 16°34.0'E | 1 501 | RV Pelagia 2011 |
CP09 | 箱式 | 36°02.2'N, 13°06.6'E | 524 | RV Pelagia 2011 |
MT11 | 重力 | 37°03.5'N, 13°15.4'E | 502 | RV Tyro 1993 |
表1 本研究所用地中海沉积物岩心的站位概况
Table 1 General information of the studied Mediterranean sediment cores
岩心 | 取样方式 | 地理位置 | 站位水深/m | 航次信息 |
---|---|---|---|---|
BC07 | 箱式 | 33°40.0'N, 32°40.0'E | 893 | RV Marion Dufresne 1994 |
SL29 | 箱式 | 33°23.4'N, 32°30.2'E | 1 587 | RV Logachev 1999 |
SL09 | 箱式 | 34°17.2'N, 31°31.4'E | 2 302 | RV Logachev 1999 |
BC19 | 箱式 | 33°47.9'N, 28°36.5'E | 2 750 | RV Marion Dufresne 1991 |
BC03 | 箱式 | 33°22.5'N, 24°46.0'E | 2 180 | RV Marion Dufresne 1994 |
SL125 | 箱式 | 33°39.4'N, 24°33.0'E | 1 946 | RV Logachev 1999 |
SL73 | 箱式 | 39°39.7'N, 24°30.7'E | 339 | RV Logachev 1999 |
SL114 | 箱式 | 35°17.2'N, 21°24.5'E | 3 390 | RV Logachev 1999 |
SL139 | 箱式 | 34°16.1'N, 19°49.8'E | 3 293 | RV Logachev 1999 |
BP15 | 箱式 | 32°46.7'N, 19°52.6'E | 665 | RV Pelagia 2001 |
BP18 | 箱式 | 33°06.0'N, 19°46.4'E | 1 850 | RV Pelagia 2001 |
AP1 | 重力 | 39°13.0'N, 19°06.8'E | 811 | RV Urania 1998 |
MP50 | 活塞 | 39°29.0'N, 18°31.0'E | 775 | RV Pelagia 2009 |
KC01 | 活塞 | 36°15.3'N, 17°44.3'E | 3 643 | RV Marion Dufresne 1991 |
UM42 | 箱式 | 34°57.2'N, 17°51.8'E | 1 375 | RV Urania 1994 |
CP10 | 箱式 | 34°32.7'N, 16°34.0'E | 1 501 | RV Pelagia 2011 |
CP09 | 箱式 | 36°02.2'N, 13°06.6'E | 524 | RV Pelagia 2011 |
MT11 | 重力 | 37°03.5'N, 13°15.4'E | 502 | RV Tyro 1993 |
图1 地中海地区的地形图及本文的研究站位(据文献[38]修改) 区域地形图显示本文的沉积物岩心站位(表1)、表层海水的大尺度环流以及主要的陆源碎屑输入,其中包括撒哈拉风尘、尼罗河、地中海北部沿岸河流、以及北非古河流系统。
Fig.1 Map of the Mediterranean Sea and surrounding areas showing the locations of the studied cores. Modified after [38].
岩心 | 深度/ cm | 年龄/ (ka cal. BP) | wB/% | wB/10-6 | CIA a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Fe | Mg | K | Ca | Na | Ti | Zr | Co | Cr | Ni | Sc | Y | ||||
早全新世(腐泥层S1样品) | ||||||||||||||||
BC07 | 24.25 | 9.14 | 8.75 | 9.46 | 1.32 | 1.45 | 0.39 | 0.41 | 0.70 | 216.3 | 23.9 | 150.2 | 85.1 | 19.7 | 20.5 | 80.4 |
SL29 | 27.25 | 8.99 | 8.50 | 9.26 | 1.84 | 1.28 | 0.32 | 0.35 | 0.64 | 197.5 | 29.2 | 136.3 | 80.6 | 19.1 | 18.2 | 82.3 |
SL09 | 37.45 | 8.90 | 7.70 | 8.38 | 1.38 | 1.52 | 0.46 | 0.48 | 0.49 | 136.0 | 37.9 | 161.6 | 111.3 | 20.7 | 14.6 | 76.6 |
BC19 | 25.75 | 9.42 | 8.01 | 9.19 | 1.75 | 1.34 | 0.25 | 0.36 | 0.54 | 173.8 | 62.7 | 155.9 | 117.8 | 17.7 | 14.8 | 81.9 |
BC03 | 21.20 | 9.33 | 8.61 | 6.01 | 1.86 | 2.10 | 0.27 | 0.47 | 0.59 | 179.1 | 27.2 | 185.2 | 108.5 | 18.2 | 20.0 | 77.5 |
SL125 | 21.75 | 9.40 | 8.56 | 7.30 | 1.88 | 2.06 | 0.26 | 0.48 | 0.58 | 187.2 | 18.1 | 196.7 | 108.6 | 17.9 | 20.6 | 77.7 |
SL73 | 22.15 | 9.31 | 9.19 | 4.73 | 1.54 | 2.60 | 0.67 | 1.08 | 0.51 | 101.0 | 14.1 | 213.6 | 116.9 | 18.6 | 15.9 | 68.7 |
SL114 | 32.05 | 9.33 | 7.83 | 8.30 | 1.80 | 2.24 | 0.18 | 0.47 | 0.43 | 111.5 | 54.9 | 178.7 | 122.6 | 17.9 | 12.9 | 76.1 |
SL139 | 28.25 | 9.31 | 9.70 | 6.89 | 1.42 | 2.57 | 0.16 | 0.43 | 0.51 | 153.0 | 26.0 | 181.0 | 98.3 | 18.9 | 17.0 | 78.5 |
