地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 392-407.DOI: 10.13745/j.esf.sf.2025.3.40
收稿日期:
2025-02-07
修回日期:
2025-02-26
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*杨 业(1992—),男,博士,副研究员,主要从事第四纪地貌学和风化剥蚀与环境研究。E-mail:作者简介:
杨睿涵(2001—),女,硕士研究生,主要从事大陆风化剥蚀研究。E-mail:yandrandh@tju.edu.cn
基金资助:
YANG Ruihan(), YANG Ye*(
), CAO Zhenping, XU Sheng
Received:
2025-02-07
Revised:
2025-02-26
Online:
2025-03-25
Published:
2025-04-20
摘要:
高能宇宙射线及其次级粒子与大气和地表物质中的原子发生反应,分别生成大气和原位宇宙成因核素。大气成因10Be主要由散裂中子与大气中的氧和氮原子发生核反应生成,被气溶胶吸附后在大气层中迁移并通过干湿沉降过程沉积到地表。相比于14C,10Be具有更长的半衰期(1.387 Ma),定年尺度可达数个百万年。相比于原位成因10Be,大气成因10Be不仅可以作为年代学和地表风化剥蚀指标,同时也可以重建古地磁场强度和古气候降水变化。大气成因10Be具有应用范围广、自然界核素浓度高和实验室前处理简单等优势,有利于核素的实验室提取和加速器质谱分析。尽管大气成因10Be已经在各个领域中广泛应用,但对古地磁场强度、古气候降水、风化剥蚀通量、年代学等指标的适用性研究仍缺乏系统梳理和深入讨论。本文综述了大气成因10Be指标的基本原理和不同研究实例(如海洋沉积物、黄土沉积物、冰芯、河流沉积物等),探讨了大气成因10Be指标在表层地球系统科学研究中的适用性,并初步展望了大气成因10Be研究的机遇和挑战。
中图分类号:
杨睿涵, 杨业, 曹振平, 徐胜. 大气宇宙成因核素10Be在地球科学研究中的应用:进展与展望[J]. 地学前缘, 2025, 32(3): 392-407.
YANG Ruihan, YANG Ye, CAO Zhenping, XU Sheng. Progress and perspectives of meteoric 10Be applications in Earth Science[J]. Earth Science Frontiers, 2025, 32(3): 392-407.
图3 全新世以来全球通用环流模型大气成因10Be沉降通量分布(据文献[79])
Fig.3 The distribution map of the 10Be depositional flux derived from the ECHAM5-HAM model with the average of the Holocene. Adapted from [79].
[1] | PHILLIPS F M, ARGENTO D C, BALCO G, et al. The CRONUS-Earth project: a synthesis[J]. Quaternary Geochronology, 2016, 31: 119-154. |
[2] | BROWN L, PAVICH M J, HICKMAN R, et al. Erosion of the eastern United States observed with 10Be[J]. Earth Surface Processes and Landforms, 1988, 13(5): 441-457. |
[3] | GOSSE J C, PHILLIPS F M. Terrestrial in situ cosmogenic nuclides: theory and application[J]. Quaternary Science Reviews, 2001, 20(14): 1475-1560. |
[4] | DUNAI T J. Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences[M]. Cambridge: Cambridge University Press, 2010. |
[5] | SCHAEFER J M, CODILEAN A T, WILLENBRING J K, et al. Cosmogenic nuclide techniques[J]. Nature Reviews Methods Primers, 2022, 2(1): 18. |
[6] | LAL D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models[J]. Earth and Planetary Science Letters, 1991, 104(2): 424-439. |
[7] | WILLENBRING J K, VON BLANCKENBURG F. Meteoric cosmogenic beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics[J]. Earth-Science Reviews, 2010, 98(1): 105-122. |
[8] | CHMELEFF J, VON BLANCKENBURG F, KOSSERT K, et al. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting[J]. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2010, 268(2): 192-199. |
[9] | KORSCHINEK G, BERGMAIER A, FAESTERMANN T, et al. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(2): 187-191. |
[10] |
RAISBECK G, YIOU F, FRUNEAU M, et al. Beryllium-10 mass spectrometry with a cyclotron[J]. Science, 1978, 202(4364): 215-217.
