地学前缘 ›› 2024, Vol. 31 ›› Issue (5): 449-459.DOI: 10.13745/j.esf.sf.2024.2.13
• “综合生态系统碳循环与碳中和”专栏 • 上一篇
陈发家1,2(), 肖琼2,3,*, 胡祥云1, 郭永丽2, 孙平安2, 张宁2
收稿日期:
2023-04-24
修回日期:
2023-06-15
出版日期:
2024-09-25
发布日期:
2024-10-11
通信作者:
* 肖琼(1984—),女,博士,研究员,主要研究方向为岩溶碳循环与岩溶碳汇。E-mail: xiaoqiong-8423@163.com作者简介:
陈发家(1998—),男,硕士研究生,主要研究方向为岩溶碳汇。E-mail: fajiachen@cug.edu.cn
基金资助:
CHEN Fajia1,2(), XIAO Qiong2,3,*, HU Xiangyun1, GUO Yongli2, SUN Ping’an2, ZHANG Ning2
Received:
2023-04-24
Revised:
2023-06-15
Online:
2024-09-25
Published:
2024-10-11
摘要:
碳酸盐岩风化过程是一个吸收大气CO2的过程,具有碳汇效应。利用岩溶区水体的水文地球化学特征揭示碳酸盐岩风化过程、计算流域岩溶碳汇通量是全球变化研究的一个重要方面。以广西柳州官村地下河流域(GGW)为例,2021年4个季度的监测结果表明:(1)$\mathrm{HCO}_{3}^{-}$和Ca2+是主要的阴阳离子,阴阳离子当量浓度和TDS浓度反映了碳酸盐岩强烈的风化作用;(2)水化学时空分布特征显示,GGW的水化学类型为HCO3-Ca型,水岩作用过程除了H2CO3风化碳酸盐岩外,还有H2SO4和HNO3风化碳酸盐岩;(3)在研究H2CO3、H2SO4和HNO3共同参与的水岩作用过程中,用δ13CDIC计算H2CO3风化碳酸盐岩的CO2消耗量为2.38 mmol·L-1,CO2净消耗量用[$\mathrm{HCO}_{3}^{-}$]mol-[Ca2++Mg2+]mol表示,平均净消耗量为1.98 mmol·L-1,用CO2净消耗量计算出的GGW无机碳汇强度(以CO2计)Cm为86.37 t·km-2·a-1;(4)不考虑外源酸作用,利用水化学径流法计算出的GGW无机碳汇强度(以CO2计)Cm为94.49 t·km-2·a-1,CO2净消耗量是水化学径流法计算的CO2汇量的91.41%;(5)碳汇强度为2008年的1.91倍,研究结果可为人工干预增加岩溶碳汇潜力评估提供一定的参考和借鉴。
中图分类号:
陈发家, 肖琼, 胡祥云, 郭永丽, 孙平安, 张宁. 典型岩溶小流域碳酸盐岩风化过程及其碳汇效应[J]. 地学前缘, 2024, 31(5): 449-459.
CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin[J]. Earth Science Frontiers, 2024, 31(5): 449-459.
