地学前缘 ›› 2023, Vol. 30 ›› Issue (4): 389-404.DOI: 10.13745/j.esf.sf.2022.12.52
张元福1(), 王敏2, 张森1, 孙世坦1, 李鑫鑫1, 袁晓冬1, 黄云英1, 张晓晗1
收稿日期:
2022-09-06
修回日期:
2023-01-06
出版日期:
2023-07-25
发布日期:
2023-07-07
作者简介:
张元福(1979-),男,博士,教授,博士生导师,主要从事沉积学理论及油气储集层的研究工作。E-mail: zyf@cugb.edu.cn
基金资助:
ZHANG Yuanfu1(), WANG Min2, ZHANG Sen1, SUN Shitan1, LI Xinxin1, YUAN Xiaodong1, HUANG Yunying1, ZHANG Xiaohan1
Received:
2022-09-06
Revised:
2023-01-06
Online:
2023-07-25
Published:
2023-07-07
摘要:
扇研究一直是沉积学中充满活力的研究主题,河流扇是扇研究的重要组成部分。近年来,河流扇研究引起了诸多学者关注,多种相关术语体系并行。针对上述问题,我们建立了一个融合383个全球现代河流扇沉积数据集,统计分析各类数据达8 400条。基于数据集,我们首次掌握了现代河流扇的全球分布,划分了河流扇的主要类型,明确了扇体形成、发育的控制因素。其中,河流扇的全球分布具备明显的纬度分带和地域分区特征:从纬度上看,主要发育在北纬30°~50°(49.5%);从地域上看,主要分布在亚洲中部及中国西部(50.1%)。根据地形限制和河道摆动情况,可以把河流扇分为非限制迭进型、非限制摆动型、限制迭进型和限制摆动型4种形态类型。河流扇主要在干旱、半干旱条件下形成,受局部构造条件、气候以及物源供给控制。扇体内部建造以河流作用为主,从扇体顶点到远端呈现出明显的异质性。扇体的面积直接受控于纬度、温度、坡度、集水区面积、区域年降雨量和山前距离等因素。随着研究的进一步深入,河流扇将在沉积学、地质灾害防治、石油勘探,甚至行星际沉积学等方面发挥重要作用。
中图分类号:
张元福, 王敏, 张森, 孙世坦, 李鑫鑫, 袁晓冬, 黄云英, 张晓晗. 现代河流扇的全球分布、类型及控制因素[J]. 地学前缘, 2023, 30(4): 389-404.
ZHANG Yuanfu, WANG Min, ZHANG Sen, SUN Shitan, LI Xinxin, YUAN Xiaodong, HUANG Yunying, ZHANG Xiaohan. Modern fluvial fans: Global distribution, fan types and controlling factors[J]. Earth Science Frontiers, 2023, 30(4): 389-404.
图1 全球范围河流扇识别实例 a-中国新疆阿克苏河河流扇;b-澳大利亚昆士兰州Warrego河河流扇;c-肯尼亚Kalobeyei north河流扇;d-巴西Taquari河河流扇据文献[30]。
Fig.1 Examples of fluvial fans identified in the world (adapted from [30]). (a) Akesu fluvial fan, Xinjiang, China. (b) Warrego fluvial fan, Queensland, Australia. (c) Kalobeyei north fluvial fan, Kenya. (d) Taquari fluvial fan, Brazil.
图2 河流扇全球分布图 a-河流扇全球发育位置; b-河流扇纬度分布; c-河流扇经度分布。
Fig.2 (a) Global distribution map of fluvial fans, (b) fluvial fan latitude distribution, and (c) fluvial fan longitude distribution.