PMID |
[11] | RAISBECK G M, YIOU F, FRUNEAU M, et al. Measurement of 10Be in 1000- and 5000-year-old Antarctic ice[J]. Nature, 1978, 275(5682): 731-733. |
[12] | MARRERO S M, PHILLIPS F M, BORCHERS B, et al. Cosmogenic nuclide systematics and the CRONUScalc program[J]. Quaternary Geochronology, 2016, 31: 160-187. |
[13] | WU Z, ZHOU W, LU X, et al. BeO preparation and AMS measurement result for loess samples[J]. Nuclear Techniques, 2008, 31(6): 427-432. |
[14] | DONG K, LANG Y, HU N, et al. The new AMS facility at Tianjin University[J]. Radiation Detection Technology and Methods, 2018, 2: 1-6. |
[15] | PAVICH M J, BROWN L, HARDEN J, et al. 10Be distribution in soils from Merced River terraces, California[J]. Geochimica et Cosmochimica Acta, 1986, 50(8): 1727-1735. |
[16] | BACON A R, RICHTER D D, BIERMAN P R, et al. Coupling meteoric 10Be with pedogenic losses of 9Be to improve soil residence time estimates on an ancient North American interfluve[J]. Geology, 2012, 40(9): 847-850. |
[17] | MCKEAN J A, DIETRICH W E, FINKEL R C, et al. Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile[J]. Geology, 1993, 21(4): 343-346. |
[18] | WITTMANN H, VON BLANCKENBURG F, DANNHAUS N, et al. A test of the cosmogenic 10Be (meteoric)/9Be proxy for simultaneously determining basin-wide erosion rates, denudation rates, and the degree of weathering in the Amazon Basin[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(12): 2498-2528. |
[19] | DANNHAUS N, WITTMANN H, KRÁM P, et al. Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric 10Be/9Be ratios[J]. Geochimica et Cosmochimica Acta, 2018, 222: 618-641. |
[20] | DENG K, WITTMANN H, YANG S, et al. The upper limit of denudation rate measurement from cosmogenic 10Be (meteoric)/9Be ratios in Taiwan[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(10): e2021JF006221. |
[21] | YANG Y, ZHANG S C, ZHANG J X, et al. Quantifying denudation rates and sediment recycling of low-relief, high-elevation landscapes using in-situ and meteoric cosmogenic nuclides[J]. Geochimica et Cosmochimica Acta, 2024, 370: 78-88. |
[22] | VON BLANCKENBURG F, BOUCHEZ J, WITTMANN H. Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio[J]. Earth and Planetary Science Letters, 2012, 351/352: 295-305. |
[23] | BROWN E T, EDMOND J M, RAISBECK G M, et al. Beryllium isotope geochemistry in tropical river basins[J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1607-1624. |
[24] | VON BLANCKENBURG F, BOUCHEZ J. River fluxes to the sea from the ocean’s 10Be/9Be ratio[J]. Earth and Planetary Science Letters, 2014, 387: 34-43. |
[25] | DENG K, RICKLI J, SUHRHOFF T J, et al. Dominance of benthic fluxes in the oceanic beryllium budget and implications for paleo-denudation records[J]. Science Advances, 2023, 9(23): eadg3702. |
[26] | LI S, GOLDSTEIN S L, RAYMO M E. Neogene continental denudation and the beryllium conundrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(42). |
[27] | KONG W, ZHOU L, ASTERTEAM. Tracing water masses and assessing boundary scavenging intensity with beryllium isotopes in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(7): e2021JC017236. |
[28] | FRANK M, BACKMAN J, JAKOBSSON M, et al. Beryllium isotopes in central Arctic Ocean sediments over the past 12.3 million years: stratigraphic and paleoclimatic implications[J]. Paleoceanography, 2008, 23(1): PA1S02. |