BP18 | 27.75 | 9.24 | 8.83 | 4.45 | 2.00 | 2.26 | 0.21 | 0.41 | 0.54 | 165.0 | 24.0 | 136.5 | 66.7 | 18.0 | 20.1 | 78.2 |
AP1 | 30.25 | 9.20 | 9.82 | 5.20 | 1.76 | 2.81 | 0.22 | 0.57 | 0.51 | 150.0 | 19.4 | 220.5 | 123.0 | 18.7 | 17.0 | 76.2 |
MP50 | 44.25 | 8.94 | 9.69 | 4.31 | 1.54 | 2.84 | 0.15 | 0.59 | 0.50 | 137.8 | 13.7 | 220.9 | 93.6 | 18.3 | 16.4 | 76.2 |
UM42 | 26.15 | 9.55 | 9.52 | 5.13 | 1.37 | 2.48 | 0.23 | 0.48 | 0.53 | 149.2 | 11.2 | 147.2 | 56.0 | 17.2 | 18.3 | 77.7 |
KC01 | 100.30 | 8.93 | 8.59 | 5.54 | 1.18 | 2.32 | 0.24 | 0.51 | 0.47 | 124.3 | 42.8 | 142.0 | 72.3 | 16.2 | 14.8 | 76.4 |
CP10 | 33.75 | 9.27 | 9.31 | 4.31 | 1.28 | 2.35 | 0.22 | 0.43 | 0.52 | 138.3 | 15.7 | 130.2 | 53.3 | 16.8 | 18.9 | 78.4 |
MT11 | 286.00 | 9.38 | 10.52 | 4.70 | 0.00 | 2.25 | 0.05 | 0.23 | 0.59 | 158.1 | 8.8 | 149.6 | 35.8 | 15.5 | 20.1 | 84.0 |
晚全新世/现代(岩心表层样品) | ||||||||||||||||
BC07b | 0.25 | 0.86 | 7.56 | 5.37 | 1.10 | 1.28 | 0.38 | 0.39 | 0.65 | 184.6 | 12.9 | 138.8 | 59.7 | 19.1 | 18.0 | 79.4 |
SL29b | 0.25 | 1.65 | 7.68 | 5.31 | 1.42 | 1.36 | 0.41 | 0.44 | 0.68 | 198.1 | 12.5 | 115.2 | 57.5 | 19.4 | 19.0 | 78.3 |
SL09b | 0.35 | ≈0 | 7.54 | 5.18 | 1.25 | 1.41 | 0.39 | 0.41 | 0.58 | 155.5 | 14.5 | 127.9 | 74.5 | 18.5 | 16.3 | 78.3 |
BC19b | 3.75 | 1.65 | 7.70 | 4.58 | 1.69 | 1.84 | 0.27 | 0.44 | 0.58 | 183.8 | 10.7 | 123.7 | 60.7 | 14.9 | 20.2 | 77.2 |
BC03b | 5.60 | 4.85 | 9.09 | 5.28 | 1.80 | 2.33 | 0.30 | 0.54 | 0.64 | 209.3 | 13.1 | 164.4 | 86.7 | 17.3 | 24.2 | 76.4 |
SL125 | 8.75 | 4.04 | 9.60 | 5.43 | 1.29 | 2.32 | 0.28 | 0.50 | 0.67 | 206.1 | 15.1 | 175.1 | 93.4 | 17.9 | 24.3 | 77.9 |
SL73b | 0.45 | 1.20 | 7.60 | 3.85 | 1.17 | 1.96 | 0.60 | 0.95 | 0.40 | 80.9 | 9.8 | 143.6 | 76.5 | 16.6 | 12.7 | 68.7 |
SL114b | 0.25 | ≈0 | 7.32 | 3.93 | 1.32 | 1.83 | 0.19 | 0.52 | 0.49 | 121.7 | 11.5 | 137.6 | 70.5 | 14.7 | 15.6 | 76.5 |
BP15b | 0.25 | ≈0 | 8.71 | 4.67 | 1.12 | 2.31 | 0.33 | 0.52 | 0.60 | 203.0 | 10.6 | 107.2 | 40.3 | 19.8 | 23.6 | 75.7 |
BP18b | 0.25 | 1.89 | 7.98 | 4.35 | 1.49 | 2.14 | 0.33 | 0.65 | 0.58 | 178.0 | 10.3 | 99.0 | 35.6 | 14.9 | 19.5 | 73.8 |
AP1b | 0.25 | ≈0 | 9.28 | 4.42 | 1.27 | 2.42 | 0.16 | 0.62 | 0.54 | 130.6 | 14.3 | 177.0 | 74.1 | 19.6 | 14.6 | 77.0 |
UM42 | 4.65 | 1.38 | 8.84 | 4.55 | 1.24 | 2.25 | 0.31 | 0.52 | 0.57 | 168.7 | 9.9 | 113.9 | 41.1 | 15.6 | 21.0 | 76.3 |
CP10b | 0.25 | 0.76 | 9.82 | 4.64 | 1.10 | 2.44 | 0.35 | 0.54 | 0.60 | 154.0 | 10.0 | 130.6 | 45.5 | 18.9 | 21.1 | 76.9 |
CP09b | 0.25 | ≈0 | 8.72 | 4.18 | 0.77 | 1.92 | 0.17 | 0.32 | 0.54 | 149.7 | 8.0 | 120.7 | 33.9 | 16.6 | 19.2 | 80.9 |
ISE-921(n=4) | 5.72 | 3.28 | 1.14 | 1.97 | 4.49 | 5.67 | 3.62 | 106.9 | 13.7 | 139.7 | 45.1 | 9.6 | 22.4 | |||
MAG-1(n=2) | 8.63 | 4.87 | 1.92 | 1.52 | 1.07 | 2.91 | 0.43 | 92.5 | 19.6 | 110.8 | 65.3 | 16.7 | 22.5 |
表2 全新世地中海沉积物碎屑组分的元素地球化学组成
Table 2 Geochemical compositions of detrital samples of the Holocene Mediterranean sediments