图7 河流扇发育类型及模式图 a-非限制摆动型河流扇;b-非限制迭进型河流扇;c-限制摆动型河流扇;d-限制迭进型河流扇;e-河流扇发育类型及模式图。
Fig.7 Geomorphic features of (a) unrestricted-swing, (b) unrestricted-superposition, (c) restricted swing, and (d) restricted-superposition-type fluvial fans, and (e) modes of fluvial fan development
图8 河流扇外部形态以及内部河道样式比例图 a-限制型扇体和非限制型扇体发育概率;b-限制型扇体与非限制型扇体长宽比分布概率。
Fig.8 (a) Proportion of fluvial fan types (a) and (b) distributions of unrestricted and restricted type fluvial fan length/width ratios
图9 内蒙古四子王旗非限制摆动型河流扇 a-两期扇体平面展布;b-扇端解剖点;c-扇中解剖点;d-扇根解剖点。
Fig.9 Unrestricted-swing type fluvial fan, Siziwang Banner, Inner Mongolia. (a) Planar distribution of phase-1 and phase-2 fans, (b) Cross-section of fan terminal, (c) Cross-section of mid-fan and (d) Cross-section of fan root.
不同气候 | 河流扇发现数量 | ||||||
---|---|---|---|---|---|---|---|
前陆盆地 | 克拉通盆地 | 裂谷盆地 | 被动陆缘盆地 | 弧前盆地 | 弧后盆地 | 走滑盆地 | |
大陆气候 | 9 | 5 | 1 | 2 | 0 | 2 | 1 |
极地气候 | 13 | 0 | 0 | 0 | 7 | 1 | 1 |
热带气候 | 6 | 12 | 12 | 2 | 1 | 0 | 0 |
亚热带气候 | 27 | 2 | 1 | 2 | 2 | 0 | 0 |
干旱气候 | 23 | 13 | 15 | 6 | 1 | 0 | 2 |
半干旱气候 | 85 | 41 | 8 | 7 | 1 | 4 | 0 |
表1 不同气候、不同盆地类型中的河流扇发现数量
Table 1 Number of fluvial fans identified under different climate and basin types
不同气候 | 河流扇发现数量 | ||||||
---|---|---|---|---|---|---|---|
前陆盆地 | 克拉通盆地 | 裂谷盆地 | 被动陆缘盆地 | 弧前盆地 | 弧后盆地 | 走滑盆地 | |
大陆气候 | 9 | 5 | 1 | 2 | 0 | 2 | 1 |
极地气候 | 13 | 0 | 0 | 0 | 7 | 1 | 1 |
热带气候 | 6 | 12 | 12 | 2 | 1 | 0 | 0 |
亚热带气候 | 27 | 2 | 1 | 2 | 2 | 0 | 0 |
干旱气候 | 23 | 13 | 15 | 6 | 1 | 0 | 2 |
半干旱气候 | 85 | 41 | 8 | 7 | 1 | 4 | 0 |
图10 河流扇外部形态与内部河道样式的控制因素分析图 a-限制性扇体和非限制性扇体在不同气候下的分布;b-限制性扇体和非限制性扇体在不同盆地类型下的分布;c-河流扇扇中河道类型与平均坡度的关系。
Fig.10 Relative percentages of restricted and unrestricted-type under different climate (a) and basin types (b), and (c) average slope of different types of mid-fluvial-fan channels
图11 河流扇发育面积与环境因素的关系 a-河流扇面积与纬度的关系;b-河流扇面积与温度的关系;c-河流扇面积与坡度的关系;d-河流扇面积与山前距离的关系;e-河流扇面积与集水区面积的关系;f-河流扇面积与集水区年降水总量的关系。
Fig.11 Relationships between fluvial fan area and latitude (a), temperature (b), slope (c), piedmont distance (d), catchment area (e), and annual runoff (f)
[1] | ANSTEY R L. Physical characteristics of alluvial fans[J]. Technical Report Series, 1965, 20(1): 11-13. |
[2] | GALLOWAY W E, HOBDAY D K. Fuel-mineral resource base[M]. Berlin: Springer, 1996: 1-5. |
[3] |
MCCARTHY T S, STANISTREET I G, CAIRNCROSS B, et al. Incremental aggradation on the Okavango Delta-fan, Botswana[J]. Geomorphology, 1988, 1(3): 267-278.