[29] | CUI L F, HU Y, DONG K J, et al. 10Be/9Be constrain of varying weathering rate since 5 Ma: evidence from a Co-rich ferromanganese crust in the western Pacific[J]. Science Bulletin, 2021, 66(7): 664-666. |
[30] | SEGL M, MANGINI A, BEER J, et al. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events[J]. Paleoceanography, 1989, 4(5): 511-530. |
[31] | NISHI K, USUI A, NAKASATO Y, et al. Formation age of the dual structure and environmental change recorded in hydrogenetic ferromanganese crusts from Northwest and Central Pacific seamounts[J]. Ore Geology Reviews, 2017, 87: 62-70. |
[32] | USUI A, NISHI K, SATO H, et al. Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800-5500 m[J]. Ore Geology Reviews, 2017, 87: 71-87. |
[33] | WAGNER G, BEER J, MASARIK J, et al. Presence of the solar de Vries cycle (-205 years) during the last ice age[J]. Geophysical Research Letters, 2001, 28(2): 303-306. |
[34] | SIMON Q, BOURLÈS D L, BASSINOT F, et al. Authigenic 10Be/9Be ratio signature of the Matuyama-Brunhes boundary in the Montalbano Jonico marine succession[J]. Earth and Planetary Science Letters, 2017, 460: 255-267. |
[35] | ZHOU W, KONG X, DU Y, et al. 10Be indicator for the Matuyama-Gauss magnetic polarity reversal from Chinese loess[J]. Geophysical Research Letters, 2023, 50(8): e2022GL102486. |
[36] | RAISBECK G M, YIOU F, CATTANI O, et al. 10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core[J]. Nature, 2006, 444(7115): 82-84. |
[37] | WITTMANN H, BOUCHEZ J, CALMELS D, et al. Denudation and weathering rates of carbonate landscapes from meteoric 10Be/9Be ratios[J]. Journal of Geophysical Research: Earth Surface, 2024, 129(9): e2024JF007638. |
[38] | MUSCHELER R, BEER J, WAGNER G, et al. Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records[J]. Nature, 2000, 408(6812): 567-570. |
[39] | VONMOOS M, BEER J, MUSCHELER R. Large variations in Holocene solar activity: constraints from 10Be in the Greenland Ice Core Project ice core[J]. Journal of Geophysical Research (Space Physics), 2006, 111(A10): A10105. |
[40] | WILLENBRING J K, VON BLANCKENBURG F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling[J]. Nature, 2010, 465(7295): 211-214. |
[41] | BECK J W, ZHOU W, LI C, et al. A 550000-year record of East Asian monsoon rainfall from 10Be in loess[J]. Science, 2018, 360(6391): 877-881. |
[42] | ZHOU W, KONG X, PATERSON G A, et al. Eccentricity-paced geomagnetic field and monsoon rainfall variations over the last 870 kyr[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(17): e2211495120. |
[43] | CAO Z P, YANG Y, XU S, et al. Authigenic beryllium isotopes reveal fluctuations in the East Asian monsoon over the past two millennia[J]. Quaternary Science Reviews, 2023, 306: 108043. |
[44] | MASARIK J, REEDY R C. Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations[J]. Earth and Planetary Science Letters, 1995, 136(3/4): 381-395. |
[45] | MASARIK J, BEER J. An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D11): D11103. |
[46] | LAL D, PETERS B. Cosmic ray produced radioactivity on the Earth[M]. New York: Springer, 1967: 551-612. |