岩心 | 深度/ cm | 年龄/ (ka cal. BP) | wB/% | wB/10-6 | CIA a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Fe | Mg | K | Ca | Na | Ti | Zr | Co | Cr | Ni | Sc | Y | ||||
早全新世(腐泥层S1样品) | ||||||||||||||||
BC07 | 24.25 | 9.14 | 8.75 | 9.46 | 1.32 | 1.45 | 0.39 | 0.41 | 0.70 | 216.3 | 23.9 | 150.2 | 85.1 | 19.7 | 20.5 | 80.4 |
SL29 | 27.25 | 8.99 | 8.50 | 9.26 | 1.84 | 1.28 | 0.32 | 0.35 | 0.64 | 197.5 | 29.2 | 136.3 | 80.6 | 19.1 | 18.2 | 82.3 |
SL09 | 37.45 | 8.90 | 7.70 | 8.38 | 1.38 | 1.52 | 0.46 | 0.48 | 0.49 | 136.0 | 37.9 | 161.6 | 111.3 | 20.7 | 14.6 | 76.6 |
BC19 | 25.75 | 9.42 | 8.01 | 9.19 | 1.75 | 1.34 | 0.25 | 0.36 | 0.54 | 173.8 | 62.7 | 155.9 | 117.8 | 17.7 | 14.8 | 81.9 |
BC03 | 21.20 | 9.33 | 8.61 | 6.01 | 1.86 | 2.10 | 0.27 | 0.47 | 0.59 | 179.1 | 27.2 | 185.2 | 108.5 | 18.2 | 20.0 | 77.5 |
SL125 | 21.75 | 9.40 | 8.56 | 7.30 | 1.88 | 2.06 | 0.26 | 0.48 | 0.58 | 187.2 | 18.1 | 196.7 | 108.6 | 17.9 | 20.6 | 77.7 |
SL73 | 22.15 | 9.31 | 9.19 | 4.73 | 1.54 | 2.60 | 0.67 | 1.08 | 0.51 | 101.0 | 14.1 | 213.6 | 116.9 | 18.6 | 15.9 | 68.7 |
SL114 | 32.05 | 9.33 | 7.83 | 8.30 | 1.80 | 2.24 | 0.18 | 0.47 | 0.43 | 111.5 | 54.9 | 178.7 | 122.6 | 17.9 | 12.9 | 76.1 |
SL139 | 28.25 | 9.31 | 9.70 | 6.89 | 1.42 | 2.57 | 0.16 | 0.43 | 0.51 | 153.0 | 26.0 | 181.0 | 98.3 | 18.9 | 17.0 | 78.5 |
BP18 | 27.75 | 9.24 | 8.83 | 4.45 | 2.00 | 2.26 | 0.21 | 0.41 | 0.54 | 165.0 | 24.0 | 136.5 | 66.7 | 18.0 | 20.1 | 78.2 |
AP1 | 30.25 | 9.20 | 9.82 | 5.20 | 1.76 | 2.81 | 0.22 | 0.57 | 0.51 | 150.0 | 19.4 | 220.5 | 123.0 | 18.7 | 17.0 | 76.2 |
MP50 | 44.25 | 8.94 | 9.69 | 4.31 | 1.54 | 2.84 | 0.15 | 0.59 | 0.50 | 137.8 | 13.7 | 220.9 | 93.6 | 18.3 | 16.4 | 76.2 |
UM42 | 26.15 | 9.55 | 9.52 | 5.13 | 1.37 | 2.48 | 0.23 | 0.48 | 0.53 | 149.2 | 11.2 | 147.2 | 56.0 | 17.2 | 18.3 | 77.7 |
KC01 | 100.30 | 8.93 | 8.59 | 5.54 | 1.18 | 2.32 | 0.24 | 0.51 | 0.47 | 124.3 | 42.8 | 142.0 | 72.3 | 16.2 | 14.8 | 76.4 |
CP10 | 33.75 | 9.27 | 9.31 | 4.31 | 1.28 | 2.35 | 0.22 | 0.43 | 0.52 | 138.3 | 15.7 | 130.2 | 53.3 | 16.8 | 18.9 | 78.4 |
MT11 | 286.00 | 9.38 | 10.52 | 4.70 | 0.00 | 2.25 | 0.05 | 0.23 | 0.59 | 158.1 | 8.8 | 149.6 | 35.8 | 15.5 | 20.1 | 84.0 |
晚全新世/现代(岩心表层样品) | ||||||||||||||||
BC07b | 0.25 | 0.86 | 7.56 | 5.37 | 1.10 | 1.28 | 0.38 | 0.39 | 0.65 | 184.6 | 12.9 | 138.8 | 59.7 | 19.1 | 18.0 | 79.4 |
SL29b | 0.25 | 1.65 | 7.68 | 5.31 | 1.42 | 1.36 | 0.41 | 0.44 | 0.68 | 198.1 | 12.5 | 115.2 | 57.5 | 19.4 | 19.0 | 78.3 |
SL09b | 0.35 | ≈0 | 7.54 | 5.18 | 1.25 | 1.41 | 0.39 | 0.41 | 0.58 | 155.5 | 14.5 | 127.9 | 74.5 | 18.5 | 16.3 | 78.3 |
BC19b | 3.75 | 1.65 | 7.70 | 4.58 | 1.69 | 1.84 | 0.27 | 0.44 | 0.58 | 183.8 | 10.7 | 123.7 | 60.7 | 14.9 | 20.2 | 77.2 |
BC03b | 5.60 | 4.85 | 9.09 | 5.28 | 1.80 | 2.33 | 0.30 | 0.54 | 0.64 | 209.3 | 13.1 | 164.4 | 86.7 | 17.3 | 24.2 | 76.4 |
SL125 | 8.75 | 4.04 | 9.60 | 5.43 | 1.29 | 2.32 | 0.28 | 0.50 | 0.67 | 206.1 | 15.1 | 175.1 | 93.4 | 17.9 | 24.3 | 77.9 |