DOI URL |
[4] |
DENNY C S. Fans and pediments[J]. American Journal of Science, 1967, 265(2): 81-105.
DOI URL |
[5] | ANSTEY R L. A comparison of alluvial fans in west Pakistan and the United States[J]. Pakistan Geographical Review, 1966, 21(1): 14-20. |
[6] | SCHUMM S A. The fluvial system[M]. New York: Wiley, 1977. |
[7] |
NEMEC W, STEEL R J, GJELBERG J, et al. Exhumed rotational slides and scar infill features in a Cretaceous delta front, eastern Spitsbergen[J]. Polar Research, 1988, 6(1): 105-112.
DOI URL |
[8] | BLAIR T C, MCPHERSON J G. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages[J]. Journal of Sedimentary Research, 1994, 64(3): 450-469. |
[9] |
LEIER A L, DECELLES P G, PELLETIER J D. Mountains, monsoons, and megafans[J]. Geology, 2005, 33(4): 289.
DOI URL |
[10] |
WEISSMANN G S, HARTLEY A J, NICHOLS G J, et al. Fluvial form in modern continental sedimentary basins: distributive fluvial systems[J]. Geology, 2010, 38(1): 39-42.
DOI URL |
[11] |
MIKESELL L R, WEISSMANN G S, KARACHEWSKI J A. Stream capture and piracy recorded by provenance in fluvial fan strata[J]. Geomorphology, 2010, 115(3/4): 267-277.
DOI URL |
[12] |
ALIYUDA K, HOWELL J, USMAN M B, et al. Depositional variability of an ancient distributive fluvial system: the upper member of the lower Cretaceous Bima Formation, Northern Benue Trough, Nigeria[J]. Journal of African Earth Sciences, 2019, 159: 103600.
DOI URL |
[13] |
VENTRA D, CLARKE L E. Geology and geomorphology of alluvial and fluvial fans: current progress and research perspectives[J]. Geological Society, London, Special Publications, 2018, 440(1): 1-21.
DOI URL |
[14] |
WANG J Q, PLINK-BJÖRKLUND P. Stratigraphic complexity in fluvial fans: lower Eocene green river formation, Uinta Basin, USA[J]. Basin Research, 2019, 31(5): 892-919.
DOI URL |
[15] |
张元福, 戴鑫, 王敏, 等. 河流扇的概念、特征及意义[J]. 石油勘探与开发, 2020, 47(5): 947-957.
DOI |
[16] |
MOSCARIELLO A. Alluvial fans and fluvial fans at the margins of continental sedimentary basins: geomorphic and sedimentological distinction for geo-energy exploration and development[J]. Geological Society, London, Special Publications, 2018, 440(1): 215-243.
DOI URL |
[17] | READING H G. Sedimentary environments and facies[M]. Oxford: Blackwell Scientific Publications, 1996. |
[18] | FRIEND P F. Distinctive features of some ancient river systems[J]. Dalas Geological Society, 1977, 5: 531-542. |
[19] |
CHAKRABORTY T, KAR R, GHOSH P, et al. Kosi megafan: historical records, geomorphology and the recent avulsion of the kosi river[J]. Quaternary International, 2010, 227(2): 143-160.
DOI URL |
[20] |
SAMBROOK SMITH G H, BEST J L, ASHWORTH P J, et al. Fluvial form in modern continental sedimentary basins: distributive fluvial systems: comment[J]. Geology, 2010, 38(12): e230.