采样时间 | 样点 名称 | T/℃ | pH | Ec/ (μS·cm-1) | 离子浓度/(mg·L-1) | δ13CDIC/ ‰ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | K+ | Na+ | Cl- | |||||||||
2021-04 | GC1 | 18.69 | 7.01 | 460.9 | 88.53 | 14.17 | 0.17 | 0.59 | 319.50 | 0.83 | 2.23 | 8.26 | -16.13 |
GC2 | 16.95 | 6.88 | 534.4 | 89.13 | 23.70 | 0.05 | 0.57 | 373.50 | 0.96 | 0.12 | 10.70 | -16.91 | |
GC3 | 20.03 | 6.89 | 494.9 | 98.06 | 8.95 | 0.88 | 2.09 | 306.00 | 3.96 | 19.32 | 13.59 | -13.15 | |
GC4 | 19.83 | 7.06 | 429.2 | 83.06 | 10.95 | 0.88 | 1.53 | 283.50 | 2.06 | 9.90 | 9.96 | -13.74 | |
GC5 | 20.03 | 7.07 | 431.4 | 83.20 | 10.96 | 0.86 | 1.44 | 281.25 | 2.04 | 9.88 | 9.78 | -13.81 | |
GC6 | 19.92 | 6.93 | 531.8 | 84.19 | 27.14 | 0.08 | 0.77 | 363.38 | 1.86 | 12.01 | 10.52 | -16.33 | |
GC7 | — | — | — | — | — | — | — | — | — | — | — | — | |
GC8 | 20.36 | 7.22 | 434.1 | 83.24 | 11.90 | 0.83 | 1.26 | 288.00 | 2.29 | 9.61 | 10.00 | -13.26 | |
2021-06 | GC1 | 19.23 | 7.16 | 415.8 | 74.82 | 11.07 | 0.48 | 0.51 | 270.58 | 1.01 | <0.05 | 13.43 | -15.90 |
GC2 | 22.63 | 7.03 | 546.7 | 86.05 | 21.6 | 0.21 | 0.70 | 353.84 | 1.58 | 7.66 | 13.86 | -16.67 | |
GC3 | 20.13 | 6.79 | 519.6 | 92.48 | 11.01 | 0.55 | 1.71 | 295.56 | 6.34 | 21.91 | 15.60 | -13.28 | |
GC4 | 19.96 | 6.86 | 439.6 | 78.36 | 10.32 | 0.56 | 1.09 | 266.42 | 5.04 | 12.4 | 14.68 | -14.15 | |
GC5 | 20.08 | 7.09 | 438.4 | 78.68 | 10.10 | 0.52 | 1.05 | 278.91 | 5.00 | <0.05 | 14.57 | -14.27 | |
GC6 | 21.38 | 6.80 | 576.2 | 82.29 | 27.33 | 0.07 | 0.82 | 362.16 | 1.60 | 12.13 | 13.63 | -16.57 | |
GC7 | 20.84 | 6.82 | 488.7 | 85.26 | 12.48 | 0.27 | 0.85 | 289.32 | 5.63 | 17.77 | 14.08 | -14.90 | |
GC8 | 21.01 | 7.00 | 437.0 | 76.62 | 9.42 | 0.44 | 0.94 | 253.93 | 5.20 | 11.67 | 14.53 | -13.75 | |
2021-09 | GC1 | 19.41 | 7.00 | 408.2 | 69.32 | 13.02 | 1.10 | 1.13 | 255.38 | 1.21 | <0.05 | 14.32 | -14.48 |
GC2 | 23.31 | 6.47 | 605.1 | 98.09 | 23.51 | 0.04 | 0.82 | 400.02 | 0.99 | 6.30 | 13.41 | -17.05 | |
GC3 | 20.38 | 6.59 | 531.1 | 95.85 | 11.22 | 0.68 | 2.20 | 306.23 | 6.43 | 20.94 | 17.44 | -13.01 | |
GC4 | 20.20 | 6.68 | 456.2 | 82.13 | 10.28 | 0.67 | 1.48 | 271.20 | 5.08 | 9.28 | 16.16 | -14.01 | |
GC5 | 20.05 | 6.80 | 456.2 | 77.90 | 8.82 | 0.93 | 1.24 | 248.60 | 5.16 | 12.22 | 16.38 | -14.20 | |
GC6 | — | — | — | — | — | — | — | — | — | — | — | — | |