SL73b | 0.45 | 1.20 | 7.60 | 3.85 | 1.17 | 1.96 | 0.60 | 0.95 | 0.40 | 80.9 | 9.8 | 143.6 | 76.5 | 16.6 | 12.7 | 68.7 |
SL114b | 0.25 | ≈0 | 7.32 | 3.93 | 1.32 | 1.83 | 0.19 | 0.52 | 0.49 | 121.7 | 11.5 | 137.6 | 70.5 | 14.7 | 15.6 | 76.5 |
BP15b | 0.25 | ≈0 | 8.71 | 4.67 | 1.12 | 2.31 | 0.33 | 0.52 | 0.60 | 203.0 | 10.6 | 107.2 | 40.3 | 19.8 | 23.6 | 75.7 |
BP18b | 0.25 | 1.89 | 7.98 | 4.35 | 1.49 | 2.14 | 0.33 | 0.65 | 0.58 | 178.0 | 10.3 | 99.0 | 35.6 | 14.9 | 19.5 | 73.8 |
AP1b | 0.25 | ≈0 | 9.28 | 4.42 | 1.27 | 2.42 | 0.16 | 0.62 | 0.54 | 130.6 | 14.3 | 177.0 | 74.1 | 19.6 | 14.6 | 77.0 |
UM42 | 4.65 | 1.38 | 8.84 | 4.55 | 1.24 | 2.25 | 0.31 | 0.52 | 0.57 | 168.7 | 9.9 | 113.9 | 41.1 | 15.6 | 21.0 | 76.3 |
CP10b | 0.25 | 0.76 | 9.82 | 4.64 | 1.10 | 2.44 | 0.35 | 0.54 | 0.60 | 154.0 | 10.0 | 130.6 | 45.5 | 18.9 | 21.1 | 76.9 |
CP09b | 0.25 | ≈0 | 8.72 | 4.18 | 0.77 | 1.92 | 0.17 | 0.32 | 0.54 | 149.7 | 8.0 | 120.7 | 33.9 | 16.6 | 19.2 | 80.9 |
ISE-921(n=4) | 5.72 | 3.28 | 1.14 | 1.97 | 4.49 | 5.67 | 3.62 | 106.9 | 13.7 | 139.7 | 45.1 | 9.6 | 22.4 | |||
MAG-1(n=2) | 8.63 | 4.87 | 1.92 | 1.52 | 1.07 | 2.91 | 0.43 | 92.5 | 19.6 | 110.8 | 65.3 | 16.7 | 22.5 |
图2 东地中海全新世碎屑沉积元素地球化学指标的关系图 利用Al为底作元素比值进行分析以消除稀释效应、粒径分布等因素的影响;其中包括风尘输入指标:Ti/Al、Zr/Al、Ca/Al、Y/Al和Fe/Al(只限于非腐泥层样品),以及河流输入指标:K/Al、Mg/Al、Cr/Al、Ni/Al、(Cr+Ni)/Al等。此处对沉积于不同干湿气候条件下的样品进行区分:腐泥层S1样品(早全新世)和岩心顶部/表层样品(晚全新世/现代)。
Fig.2 Correlation plots between the selected elemental ratios of detrital sediments for the Holocene eastern Mediterranean Sea
图3 风尘输入指标与站位经度、纬度以及水深的变化关系 主要风尘输入指标包括:Ti/Al、Zr/Al、Ca/Al、Y/Al、以及Fe/Al(只限于非腐泥层样品)。此处对沉积于不同干湿气候条件下的样品进行区分:腐泥层S1样品(早全新世)和岩心顶部/表层样品(晚全新世/现代)。
Fig.3 Changes of dust input indicator values with longitude, latitude or water depth of the studied cores
图4 河流输入指标和化学风化指标与站位经度纬度以及水深的变化关系 主要河流输入指标:K/Al、Mg/Al、Cr/Al、Ni/Al、(Cr+Ni)/Al;利用CIA(Chemical Index of Alteration)指数来反映陆源区的化学风化强度。此处对沉积于不同干湿气候条件下的样品进行区分:腐泥层S1样品(早全新世)和岩心顶部/表层样品(晚全新世/现代)。
Fig.4 Changes of riverine input indicator values and CIA (Chemical Index of Alteration) with longitude, latitude or water depth of the studied cores
图5 全新世东地中海陆源碎屑输入的元素地球化学三端员图 选取Ti*3、K*1、(Cr+Ni)*50元素含量作三端员图对各类风尘和河流输入进行汇总认识。此处对沉积于不同干湿气候条件下的样品进行区分:腐泥层S1样品(早全新世)和岩心顶部/表层样品(晚全新世/现代);并且按站位的经度位置进行颜色标注。
Fig.5 Ternary diagram showing the geochemical compositions of terrigenous detritus imported to the Holocene eastern Mediterranean Sea
[1] | BETHOUX J P, GENTILI B, RAUNET J, et al. Warming trend in the western Mediterranean deep water[J]. Nature, 1990, 347(6294): 660-662. |
[2] | BAR-MATTHEWS M, AYALON A, KAUFMAN A. Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq cave, Israel[J]. Chemical Geology, 2000, 169(1): 145-156. |
[3] | TZEDAKIS P C. Seven ambiguities in the Mediterranean palaeoenvironmental narrative[J]. Quaternary Science Reviews, 2007, 26(17): 2042-2066. |