DOI URL |
[21] | WEISSMANN G S, HARTLEY A J, SCUDERI L A, et al. Prograding distributive fluvial systems-geomorphic models and ancient examples[J]. New Frontiers in Paleopedology and Terrestrial Paleoclimatology, 2013, 104: 131-147. |
[22] |
HANSFORD M R, PLINK-BJÖRKLUND P. River discharge variability as the link between climate and fluvial fan formation[J]. Geology, 2020, 48(10): 952-956.
DOI URL |
[23] |
FONTANA A, MOZZI P, BONDESAN A. Alluvial megafans in the Venetian-Friulian Plain (north-eastern Italy): evidence of sedimentary and erosive phases during Late Pleistocene and Holocene[J]. Quaternary International, 2008, 189(1): 71-90.
DOI URL |
[24] |
FONTANA A, MOZZI P, MARCHETTI M. Alluvial fans and megafans along the southern side of the Alps[J]. Sedimentary Geology, 2014, 301: 150-171.
DOI URL |
[25] | BLAIR T C. Features and origin of the giant Cucomungo Canyon alluvial fan, Eureka Valley, California[J]. Special Paper of the Geological Society of America, 2003, 370: 105-126. |
[26] |
TRENDELL A M, ATCHLEY S C, NORDT L C. Facies analysis of a probable large-fluvial-fan depositional system: the upper Triassic chinle formation at petrified forest National Park, Arizona, USA[J]. Journal of Sedimentary Research, 2013, 83(10): 873-895.
DOI URL |
[27] |
LATRUBESSE E M, STEVAUX J C, CREMON E H, et al. Late Quaternary megafans, fans and fluvio-aeolian interactions in the Bolivian Chaco, Tropical South America[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 356/357: 75-88.
DOI URL |
[28] |
DAVIDSON S K, HARTLEY A J, WEISSMANN G S, et al. Geomorphic elements on modern distributive fluvial systems[J]. Geomorphology, 2013, 180/181: 82-95.
DOI URL |
[29] |
FORDHAM A M, NORTH C P, HARTLEY A J, et al. Dominance of lateral over axial sedimentary fill in dryland rift basins[J]. Petroleum Geoscience, 2010, 16(3): 299-304.
DOI URL |
[30] |
WALSTRA J, HEYVAERT V M A, VERKINDEREN P. Assessing human impact on alluvial fan development: a multidisciplinary case-study from Lower Khuzestan (SW Iran)[J]. Geodinamica Acta, 2010, 23(5/6): 267-285.
DOI URL |
[31] |
EDMONDS D A, HAJEK E A, DOWNTON N, et al. Avulsion flow-path selection on rivers in foreland basins[J]. Geology, 2016, 44(9): 695-698.
DOI URL |
[32] |
SLINGERLAND R, SMITH N D. River avulsions and their deposits[J]. Annual Review of Earth and Planetary Sciences, 2004, 32: 257-285.
DOI URL |
[33] | 张昌民, 胡威, 朱锐, 等. 分支河流体系的概念及其对油气勘探开发的意义[J]. 岩性油气藏, 2017, 29(3): 1-9. |
[34] | 张昌民, 朱锐, HARTLEY A J, 等. 分支河流体系基本特征与研究进展[M]. 武汉: 中国地质大学(武汉)出版社, 2020. |
[35] |
HARTLEY A J, WEISSMANN G S, NICHOLS G J, et al. Large distributive fluvial systems: characteristics, distribution, and controls on development[J]. Journal of Sedimentary Research, 2010, 80(2): 167-183.
DOI URL |
[36] |
BILMES A, VEIGA G D, ARIZTEGUI D, et al. Quaternary base-level drops and trigger mechanisms in a closed basin: geomorphic and sedimentological studies of the Gastre Basin, Argentina[J]. Geomorphology, 2017, 283: 102-113.
DOI URL |
[37] |
JONES S J, ARZANI N, ALLEN M B. Tectonic and climatic controls on fan systems: the Kohrud Mountain belt, Central Iran[J]. Sedimentary Geology, 2014, 302: 29-43.