[47] | MASARIK J, BEER J. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D10): 12099-12111. |
[48] | RAISBECK G, YIOU F, FRUNEAU M, et al. Cosmogenic 10Be/7Be as a probe of atmospheric transport processes[J]. Geophysical Research Letters, 1981, 8(9): 1015-1018. |
[49] | YOU C F, LEE T, LI Y H. The partition of Be between soil and water[J]. Chemical Geology, 1989, 77(2): 105-118. |
[50] | CAILLET S, ARPAGAUS P, MONNA F, et al. Factors controlling 7Be and 210Pb atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland[J]. Journal of Environmental Radioactivity, 2001, 53(2): 241-256. |
[51] | PRILLER A, BERGER M, GÄGGELER H W, et al. Accelerator mass spectrometry of particle-bound 10Be[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223: 601-607. |
[52] | HEIKKILÄ S, SEIKKALA S. On non-absolute functional volterra integral equations and impulsive differential equations in ordered banach spaces[J]. Electronic Journal of Differential Equations, 2008, 2008: 1-11. |
[53] | BLAKE W H, WALLING D E, HE Q. Using cosmogenic beryllium-7 as a tracer in sediment budget investigations[J]. Geografiska Annaler: Series A, Physical Geography, 2002, 84(2): 89-102. |
[54] | ZHANG J X, YANG Y, DONG K J, et al. In-situ and meteoric cosmogenic 10Be constraints on coupling chemical weathering and denudation in monolithologic catchments[J]. Global and Planetary Change, 2025(accepted). |
[55] | SIMON Q, BOURLÈS D L, THOUVENY N, et al. Cosmogenic signature of geomagnetic reversals and excursions from the Réunion event to the Matuyama-Brunhes transition (0.7-2.14 Ma interval)[J]. Earth and Planetary Science Letters, 2018, 482: 510-524. |
[56] | SIMON Q, THOUVENY N, BOURLÈS D L, et al. Authigenic 10Be/9Be ratio signatures of the cosmogenic nuclide production linked to geomagnetic dipole moment variation since the Brunhes/Matuyama boundary[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(11): 7716-7741. |
[57] | WITTMANN H, VON BLANCKENBURG F, MOHTADI M, et al. The competition between coastal trace metal fluxes and oceanic mixing from the 10Be/9Be ratio: implications for sedimentary records[J]. Geophysical Research Letters, 2017, 44(16): 8443-8452. |
[58] | BERNHARDT A, OELZE M, BOUCHEZ J, et al. 10Be/9Be ratios reveal marine authigenic clay formation[J]. Geophysical Research Letters, 2020, 47(4): e2019GL086061. |
[59] | SPROSON A D, YOKOYAMA Y, MIYAIRI Y, et al. Near-synchronous Northern Hemisphere and Patagonian Ice Sheet variation over the last glacial cycle[J]. Nature Geoscience, 2024, 17(5): 450-457. |
[60] | DIBB J E, MEEKER L D, FINKEL R C, et al. Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D6): 12855-12864. |
[61] | JORDAN C E, DIBB J E, FINKEL R C. 10Be/7Be tracer of atmospheric transport and stratosphere-troposphere exchange[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D8): 4234. |
[62] | HEIKKILÄ U, BEER J, ALFIMOV V. Beryllium-10 and beryllium-7 in precipitation in Dübendorf (440 m) and at Jungfraujoch (3580 m), Switzerland (1998-2005)[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D11): D11104. |
[63] | GRALY J A, REUSSER L J, BIERMAN P R. Short and long-term delivery rates of meteoric 10Be to terrestrial soils[J]. Earth and Planetary Science Letters, 2011, 302(3): 329-336. |