GC7 | — | — | — | — | — | — | — | — | — | — | — | — | |
GC8 | 21.82 | 6.89 | 463.1 | 83.42 | 10.05 | 0.55 | 1.07 | 271.20 | 5.36 | 13.82 | 15.14 | -13.50 | |
2021-12 | GC1 | 18.98 | 7.05 | 376.0 | 73.24 | 8.82 | 0.14 | 0.60 | 258.69 | 2.62 | 5.08 | 8.74 | -15.92 |
GC2 | 18.15 | 6.92 | 511.1 | 88.89 | 20.36 | 0.09 | 0.21 | 367.82 | 1.16 | 1.06 | 8.23 | -16.77 | |
GC3 | 19.95 | 6.99 | 451.8 | 93.08 | 10.69 | 0.46 | 1.43 | 307.19 | 4.47 | 20.17 | 14.86 | -13.23 | |
GC4 | 19.26 | 7.09 | 409.7 | 79.69 | 8.71 | 0.65 | 1.09 | 262.73 | 3.39 | 14.77 | 13.14 | -13.92 | |
GC5 | 19.41 | 7.12 | 409.6 | 80.04 | 8.62 | 0.64 | 1.22 | 260.71 | 3.46 | 13.91 | 12.76 | -14.08 | |
GC6 | 20.69 | 6.94 | 562.8 | 88.11 | 28.46 | 0.12 | 0.78 | 383.99 | 2.85 | 17.70 | 9.48 | -16.42 | |
GC7 | 20.43 | 7.05 | 465.9 | 89.58 | 10.75 | 0.21 | 0.57 | 297.09 | 4.23 | 22.28 | 9.07 | -14.74 | |
GC8 | 20.11 | 7.30 | 411.7 | 80.15 | 8.98 | 0.52 | 1.15 | 265.76 | 3.29 | 12.88 | 12.12 | -13.45 |
表1 GGW的水化学特征
Table 1 Hydrochemical characteristics of the GGW
采样时间 | 样点 名称 | T/℃ | pH | Ec/ (μS·cm-1) | 离子浓度/(mg·L-1) | δ13CDIC/ ‰ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | K+ | Na+ | Cl- | |||||||||
2021-04 | GC1 | 18.69 | 7.01 | 460.9 | 88.53 | 14.17 | 0.17 | 0.59 | 319.50 | 0.83 | 2.23 | 8.26 | -16.13 |
GC2 | 16.95 | 6.88 | 534.4 | 89.13 | 23.70 | 0.05 | 0.57 | 373.50 | 0.96 | 0.12 | 10.70 | -16.91 | |
GC3 | 20.03 | 6.89 | 494.9 | 98.06 | 8.95 | 0.88 | 2.09 | 306.00 | 3.96 | 19.32 | 13.59 | -13.15 | |
GC4 | 19.83 | 7.06 | 429.2 | 83.06 | 10.95 | 0.88 | 1.53 | 283.50 | 2.06 | 9.90 | 9.96 | -13.74 | |
GC5 | 20.03 | 7.07 | 431.4 | 83.20 | 10.96 | 0.86 | 1.44 | 281.25 | 2.04 | 9.88 | 9.78 | -13.81 | |
GC6 | 19.92 | 6.93 | 531.8 | 84.19 | 27.14 | 0.08 | 0.77 | 363.38 | 1.86 | 12.01 | 10.52 | -16.33 | |
GC7 | — | — | — | — | — | — | — | — | — | — | — | — | |
GC8 | 20.36 | 7.22 | 434.1 | 83.24 | 11.90 | 0.83 | 1.26 | 288.00 | 2.29 | 9.61 | 10.00 | -13.26 | |
2021-06 | GC1 | 19.23 | 7.16 | 415.8 | 74.82 | 11.07 | 0.48 | 0.51 | 270.58 | 1.01 | <0.05 | 13.43 | -15.90 |
GC2 | 22.63 | 7.03 | 546.7 | 86.05 | 21.6 | 0.21 | 0.70 | 353.84 | 1.58 | 7.66 | 13.86 | -16.67 | |
GC3 | 20.13 | 6.79 | 519.6 | 92.48 | 11.01 | 0.55 | 1.71 | 295.56 | 6.34 | 21.91 | 15.60 | -13.28 | |