[4] | MAGNY M, COMBOURIEU-NEBOUT N, DE BEAULIEU L, et al. North-south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses[J]. Climate of the Past, 2013, 9: 2043e2071. |
[5] | WAGNER B, VOGEL H, FRANCKE A, et al. Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years[J]. Nature, 2019, 573(7773): 256-260. |
[6] | CRAMP A, O’SULLIVAN G. Neogene sapropels in the Mediterranean: a review[J]. Marine Geology, 1999, 153(1): 11-28. |
[7] | ROHLING E J, MARINO G, GRANT K M. Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels)[J]. Earth-Science Reviews, 2015, 143: 62-97. |
[8] | ROSSIGNOL-STRICK M, NESTEROFF W, OLIVE P, et al. After the deluge: Mediterranean stagnation and sapropel formation[J]. Nature, 1982, 295(5845): 105-110. |
[9] | ZIEGLER M, TUENTER E, LOURENS L J. The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968)[J]. Quaternary Science Reviews, 2010, 29(11): 1481-1490. |
[10] | ZHAO Y, COLIN C, LIU Z, et al. Reconstructing precipitation changes in northeastern Africa during the Quaternary by clay mineralogical and geochemical investigations of Nile deep-sea fan sediments[J]. Quaternary Science Reviews, 2012, 57: 58-70. |
[11] | DE LANGE G J, THOMSON J, REITZ A, et al. Synchronous basin-wide formation and redox-controlled preservation of a Mediterranean sapropel[J]. Nature Geoscience, 2008, 1(9): 606-610. |
[12] | DE LANGE G J, TEN HAVEN H L. Recent sapropel formation in the eastern Mediterranean[J]. Nature, 1983, 305(5937): 797-798. |
[13] | EMEIS K-C, STRUCK U, SCHULZ H-M, et al. Temperature and salinity variations of Mediterranean Sea surface waters over the last 16 000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 158(3): 259-280. |
[14] | SCHMIEDL G, KUHNT T, EHRMANN W, et al. Climatic forcing of eastern Mediterranean deep-water formation and benthic ecosystems during the past 22 000 years[J]. Quaternary Science Reviews, 2010, 29: 3006-3020. |
[15] | TACHIKAWA K, VIDAL L, CORNUAULT M, et al. Eastern Mediterranean Sea circulation inferred from the conditions of S1 sapropel deposition[J]. Climate of the Past, 2015, 11(6): 855-867. |
[16] | FILIPPIDI A, TRIANTAPHYLLOW M V, DE LANGE G J. Eastern-Mediterranean ventilation variability during sapropel S1 formation, evaluated at two sites influenced by deep-water formation from Adriatic and Aegean Seas[J]. Quaternary Science Reviews, 2016, 144: 95-106. |
[17] | MATTHEWS A, AZRIELI-TAL I, BENKOVITZ A, et al. Anoxic development of sapropel S1 in the Nile Fan inferred from redox sensitive proxies, Fe speciation, Fe and Mo isotopes[J]. Chemical Geology, 2017, 475: 24-39. |
[18] | TESI T, ASIOLI A, MINISINI D, et al. Large-scale response of the Eastern Mediterranean thermohaline circulation to African monsoon intensification during sapropel S1 formation[J]. Quaternary Science Reviews, 2017, 159: 139-154. |
[19] | WU J, PAHNKE K, BÖNING P, et al. Divergent Mediterranean seawater circulation during Holocene sapropel formation-Reconstructed using Nd isotopes in fish debris and foraminifera[J]. Earth and Planetary Science Letters, 2019, 511: 141-153. |