[64] | MANN M, BEER J, STEINHILBER F, et al. Variations in the depositional fluxes of cosmogenic beryllium on short time scales[J]. Atmospheric Environment, 2011, 45(17): 2836-2841. |
[65] | DENG K, WITTMANN H, VON BLANCKENBURG F. The depositional flux of meteoric cosmogenic 10Be from modeling and observation[J]. Earth and Planetary Science Letters, 2020, 550: 116530. |
[66] | OUIMET W, DETHIER D, BIERMAN P, et al. Spatial and temporal variations in meteoric 10Be inventories and long-term deposition rates, Colorado Front Range[J]. Quaternary Science Reviews, 2015, 109: 1-12. |
[67] | REUSSER L, GRALY J, BIERMAN P, et al. Calibrating a long-term meteoric 10Be accumulation rate in soil[J]. Geophysical Research Letters, 2010, 37(19): L19403. |
[68] | MAHER K, VON BLANCKENBURG F. Surface ages and weathering rates from 10Be (meteoric) and 10Be/9Be: insights from differential mass balance and reactive transport modeling[J]. Chemical Geology, 2016, 446: 70-86. |
[69] | DIXON J L, CHADWICK O A, PAVICH M J. Climatically controlled delivery and retention of meteoric 10Be in soils[J]. Geology, 2018, 46(10): 899-902. |
[70] | MONAGHAN M, KRISHNASWAMI S, THOMAS J. 10Be concentrations and the long-term fate of particle-reactive nuclides in five soil profiles from California[J]. Earth and Planetary Science Letters, 1983, 65(1): 51-60. |
[71] | MAEJIMA Y, MATSUZAKI H, HIGASHI T. Application of cosmogenic 10Be to dating soils on the raised coral reef terraces of Kikai Island, Southwest Japan[J]. Geoderma, 2005, 126(3): 389-399. |
[72] | EGLI M, BRANDOVÁ D, BÖHLERT R, et al. 10Be inventories in Alpine soils and their potential for dating land surfaces[J]. Geomorphology, 2010, 119(1): 62-73. |
[73] | SINGLETON A A, SCHMIDT A H, BIERMAN P R, et al. Effects of grain size, mineralogy, and acid-extractable grain coatings on the distribution of the fallout radionuclides 7Be, 10Be, 137Cs, and 210Pb in river sediment[J]. Geochimica et Cosmochimica Acta, 2017, 197: 71-86. |
[74] | WITTMANN H, VON BLANCKENBURG F, BOUCHEZ J, et al. The dependence of meteoric 10Be concentrations on particle size in Amazon River bed sediment and the extraction of reactive 10Be/9Be ratios[J]. Chemical Geology, 2012, 318/319: 126-138. |
[75] | STIER P, FEICHTER J, KINNE S, et al. The aerosol-climate model ECHAM5-HAM[J]. Atmospheric Chemistry and Physics, 2005, 5(4): 1125-1156. |
[76] | FIELD C V, SCHMIDT G A, KOCH D, et al. Modeling production and climate-related impacts on 10Be concentration in ice cores[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D15): D15107. |
[77] | HEIKKILÄ U, BEER J, ABREU J, et al. On the atmospheric transport and deposition of the cosmogenic radionuclides (10Be): a review[J]. Space Science Reviews, 2013, 176: 321-332. |
[78] | HEIKKILÄ U, BEER J, FEICHTER J. Meridional transport and deposition of atmospheric 10Be[J]. Atmospheric Chemistry and Physics, 2009, 9(2): 515-527. |
[79] | HEIKKILÄ U, VON BLANCKENBURG F. The global distribution of Holocene meteoric 10Be fluxes from atmospheric models: distribution maps for terrestrial Earth’s surface applications[J]. GFZ Data Services, 2015, 10. |
[80] |
DE VRIES H. Atomic bomb effect: variation of radiocarbon in plants, shells, and snails in the past 4 years[J]. Science, 1958, 128(3318): 250-251.