GC4 | 19.96 | 6.86 | 439.6 | 78.36 | 10.32 | 0.56 | 1.09 | 266.42 | 5.04 | 12.4 | 14.68 | -14.15 | |
GC5 | 20.08 | 7.09 | 438.4 | 78.68 | 10.10 | 0.52 | 1.05 | 278.91 | 5.00 | <0.05 | 14.57 | -14.27 | |
GC6 | 21.38 | 6.80 | 576.2 | 82.29 | 27.33 | 0.07 | 0.82 | 362.16 | 1.60 | 12.13 | 13.63 | -16.57 | |
GC7 | 20.84 | 6.82 | 488.7 | 85.26 | 12.48 | 0.27 | 0.85 | 289.32 | 5.63 | 17.77 | 14.08 | -14.90 | |
GC8 | 21.01 | 7.00 | 437.0 | 76.62 | 9.42 | 0.44 | 0.94 | 253.93 | 5.20 | 11.67 | 14.53 | -13.75 | |
2021-09 | GC1 | 19.41 | 7.00 | 408.2 | 69.32 | 13.02 | 1.10 | 1.13 | 255.38 | 1.21 | <0.05 | 14.32 | -14.48 |
GC2 | 23.31 | 6.47 | 605.1 | 98.09 | 23.51 | 0.04 | 0.82 | 400.02 | 0.99 | 6.30 | 13.41 | -17.05 | |
GC3 | 20.38 | 6.59 | 531.1 | 95.85 | 11.22 | 0.68 | 2.20 | 306.23 | 6.43 | 20.94 | 17.44 | -13.01 | |
GC4 | 20.20 | 6.68 | 456.2 | 82.13 | 10.28 | 0.67 | 1.48 | 271.20 | 5.08 | 9.28 | 16.16 | -14.01 | |
GC5 | 20.05 | 6.80 | 456.2 | 77.90 | 8.82 | 0.93 | 1.24 | 248.60 | 5.16 | 12.22 | 16.38 | -14.20 | |
GC6 | — | — | — | — | — | — | — | — | — | — | — | — | |
GC7 | — | — | — | — | — | — | — | — | — | — | — | — | |
GC8 | 21.82 | 6.89 | 463.1 | 83.42 | 10.05 | 0.55 | 1.07 | 271.20 | 5.36 | 13.82 | 15.14 | -13.50 | |
2021-12 | GC1 | 18.98 | 7.05 | 376.0 | 73.24 | 8.82 | 0.14 | 0.60 | 258.69 | 2.62 | 5.08 | 8.74 | -15.92 |
GC2 | 18.15 | 6.92 | 511.1 | 88.89 | 20.36 | 0.09 | 0.21 | 367.82 | 1.16 | 1.06 | 8.23 | -16.77 | |
GC3 | 19.95 | 6.99 | 451.8 | 93.08 | 10.69 | 0.46 | 1.43 | 307.19 | 4.47 | 20.17 | 14.86 | -13.23 | |
GC4 | 19.26 | 7.09 | 409.7 | 79.69 | 8.71 | 0.65 | 1.09 | 262.73 | 3.39 | 14.77 | 13.14 | -13.92 | |
GC5 | 19.41 | 7.12 | 409.6 | 80.04 | 8.62 | 0.64 | 1.22 | 260.71 | 3.46 | 13.91 | 12.76 | -14.08 | |
GC6 | 20.69 | 6.94 | 562.8 | 88.11 | 28.46 | 0.12 | 0.78 | 383.99 | 2.85 | 17.70 | 9.48 | -16.42 | |
GC7 | 20.43 | 7.05 | 465.9 | 89.58 | 10.75 | 0.21 | 0.57 | 297.09 | 4.23 | 22.28 | 9.07 | -14.74 | |
GC8 | 20.11 | 7.30 | 411.7 | 80.15 | 8.98 | 0.52 | 1.15 | 265.76 | 3.29 | 12.88 | 12.12 | -13.45 |
图5 离子当量比值关系散点图 a—[Ca2++Mg2+]和[ HCO 3 -]的当量比值关系;b—[Ca2++Mg2+]和[ HCO 3 -+ NO 3 -+ SO 4 2 -]的当量比值关系。
Fig.5 Scatter diagrams showing the ionic equivalent relationship. (a) Equivalent rations of [Ca2++Mg2+] vs. [ HCO 3 -]. (b) Equivalent rations of [Ca2++Mg2+] vs. [ HCO 3 -+ NO 3 -+ SO 4 2 -].