[20] | THUNELL R C, WILLIAMS D F. Glacial-Holocene salinity changes in the Mediterranean Sea: hydrographic and depositional effects[J]. Nature, 1989, 338(6215): 493-496. |
[21] | KALLEL N, PATERNE M, DUPLESSY J, et al. Enhanced rainfall in the Mediterranean region during the last Sapropel Event[J]. 1997, 20(5). |
[22] | ROHLING E J, DE RIJK S. Holocene Climate Optimum and Last Glacial Maximum in the Mediterranean: the marine oxygen isotope record[J]. Marine Geology, 1999, 153(1): 57-75. |
[23] | MYERS P G, HAINES K, ROHLING E J. Modeling the paleocirculation of the Mediterranean: the Last Glacial Maximum and the Holocene with emphasis on the formation of sapropel S1[J]. Paleoceanography, 1998, 13(6): 586-606. |
[24] | MYERS P G. Flux-forced simulations of the paleocirculation of the Mediterranean[J]. Paleoceanography, 2002, 17(1): 9-1-9-7. |
[25] | VADSARIA T, RAMSTEIN G, DUTAY J C, et al. Simulating the occurrence of the last sapropel event (S1): Mediterranean basin ocean dynamics simulations using Nd isotopic composition modeling[J]. Paleoceanography and Paleoclimatology, 2019, 34(2): 237-251. |
[26] | STRATFORD K, WILLIAMS R G, MYERS P G. Impact of the circulation on Sapropel Formation in the eastern Mediterranean[J]. Global Biogeochemical Cycles, 2000, 14(2): 683-695. |
[27] | BIANCHI D, ZAVATARELLI M, PINARDI N, et al. Simulations of ecosystem response during the sapropel S1 deposition event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 235(1): 265-287. |
[28] | GRIMM R, MAIER-REIMER E, MIKOLAJEWICZ U, et al. Late glacial initiation of Holocene eastern Mediterranean sapropel formation[J]. Nature Communication, 2015, 6: 7099. |
[29] | REVEL M, DUCASSOU E, GROUSSET F E, et al. 100 000 Years of African monsoon variability recorded in sediments of the Nile margin[J]. Quaternary Science Reviews, 2010, 29(11): 1342-1362. |
[30] | HENNEKAM R, DONDERS T H, ZWIEP K, et al. Integral view of Holocene precipitation and vegetation changes in the Nile catchment area as inferred from its delta sediments[J]. Quaternary Science Reviews, 2015, 130: 189-199. |
[31] | LIU Q, LARRASOANA J, TORRENT J, et al. New constraints on climate forcing and variability in the circum-Mediterranean region from magnetic and geochemical observations of sapropels S1, S5 and S6.[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 333: 1-12. |
[32] | MILNER A M, COLLIER R E L, ROUCOUX K H, et al. Enhanced seasonality of precipitation in the Mediterranean during the early part of the Last Interglacial[J]. Geology, 2012, 40(10): 919-922. |
[33] | BOSMANS J H C, DRIJFHOUT S S, TUENTER E, et al. Precession and obliquity forcing of the freshwater budget over the Mediterranean[J]. Quaternary Science Reviews, 2015, 123: 16-30. |
[34] | ROHLING E J, CANE T R, COOKE S, et al. African monsoon variability during the previous interglacial maximum[J]. Earth and Planetary Science Letters, 2002, 202(1): 61-75. |