DOI URL |
[38] |
WEISSMANN G S, HARTLEY A J, SCUDERI L A, et al. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: a review[J]. Geomorphology, 2015, 250: 187-219.
DOI URL |
[39] | 李江海, 韩喜球, 毛翔. 全球构造图集[CM]. 北京: 地质出版社, 2014. |
[40] |
SÁEZ A, ANADÓN P, HERRERO M J, et al. Variable style of transition between Palaeogene fluvial fan and lacustrine systems, southern Pyrenean foreland, NE Spain[J]. Sedimentology, 2007, 54(2): 367-390.
DOI URL |
[41] |
SILVA P G, BARDAJÍ T, CALMEL-AVILA M, et al. Transition from alluvial to fluvial systems in the Guadalent ín Depression (SE Spain) during the Holocene: Lorca Fan versus Guadalent ín River[J]. Geomorphology, 2008, 100(1/2): 140-153.
DOI URL |
[42] | ANADN P, CABRERA L, COLOMBO F, et al. Syntectonic intraformational unconformities in alluvial fan deposits, eastern Ebro Basin margins (NE Spain)[M]//ALLEN P A. Foreland basins. Oxford, UK: Blackwell Publishing Ltd., 2009: 259-271. |
[43] |
NICHOLS G J, FISHER J A. Processes, facies and architecture of fluvial distributary system deposits[J]. Sedimentary Geology, 2007, 195(1/2): 75-90.
DOI URL |
[44] |
BLAIR T C, BILODEAU W L. Development of tectonic cyclothems in rift, pull-apart, and foreland basins: sedimentary response to episodic tectonism[J]. Geology, 1988, 16(6): 517.
DOI URL |
[45] |
DECELLES P G, GEHRELS G E, QUADE J, et al. Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal[J]. Geological Society of America Bulletin, 1998, 110(1): 2-21.
DOI URL |
[46] |
HAMPTON B A, HORTON B K. Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano Plateau, Bolivia[J]. Sedimentology, 2007, 54(5): 1121-1148.
DOI URL |
[47] |
KUKULSKI R B, HUBBARD S M, MOSLOW T F, et al. Basin-scale stratigraphic architecture of upstream fluvial deposits: Jurassic-cretaceous foredeep, Alberta Basin, Canada[J]. Journal of Sedimentary Research, 2013, 83(8): 704-722.
DOI URL |
[48] |
WEISSMANN G S, MOUNT J F, FOGG G E. Glacially driven cycles in accumulation space and sequence stratigraphy of a stream-dominated alluvial fan, San Joaquin valley, California, USA[J]. Journal of Sedimentary Research, 2002, 72(2): 240-251.
DOI URL |
[49] |
ZHANG Y F, YUAN X D, WANG M, et al. Discovery of lacustrine shale deposits in the Yanshan Orogenic Belt, China: implications for hydrocarbon exploration[J]. Geoscience Frontiers, 2021, 12(6): 101256.
DOI URL |
[50] | 姜在兴. 沉积学[M]. 2版. 北京: 石油工业出版社, 2010. |
[51] | 冯增昭. 沉积岩石学(下册)[M]. 2版. 北京: 石油工业出版社, 1993. |
[52] | 刘芳, 刘性全, 刘宗堡, 等. 基于储层构型理论的致密砂岩成藏过程分析: 以松辽盆地古龙向斜葡萄花油层为例[J]. 石油与天然气地质, 2018, 39(2): 268-278. |
[53] | 张金亮, 戴朝强, 张晓华. 末端扇: 在中国被忽略的一种沉积作用类型[J]. 地质论评, 2007, 53(2): 170-179. |
[54] | 刘宗堡, 张云峰, 刘云燕, 等. 末端扇沉积体系研究现状及石油地质意义[J]. 中国矿业大学学报, 2018, 47(3): 520-530, 537. |
[55] |
BRYANT M, FALK P, PAOLA C. Experimental study of avulsion frequency and rate of deposition[J]. Geology, 1995, 23(4): 365.