时间 | (mg·L-1) | Ca2+浓度/ (mg·L-1) | Mg2+浓度/ (mg·L-1) | (mmol·L-1) | Q/ (m3·s-1) | F/ (g·s-1) | CSF(以CO2计)/ (t·a-1) | Cm(以CO2计)/ (t ·km-2·a-1) |
---|---|---|---|---|---|---|---|---|
春季 | 316.45 | 87.06 | 15.40 | 2.37 | 1.10 | 114.66 | 911.42 | 29.89 |
夏季 | 296.34 | 81.82 | 14.17 | 2.22 | 1.13 | 110.48 | 878.21 | 28.80 |
秋季 | 292.11 | 84.45 | 12.82 | 2.14 | 0.32 | 30.18 | 237.27 | 7.78 |
冬季 | 300.50 | 84.10 | 13.17 | 2.27 | 0.78 | 78.07 | 607.13 | 19.90 |
平均值 | 83.35 | 658.51 | 21.59 | |||||
总量 | 333.40 | 2 634.03 | 86.37 |
表2 离子浓度估算GGW的CO2净消耗量和无机碳汇量
Table 2 Estimation of net CO2 consumption and inorganic carbon sinks of the GGW based on ion concentration
时间 | (mg·L-1) | Ca2+浓度/ (mg·L-1) | Mg2+浓度/ (mg·L-1) | (mmol·L-1) | Q/ (m3·s-1) | F/ (g·s-1) | CSF(以CO2计)/ (t·a-1) | Cm(以CO2计)/ (t ·km-2·a-1) |
---|---|---|---|---|---|---|---|---|
春季 | 316.45 | 87.06 | 15.40 | 2.37 | 1.10 | 114.66 | 911.42 | 29.89 |
夏季 | 296.34 | 81.82 | 14.17 | 2.22 | 1.13 | 110.48 | 878.21 | 28.80 |
秋季 | 292.11 | 84.45 | 12.82 | 2.14 | 0.32 | 30.18 | 237.27 | 7.78 |
冬季 | 300.50 | 84.10 | 13.17 | 2.27 | 0.78 | 78.07 | 607.13 | 19.90 |
平均值 | 83.35 | 658.51 | 21.59 | |||||
总量 | 333.40 | 2 634.03 | 86.37 |
时间 | [ (mg·L-1) | [CO2]/ (mg·L-1) | Q/ (m3·s-1) | CSF(以CO2计)/ (t·a-1) | Cm(以CO2计)/ (t·km-2·a-1) |
---|---|---|---|---|---|
春季 | 316.45 | 114.13 | 1.10 | 998.71 | 32.74 |
夏季 | 296.34 | 106.88 | 1.13 | 957.62 | 31.40 |
秋季 | 292.11 | 105.35 | 0.32 | 265.93 | 8.72 |
冬季 | 300.50 | 108.38 | 0.78 | 659.68 | 21.63 |
平均值 | 720.49 | 23.62 | |||
总量 | 2 881.94 | 94.49 |
表3 水化学径流法估算GGW的无机碳汇量
Table 3 Estimation of inorganic carbon sink in the GGW based on hydrochemical-runoff method
时间 | [ (mg·L-1) | [CO2]/ (mg·L-1) | Q/ (m3·s-1) | CSF(以CO2计)/ (t·a-1) | Cm(以CO2计)/ (t·km-2·a-1) |
---|---|---|---|---|---|
春季 | 316.45 | 114.13 | 1.10 | 998.71 | 32.74 |
夏季 | 296.34 | 106.88 | 1.13 | 957.62 | 31.40 |
秋季 | 292.11 | 105.35 | 0.32 | 265.93 | 8.72 |
冬季 | 300.50 | 108.38 | 0.78 | 659.68 | 21.63 |
平均值 | 720.49 | 23.62 | |||
总量 | 2 881.94 | 94.49 |
数据时间 | (mg·L-1) | 年降水量/ mm | Q/ (m3·s-1) | Cm(以CO2计)/ (t·km-2·a-1) |
---|---|---|---|---|
2008年 | 256.37 | 1 913 | 0.45 | 45.25 |
2021年 | 301.35 | 2 222 | 0.83 | 86.37 |
表4 2008年和2021年数据对比
Table 4 Data comparison between 2008 and 2021
数据时间 | (mg·L-1) | 年降水量/ mm | Q/ (m3·s-1) | Cm(以CO2计)/ (t·km-2·a-1) |
---|---|---|---|---|
2008年 | 256.37 | 1 913 | 0.45 | 45.25 |
2021年 | 301.35 | 2 222 | 0.83 | 86.37 |
[1] | MASSON-DELMOTTE V P, ZHAI P, PIRANI S L, et al. IPCC, 2021: summary for policymakers[R]// Climate change 2021: the physical science basis. Contribution of working group Ⅰ to the sixth assessment report of the intergovernmental panel on climate change. Cambridge and New York: Cambridge University Press, 2021: 3-32. |
[2] | 翟盘茂, 周佰铨, 陈阳, 等. 气候变化科学方面的几个最新认知[J]. 气候变化研究进展, 2021, 17(6): 629-635. |
[3] | 巢清尘, 张永香, 高翔, 等. 巴黎协定: 全球气候治理的新起点[J]. 气候变化研究进展, 2016, 12(1): 61-67. |
[4] | 章程, 肖琼, 孙平安, 等. 岩溶碳循环及碳汇效应研究与展望[J]. 地质科技通报, 2022(5): 190-198. |
[5] | 袁佳双, 张永香, 陈迎, 等. 认识减缓气候变化最新进展科学助力碳中和[J]. 气候变化研究进展, 2022, 18(5): 523-530. |
[6] | 李忠扬. 察尔汗盐湖的水化学特征[J]. 北京地质学院学报, 1959(1): 10-15, 67. |
[7] |
乐嘉祥, 王德春. 中国河流水化学特征[J]. 地理学报, 1963(1): 1-13.