PMID |
[81] | REIMER P J, BARD E, BAYLISS A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. |
[82] | SIMON Q, THOUVENY N, BOURLÈS D L, et al. Increased production of cosmogenic 10Be recorded in oceanic sediment sequences: information on the age, duration, and amplitude of the geomagnetic dipole moment minimum over the Matuyama-Brunhes transition[J]. Earth and Planetary Science Letters, 2018, 489: 191-202. |
[83] | FRANK M, SCHWARZ B, BAUMANN S, et al. A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments[J]. Earth and Planetary Science Letters, 1997, 149(1/2/3/4): 121-129. |
[84] | CARCAILLET J, BOURLÈS D L, THOUVENY N, et al. A high resolution authigenic 10Be/9Be record of geomagnetic moment variations over the last 300 ka from sedimentary cores of the Portuguese margin[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 397-412. |
[85] | CARCAILLET J T, THOUVENY N, BOURLES D L. Geomagnetic moment instability between 0.6 and 1.3 Ma from cosmonuclide evidence[J]. Geophysical Research Letters, 2003, 30(15): 1792. |
[86] | LEDUC G, THOUVENY N, BOURLÈS D L, et al. Authigenic 10Be/9Be signature of the Laschamp excursion: a tool for global synchronisation of paleoclimatic archives[J]. Earth and Planetary Science Letters, 2006, 245(1): 19-28. |
[87] | MÉNABRÉAZ L, BOURLÈS D L, THOUVENY N. Amplitude and timing of the Laschamp geomagnetic dipole low from the global atmospheric 10Be overproduction: contribution of authigenic 10Be/9Be ratios in west equatorial Pacific sediments[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B11): B1101. |
[88] | MÉNABRÉAZ L, THOUVENY N, BOURLÈS D L, et al. The geomagnetic dipole moment variation between 250 and 800 ka BP reconstructed from the authigenic 10Be/9Be signature in west equatorial Pacific sediments[J]. Earth and Planetary Science Letters, 2014, 385: 190-205. |
[89] | MÉNABRÉAZ L, THOUVENY N, BOURLÈS D, et al. The Laschamp geomagnetic dipole low expressed as a cosmogenic 10Be atmospheric overproduction at-41 ka[J]. Earth and Planetary Science Letters, 2011, 312(3/4): 305-317. |
[90] | VALET J P, BASSINOT F, SIMON Q, et al. Constraining the age of the last geomagnetic reversal from geochemical and magnetic analyses of Atlantic, Indian, and Pacific Ocean sediments[J]. Earth and Planetary Science Letters, 2019, 506: 323-331. |
[91] | KIM K J, NAM S I. Climatic signals from the 10Be records of the Korean marine sediments[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7/8): 1248-1252. |
[92] |
刘志飞, 陈建芳, 石学法. 深海沉积与全球变化研究的前缘与挑战[J]. 地学前缘, 2022, 29(4): 1-9.
DOI |
[93] | 孔祥辉, 周卫健, 武振坤, 等. 大气生成宇宙成因核素10Be在中国黄土中的应用研究进展[J]. 地球环境学报, 2016, 7: 227-237. |
[94] | 鲜锋, 周卫健, 武振坤, 等. 中国黄土中 Blake 地磁极性漂移事件记录的空间对比[J]. 地球环境学报, 2012, 3: 770-780. |
[95] | 周卫健, 孔祥辉, 鲜锋, 等. 中国黄土10Be重建古地磁场变化史的初步研究[J]. 地球环境学报, 2010, 1: 20-27. |
[96] | ZHOU W, DU Y, ZHOU X, et al. Chinese loess 10Be records for the Jaramillo polarity subchron[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 659: 112673. |
[97] | GU Z Y, LAL D, LIU T S, et al. Five million year 10Be record in Chinese loess and red-clay: climate and weathering relationships[J]. Earth and Planetary Science Letters, 1996, 144(1): 273-287. |
[98] | ZHOU W, PRILLER A, BECK J W, et al. Disentangling geomagnetic and precipitation signals in an 80-kyr Chinese loess record of 10Be[J]. Radiocarbon, 2007, 49(1): 137-158. |
[99] | 李翠林, 侯书贵. 雪冰中宇宙成因核素10Be 在第四纪研究中的潜在应用[J]. 极地研究, 2002, 14(3): 234. |
[100] |
MCCORKELL R, FIREMAN E, LANGWAY JR C. Aluminum-26 and beryllium-10 in Greenland ice[J]. Science, 1967, 158(3809): 1690-1692.