[35] | OSBORNE A H, VANCE D, ROHLING E J, et al. A humid corridor across the Sahara for the migration of early modern humans out of Africa 120 000 years ago[J]. Proceedings of the National Academy of Sciences, 2008, 105(43): 16444. |
[36] | WU J, BÖNING P, PAHNKE K, et al. Unraveling North-African riverine and eolian contributions to central Mediterranean sediments during Holocene sapropel S1 formation[J]. Quaternary Science Reviews, 2016, 152: 31-48. |
[37] | WU J, LIU Z, STUUT J-B W, et al. North-African paleodrainage discharges to the central Mediterranean during the last 18 000 years: a multiproxy characterization[J]. Quaternary Science Reviews, 2017, 163: 95-113. |
[38] | WU J, FILIPPIDI A, DAVIES G R, et al. Riverine supply to the eastern Mediterranean during last interglacial sapropel S5 formation: a basin-wide perspective[J]. Chemical Geology, 2018, 485: 74-89. |
[39] | BLANCHET C L, OSBORNE A H, TJALLINGII R, et al. Drivers of river reactivation in North Africa during the last glacial cycle[J]. Nature Geoscience, 2021, 14(2): 97-103. |
[40] | NESBITT H W, YOUNG G M J N. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. |
[41] | REITZ A, THOMSON J, DE LANGE G J, et al. Source and development of large manganese enrichments above eastern Mediterranean sapropel S1[J]. Paleoceanography, 2006, 21(3): PA 3007. |
[42] | VAN SANTVOORT P J M, DE LANGE G J, THOMSON J, et al. Active post-depositional oxidation of the most recent sapropel (S1) in sediments of the eastern Mediterranean Sea[J]. Geochimica et Cosmochimica Acta, 1996, 60: 4007-4024. |
[43] | GROUSSET F E, BISCAYE P E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes[J]. Chemical Geology, 2005, 222: 149-167. |
[44] | BOUT-ROUMAZEILLES V, NEBOUT N C, PEYRON O, et al. Connection between South Mediterranean climate and North African atmospheric circulation during the last 50 000 yr BP North Atlantic cold events[J]. Quaternary Science Reviews, 2007, 26: 3197-3215. |
[45] | VENKATARATHNAM K, RYAN W B F. Dispersal patterns of clay minerals in the sediments of the eastern Mediterranean Sea[J]. Marine Geology, 1971, 11(4): 261-282. |
[46] | KROM M D, CLIFF R A, EIJSINK L M, et al. The characterisation of Saharan dusts and Nile particulate matter in surface sediments from the Levantine basin using Sr isotopes[J]. Marine Geology, 1999, 155(3): 319-330. |
[47] | WELDEAB S, EMEIS K-C, HEMLEBEN C, et al. Provenance of lithogenic surface sediments and pathways of riverine suspended matter in the Eastern Mediterranean Sea: evidence from 143Nd/144Nd and 87Sr/86Sr ratios[J]. Chemical Geology, 2002, 186(1): 139-149. |
[48] | KROM M D, MICHARD A, CLIFF R A, et al. Sources of sediment to the Ionian Sea and western Levantine basin of the Eastern Mediterranean during S-1 sapropel times[J]. Marine Geology, 1999, 160(1): 45-61. |