DOI |
[8] | 李瑞, 肖琼. 广西里湖地下河水化学特征及其影响因素[J]. 广西科学, 2018, 25(5): 544-552. |
[9] | 黄锦彦, 李新, 吴丰, 等. 大别山西段罗山县水环境特征及其影响因素分析[J]. 中国地质调查, 2022, 9(6): 76-83. |
[10] | 马冰洁, 张全发, 李思悦. 中国跨境河流水化学特征及其控制因素[J]. 第四纪研究, 2023, 43(2): 425-438. |
[11] | PENG Y M, XIAO Q, XUE H L, et al. Comparison of groundwater hydrogeochemistry of karst areas in northern and southern China with emphasis on their performance in karst development[J]. Carbonates and Evaporites, 2022, 37(4): 76. |
[12] | 夏星辉, 张利田, 陈静生. 岩性和气候条件对长江水系河水主要离子化学的影响[J]. 北京大学学报(自然科学版), 2000, 36(2): 246-252. |
[13] |
玛尔胡拜·牙生, 马龙, 吉力力·阿不都外力, 等. 新疆天山西段夏季河流水化学特征及其影响因素研究[J]. 干旱区研究, 2021, 38(3): 600-609.
DOI |
[14] | 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(2): 95-102. |
[15] | 霍俊伊, 于奭, 张清华, 等. 湘西峒河流域水化学特征及无机碳通量计算[J]. 水文地质工程地质, 2019, 46(4): 64-72. |
[16] | 原雅琼, 何师意, 于奭, 等. 柳江流域柳州断面水化学特征及无机碳汇通量分析[J]. 环境科学, 2015, 36(7): 2437-2445. |
[17] | 杜文越, 王琪, 蒲俊兵, 等. 漓江流域丰水期外源酸对岩溶化学风化碳汇的影响[J]. 地球学报, 2022, 43(4): 449-460. |
[18] | LIU Z H, DREYBRODT W, WANG H J. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3/4): 162-172. |
[19] | 刘再华, DREYBRODT W, 刘洹. 大气CO2汇: 硅酸盐风化还是碳酸盐风化的贡献[J]. 第四纪研究, 2011, 31(3): 426-430. |
[20] | LUDWIG W, AMIOTTE-SUCHET P, MUNHOVEN G, et al. Atmospheric CO2 consumption by continental erosion: present-day controls and implications for the last glacial maximum[J]. Global and Planetary Change, 1998, 16: 107-120. |
[21] | LIU Z, ZHAO J. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology, 2000, 39(9): 1053-1058. |
[22] | YU S, DU W Y, SUN P G, et al. Study on the hydrochemistry character and carbon sink in the middle and upper reaches of the Xijiang River Basin, China[J]. Environmental Earth Sciences, 2015, 74(2): 997-1005. |
[23] | YUAN Y Q, HE S Y, YU S, et al. Hydrochemical characteristics and the dissolved inorganic carbon flux in Liuzhou section of Liujiang Basin[J]. Environmental Science, 2015, 36(7): 2437-2445. |
[24] | 裴建国, 章程, 张强, 等. 典型岩溶水系统碳汇通量估算[J]. 岩矿测试, 2012, 31(5): 884-888. |
[25] | SPENCE J, TELMER K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: evidence from major ions, δ13CDIC, and $\delta^{34} \mathrm{~S}_{\mathrm{SO}_{4}}$ in rivers of the Canadian Cordillera[J]. Geochimica et Cosmochimica Acta, 2005, 69(23): 5441-5458. |
[26] | PERRIN A S, PROBST A, PROBST J L. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta, 2008, 72(13): 3105-3123. |
[27] | ZHAO R Y, LIU Z Q, HUANG H, et al. Difference in the relationship between soil CO2 concentration and the karst-related carbon cycle under different land use types in Southwest China[J]. Carbonates and Evaporites, 2019, 34(4): 1569-1581. |