PMID |
[101] | WAGNER G, MASARIK J, BEER J, et al. Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 172(1/2/3/4): 597-604. |
[102] | MCCRACKEN K G. Geomagnetic and atmospheric effects upon the cosmogenic 10Be observed in polar ice[J]. Journal of Geophysical Research (Space Physics), 2004, 109(A4): A04101. |
[103] | BERGGREN A M, BEER J, POSSNERT G, et al. A 600-year annual 10Be record from the NGRIP ice core, Greenland[J]. Geophysical Research Letters, 2009, 36: L11801. |
[104] | STEINHILBER F, ABREU J A, BEER J, et al. 9400 years of cosmic radiation and solar activity from ice cores and tree rings[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 5967-5971. |
[105] |
PALEARI C I, MEKHALDI F, ADOLPHI F, et al. Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP[J]. Nature Communications, 2022, 13(1): 214.
DOI PMID |
[106] | NILSSON A, NGUYEN L, PANOVSKA S, et al. Holocene solar activity inferred from global and hemispherical cosmic-ray proxy records[J]. Nature Geoscience, 2024, 17(7): 654-659. |
[107] | RAHAMAN W, WITTMANN H, VON BLANCKENBURG F. Denudation rates and the degree of chemical weathering in the Ganga River basin from ratios of meteoric cosmogenic 10Be to stable 9Be[J]. Earth and Planetary Science Letters, 2017, 469: 156-169. |
[108] | WITTMANN H, OELZE M, ROIG H, et al. Are seasonal variations in river-floodplain sediment exchange in the lower Amazon River basin resolvable through meteoric cosmogenic 10Be to stable 9Be ratios?[J]. Geomorphology, 2018, 322: 148-158. |
[109] | CHENGDE S, BEER J, TUNGSHENG L, et al. 10Be in Chinese loess[J]. Earth and Planetary Science Letters, 1992, 109(1/2): 169-177. |
[110] | SHEN C, LIU T. 10Be record in the Late Pleistocene loess deposits[J]. Quaternary Sciences, 1989, 9(2): 169-176. |
[111] | BARG E, LAL D, PAVICH M J, et al. Beryllium geochemistry in soils: evaluation of 10Be/9Be ratios in authigenic minerals as a basis for age models[J]. Chemical Geology, 1997, 140(3): 237-258. |
[112] | JAGERCIKOVA M, CORNU S, BOURLÈS D, et al. Understanding long-term soil processes using meteoric 10Be: a first attempt on loessic deposits[J]. Quaternary Geochronology, 2015, 27: 11-21. |
[113] | KOWALSKA J B, EGLI M, VÖGTLI M, et al. Meteoric 10Be as a tracer of soil redistribution rates and reconstruction tool of loess-mantled soils (SW, Poland)[J]. Geoderma, 2023, 433: 116451. |
[114] | GRALY J A, BIERMAN P R, REUSSER L J, et al. Meteoric 10Be in soil profiles-a global meta-analysis[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6814-6829. |
[115] | LOBA A, WAROSZEWSKI J, SYKUŁA M, et al. Meteoric 10Be, 137Cs and 239+240Pu as tracers of long- and medium-term soil erosion: a review[J]. Minerals, 2022, 12(3): 359. |
[116] | MUSSO A, TIKHOMIROV D, PLÖTZE M L, et al. Soil formation and mass redistribution during the Holocene using meteoric 10Be, soil chemistry and mineralogy[J]. Geosciences, 2022, 12(2): 99. |
[117] | BINNIE S A, NISHIIZUMI K, WELTEN K C, et al. Lunar surface processes inferred from cosmogenic radionuclides in Apollo 16 double drive core 68002/68001[J]. Geochimica et Cosmochimica Acta, 2019, 244: 336-351. |
[118] | PORTENGA E W, BIERMAN P R, TRODICK C D, JR., et al. Erosion rates and sediment flux within the Potomac River basin quantified over millennial timescales using beryllium isotopes[J]. GSA Bulletin, 2019, 131(7/8): 1295-1311. |
[1] | 陈瑜, 徐飞, 程宏飞, 陈贤哲, 温汉捷. 锂同位素地球化学研究新进展[J]. 地学前缘, 2023, 30(5): 469-490. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||