[49] | WEHAUSEN R, BRUMSACK H-J. Cyclic variations in the chemical composition of eastern Mediterranean Pliocene sediments: a key for understanding sapropel formation[J]. Marine Geology, 1999, 153: 161-176. |
[50] | NIJENHUIS I A, DE LANGE G J. Geochemical constraints on Pliocene sapropel formation in the eastern Mediterranean[J]. Marine Geology, 2000, 163: 41-63. |
[51] | FREYDIER R, MICHARD A, DE LANGE G, et al. Nd isotopic compositions of Eastern Mediterranean sediments: tracers of the Nile influence during sapropel S1 formation?[J]. Marine Geology, 2001, 177(1): 45-62. |
[52] | KLAVER M, DJULY T, DE GRAAF S, et al. Temporal and spatial variations in provenance of Eastern Mediterranean Sea sediments: implications for Aegean and Aeolian arc volcanism[J]. Geochimica et Cosmochimica Acta, 2015, 153: 149-168. |
[53] | MARTINEZ-RUIZ F, KASTNER M, GALLEGO-TORRES D, et al. Paleoclimate and paleoceanography over the past 20 000 yr in the Mediterranean Sea Basins as indicated by sediment elemental proxies[J]. Quaternary Science Reviews, 2015, 107: 25-46. |
[54] | SCHEUVENS D, SCHÜTZ L, KANDLER K, et al. Bulk composition of northern African dust and its source sediments: a compilation[J]. Earth-Science Reviews, 2013, 116: 170-194. |
[55] | WILLIAMS M, ADAMSON D, COCK B, et al. Late Quaternary environments in the White Nile region, Sudan[J]. Global Planetary Change, 2000, 26: 305-316. |
[56] | SHANAHAN T M, MCKAY N P, HUGHEN K A, et al. The time-transgressive termination of the African humid period[J]. Nature Geoscience, 2015, 8: 140-144. |
[1] | 何雁兵, 雷永昌, 邱欣卫, 肖张波, 郑仰帝, 刘冬青. 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究[J]. 地学前缘, 2024, 31(2): 359-376. |
[2] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[3] | 孙炜毅, 刘健, 严蜜, 宁亮. 全新世亚洲季风百年-千年尺度变化的模拟研究进展[J]. 地学前缘, 2022, 29(5): 342-354. |
[4] | 田芝平, 张冉, 姜大膀. 全新世中期中国气候和东亚季风:PMIP4模式结果[J]. 地学前缘, 2022, 29(5): 355-371. |
[5] | 燕青. 亚洲高山区全新世中期气候及其影响下的冰川模拟[J]. 地学前缘, 2022, 29(5): 372-381. |
[6] | 洪双, 左仁广, 胡浩, 熊义辉, 王子烨. 磁铁矿元素地球化学大数据构建及其在矿床成因分类中的应用[J]. 地学前缘, 2021, 28(3): 87-96. |
[7] | 郭永强, 葛永刚, 陈晓清, 刘维明, 毛沛妮, 刘涛. 高山峡谷区古洪水事件重建研究进展[J]. 地学前缘, 2021, 28(2): 168-180. |
[8] | 高华华, 童晓光, 温志新, 王兆明. 东地中海原型盆地演化[J]. 地学前缘, 2020, 27(4): 255-271. |
[9] | 段文晶, 赵甫峰, 任科法, 刘显凡, 邓江红, 杨蜜蜜, 楚亚婷. 滇西六合正长斑岩和花岗岩包体中锆石U-Pb年代和微量元素地球化学研究[J]. 地学前缘, 2020, 27(3): 154-167. |
[10] | 李声浩,朱赖民,丁乐乐,熊潇,刘凯. 南秦岭夏家店金矿床赋矿黑色岩系元素地球化学及其成矿意义[J]. 地学前缘, 2019, 26(5): 129-145. |
[11] | 贺聪,吉利明,苏奥,刘颖,李剑锋,吴远东,张明震. 鄂尔多斯盆地南部延长组热水沉积作用与烃源岩发育的关系[J]. 地学前缘, 2017, 24(6): 277-285. |
[12] | 丁大林,李广雪,徐继尚,丁咚,李倩,王丽艳,王昊寅,张洋. 全新世亚洲季风演变[J]. 地学前缘, 2017, 24(4): 114-123. |
[13] | 李关清, 顾雪祥, 程文斌, 章永梅, 张岩, 代鸿章, 吕鹏瑞. 藏南扎西康锑硫盐多金属矿床成矿物质来源分析:兼论北喜马拉雅成矿带主要矿床矿质来源的差异性[J]. 地学前缘, 2014, 21(5): 90-104. |
[14] | 公王斌, 胡健民, 李振宏, 吴素娟, 刘洋, 阎纪元. 河套盆地西缘山前低台地沉积特征对“吉兰泰—河套”古湖消退过程及其控制因素的指示意义[J]. 地学前缘, 2013, 20(4): 190-198. |
[15] | 解洪晶, 武广, 朱明田, 晋建平, 钟伟, 刘军, 糜梅. 西天山喇嘛苏岩体年代学、地球化学及成矿意义[J]. 地学前缘, 2013, 20(1): 190-205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||