[28] | ZHAO R Y, LIU Z Q, DONG L L, et al. The fates of CO2 generated by H2SO4 and/or HNO3 during the dissolution of carbonate and their influences on the karst-related carbon cycle[J]. Journal of Hydrology, 2021, 597: 125746. |
[29] | LI S L, CALMELS D, HAN G L, et al. Sulfuric acid as an agent of carbonate weathering constrained by δ 13CDIC: examples from Southwest China[J]. Earth and Planetary Science Letters, 2008, 270(3/4): 189-199. |
[30] | 曹建华, 杨慧, 康志强. 区域碳酸盐岩溶蚀作用碳汇通量估算初探: 以珠江流域为例[J]. 科学通报, 2011, 56(26): 2181-2187. |
[31] | LIU Z H, DREYBRODT W, LIU H. Atmospheric CO2 sink: silicate weathering or carbonate weathering?[J]. Applied Geochemistry, 2011, 26: S292-S294. |
[32] | LIU Z H, DREYBRODT W. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Science Bulletin, 2015, 60(2): 182-191. |
[33] | IGLESIAS-RODRIGUEZ M D, HALLORAN P R, RICKABY R E M, et al. Phytoplankton calcification in a high-CO2 world[J]. Science, 2008, 320(5874): 336-340. |
[34] | YANG M X, LIU Z H, SUN H L, et al. Organic carbon source tracing and DIC fertilization effect in the Pearl River: insights from lipid biomarker and geochemical analysis[J]. Applied Geochemistry, 2016, 73: 132-141. |
[35] | CHEN B, YANG R, LIU Z H, et al. Coupled control of land uses and aquatic biological processes on the diurnal hydrochemical variations in the five ponds at the Shawan Karst Test Site, China: implications for the carbonate weathering-related carbon sink[J]. Chemical Geology, 2017, 456: 58-71. |
[36] |
HERNDL G J, REINTHALER T. Microbial control of the dark end of the biological pump[J]. Nature Geoscience, 2013, 6(9): 718-724.
DOI PMID |
[37] | 袁鹏, 刘冬. 矿物增效的生物泵: 基于矿物-微生物作用的水体CO2增汇策略[J]. 科学通报, 2022, 67(10): 924-932. |
[38] |
JIAO N Z, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593-599.
DOI PMID |
[39] | LIU Z H, MACPHERSON G L, GROVES C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49. |
[40] | 张陶. 典型岩溶区溪流中硝酸盐动态变化及其影响因素研究[D]. 重庆: 西南大学, 2015: 19-48. |
[41] | 赵然, 韩志伟, 申春华, 等. 典型岩溶地下河流域水体中硝酸盐源解析[J]. 环境科学, 2020, 41(6): 2664-2670. |
[42] | ZHANG C, WANG J L, PU J B, et al. Bicarbonate daily variations in a karst river: the carbon sink effect of subaquatic vegetation photosynthesis[J]. Acta Geologica Sinica (English Edition), 2012, 86(4): 973-979. |
[43] | 郭芳, 姜光辉, 袁道先. 南方岩溶区地下河主要离子浓度变化趋势分析[J]. 水资源保护, 2008, 24(1): 16-19, 30. |
[44] | 郭芳, 姜光辉, 康志强. 亚热带典型岩溶水系统的碳汇效应对比研究[J]. 中国岩溶, 2011, 30(4): 403-409. |
[45] | 申春华, 韩志伟, 郭永丽, 等. 典型岩溶地下河系统不同水体中硝酸盐时空分布规律及其影响因素分析[J]. 中国生态农业学报(中英文), 2019(8): 1255-1264. |