DOI URL |
[56] |
BIRCH S P D, HAYES A G, HOWARD A D, et al. Alluvial Fan Morphology, distribution and formation on Titan[J]. Icarus, 2016, 270: 238-247.
DOI URL |
[1] | 王婉丽, 段雅娟, 张薇, 朱喜, 马峰, 王贵玲. 基于管控单元的城市尺度浅层地热能开发控制因素及指引导则:以雄安新区起步区为例[J]. 地学前缘, 2024, 31(6): 158-172. |
[2] | 曹胜桃, 胡瑞忠, 周永章, 刘建中, 谭亲平, 高伟, 郑禄林, 郑禄璟, 宋威方. 基于大数据关联规则算法的卡林型金矿床元素富集规律及找矿方法研究[J]. 地学前缘, 2024, 31(4): 58-72. |
[3] | 朱茂林, 刘震, 刘惠民, 张鹏飞, 赵振. 东营凹陷北带基岩风化壳储层发育特征及控制因素[J]. 地学前缘, 2024, 31(3): 324-336. |
[4] | 王宏语, 李瑞磊, 朱建峰, 张浩宇. 松辽盆地梨树断陷构造沉积学特征及发育机制[J]. 地学前缘, 2023, 30(4): 112-127. |
[5] | 王宏语, 张峰, 杨雄兵. 塞内加尔盆地北部次盆白垩系被动大陆边缘深海扇演化特征及主控因素[J]. 地学前缘, 2021, 28(2): 362-375. |
[6] | 张琴, 朱筱敏, 毛凌, 孙祖宇, 周琛, 苏康, 杨立干. 苏北盆地金湖凹陷古近系戴南组孔隙演化及次生孔隙成因分析[J]. 地学前缘, 2021, 28(1): 190-201. |
[7] | 金杰华,操应长,王健,杨田,刘娟,王心怿,王淑萍. 涠西南凹陷陡坡带流一段上亚段异重流沉积新发现[J]. 地学前缘, 2019, 26(4): 250-258. |
[8] | 刘圣乾,刘晖,姜在兴,夏中源,庞守吉,马文贤. 青海南部冻土区天然气水合物成藏控制因素[J]. 地学前缘, 2017, 24(6): 242-253. |
[9] | 程荣, 肖永军, 林会喜, 柳忠泉, 王大华. 柴达木盆地北缘东段石炭系残留分布及控制因素[J]. 地学前缘, 2016, 23(5): 75-85. |
[10] | 朱炎铭,王阳,陈尚斌. 页岩储层孔隙结构多尺度定性定量综合表征:以上扬子海相龙马溪组为例[J]. 地学前缘, 2016, 23(1): 154-163. |
[11] | 陈飞, 胡光义, 范廷恩, 孙立春, 高云峰, 王晖. 渤海海域W油田新近系明化镇组河流相砂体结构特征[J]. 地学前缘, 2015, 22(2): 207-213. |
[12] | 杨华, 钟大康, 姚泾利, 刘显阳, 马石玉, 樊林林. 鄂尔多斯盆地陇东地区延长组砂岩储层孔隙成因类型及其控制因素[J]. 地学前缘, 2013, 20(2): 69-76. |
[13] | 许延波,颜丹平,俞天石,王翔. 雨海地区月岭分布特征及控制因素分析[J]. 地学前缘, 2012, 19(6): 60-71. |
[14] | 姚光庆, 张建光, 姜平, 李茂. 涠西南凹陷11-7构造区流沙港组中深层有效储层下限厘定[J]. 地学前缘, 2012, 19(2): 102-109. |
[15] | 张震 鲍志东. 松辽盆地朝阳沟油田储层裂缝发育特征及控制因素[J]. 地学前缘, 2009, 16(4): 166-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||