[46] | 郭芳. 官村地下河流域氮流失及其影响因素研究[D]. 重庆: 西南大学, 2008: 8-13. |
[47] | 韦小妹. 桂林毛村地下河流域水化学特征及其影响因素分析[D]. 桂林: 桂林理工大学, 2021: 15-28. |
[48] | MEYBECK M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. AmericanJournal of Science, 1987, 287(5): 401-428. |
[49] | PIPER A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Eos, Transactions American Geophysical Union, 1944, 25(6): 914-928. |
[50] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI PMID |
[51] | YUAN D X. Sensitivity of karst process to environmental change along the PEP II transect[J]. Quaternary International, 1997, 37: 105-113. |
[52] | 吴庆, 郭永丽, 肖琼, 等. 碳酸盐岩默默地献身于“双碳” 目标[J]. 中国矿业, 2022, 31(增刊1): 215-216, 243. |
[53] | 张兴波, 蒋勇军, 邱述兰, 等. 农业活动对岩溶作用碳汇的影响: 以重庆青木关地下河流域为例[J]. 地球科学进展, 2012, 27(4): 466-476. |
[54] | LIU J K, HAN G L. Major ions and \delta^{34} $\mathrm{~S}_{\mathrm{SO}_{4}}$ in Jiulongjiang River water: investigating the relationships between natural chemical weathering and human perturbations[J]. Science of the Total Environment, 2020, 724: 138208. |
[55] | LIU J K, HAN G L. Distributions and source identification of the major ions in Zhujiang River, Southwest China: examining the relationships between human perturbations, chemical weathering, water quality and health risk[J]. Exposure and Health, 2020, 12(4): 849-862. |
[56] | CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. Boca Raton: CRC Press/Lewis Publishers, 1997. |
[57] | CERLING T E, SOLOMON D K, QUADE J, et al. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3403-3405. |
[58] | DEINES P. Carbon isotope effects in carbonate systems[J]. Geochimica et Cosmochimica Acta, 2004, 68(12): 2659-2679. |
[59] | 李春, 曹秋婵, 付孜. 广西新一轮退耕还林现状及对策[J]. 中南林业调查规划, 2015, 34(4): 4-7. |
[60] | 莫桂燕. 气候与土地利用变化下的龙滩流域径流响应研究[D]. 南宁: 广西大学, 2018: 81-99. |
[61] | 李林立. 西南典型岩溶区生态环境对表层岩溶水调蓄功能的影响研究[D]. 重庆: 西南大学, 2009: 47-88. |
[62] | 张春来, 黄芬, 蒲俊兵, 等. 中国岩溶碳汇通量估算与人工干预增汇途径[J]. 中国地质调查, 2021, 8(4): 40-52. |
[1] | 黄思宇, 蒲俊兵, 潘谋成, 李建鸿, 张陶. 岩溶水库藻源性有机质来源对表层沉积物有机碳矿化过程的影响[J]. 地学前缘, 2024, 31(5): 387-396. |
[2] | 杨化菊, 李灿锋, 杨克好, 张熙璐, 王传宇, 王兴荣, 何旭, 彭雪峰, 张连凯. 滇南喀斯特地区不同石漠化程度下优势灌木生物量及分配特征[J]. 地学前缘, 2024, 31(5): 440-448. |
[3] | 于奭, 蒲俊兵, 刘凡, 杨慧. 岩溶碳汇效应对植被的响应研究进展[J]. 地学前缘, 2023, 30(4): 418-428. |
[4] | 陈轩, 刘王涵, 鲍典, 张利萍, 陈立雄, 杨敏, 张娟, 李英菊, 李广业, 加玉锋. 塔河油田奥陶系古岩溶洞穴充填物时代鉴别特征及其储集意义[J]. 地学前缘, 2023, 30(4): 65-75. |
[5] | 周长松, 邹胜章, 冯启言, 朱丹尼, 李军, 王佳, 谢浩, 邓日欣. 岩溶关键带水文地球化学研究进展[J]. 地学前缘, 2022, 29(3): 37-50. |
[6] | 丁虎, 刘丛强, 郎赟超, 刘文景. 桂西北典型峰丛洼地降雨过程中地表水溶解性碳和δ13CDIC变化特征[J]. 地学前缘, 2011, 18(6): 182-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||