地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 207-217.DOI: 10.13745/j.esf.sf.2025.3.24
陈丽(), 汪淑慧(
), 袁味奇, 顾文智, 叶捷*(
), 周顺桂
收稿日期:
2025-02-10
修回日期:
2025-02-20
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*叶 捷(1985—),男,博士,教授,博士生导师,主要从事微生物光电化学研究。E-mail: 作者简介:
陈 丽(2000—),女,博士,主要从事微生物光电化学研究。E-mail: l-chen24@fafu.edu.cn;基金资助:
CHEN Li(), WANG Shuhui(
), YUAN Weiqi, GU Wenzhi, YE Jie*(
), ZHOU Shungui
Received:
2025-02-10
Revised:
2025-02-20
Online:
2025-03-25
Published:
2025-04-20
摘要:
非光合微生物的光电营养代谢途径在生态系统能量循环中发挥着重要作用。海洋透光层具有自然光可及、物质能量交换剧烈和生化过程活跃等触发光电营养代谢的基本条件,但其内部光敏物质和微生物的光电响应机制仍未得到充分研究。本研究解析了闽江入海口河口、近岸和近海区域透光层中光敏物质的组成与空间分布、光电响应以及微生物群落结构。结果表明,这3个区域均存在悬浮半导体颗粒、天然色素和溶解性有机质等光敏物质,且其含量随着离岸距离增加而逐渐下降,但近岸区域光合微生物的丰度最高。光电流实验结果显示,近岸区域的光电效应最为显著,可能是由于其具有较为丰富的光敏物质和较少的共存物质干扰。微生物群落分析结果表明,海洋透光层中的微生物群落结构表现出显著的光电响应特征,其中电活性微生物的丰度与光敏物质含量呈显著正相关,表明电活性微生物的分布与光敏物质高效光电转化的区域高度一致。因此,天然光敏物质与电活性微生物之间的光电协同作用,有可能为理解海洋碳、氮等元素的生物地球化学循环提供新的理论视角。
中图分类号:
陈丽, 汪淑慧, 袁味奇, 顾文智, 叶捷, 周顺桂. 闽江入海口透光层光电效应及微生物响应机制[J]. 地学前缘, 2025, 32(3): 207-217.
CHEN Li, WANG Shuhui, YUAN Weiqi, GU Wenzhi, YE Jie, ZHOU Shungui. The photoelectric effect and microbial response mechanisms in the euphotic zone of the Minjiang River estuary[J]. Earth Science Frontiers, 2025, 32(3): 207-217.
图3 海洋透光层天然色素与溶解性有机物表征 a—光合色素含量;b—属水平光合微生物群落结构图;c—DOM三维荧光光谱。
Fig.3 Characterization of natrural pigments and dissolved organie matter in the oceanic euphotic zone
图4 海洋透光层的光电化学信号 a—电流-时间(I-t)曲线;b—电流-时间(I-t)曲线随光照强度的变化;c—河口、近岸、近海颗粒物在光照条件下的表面电势分布(插图为颗粒物的形貌图)。
Fig.4 Photoelectrochemical signals in the ocean euphotic zone
图5 不同区域海洋透光层微生物群落结构分析 a—门、属水平的微生物群落结构图;b—微生物与环境因子相关分析热图(r值在图中以不同颜色展示,右侧图例是不同r值的颜色区间。*代表p<0.05,**代表p<0.01,***代表p<0.001)。
Fig.5 Analysis of microbial community structure in the oceanic euphotic zone across different regions
图6 光敏物质-微生物相互作用机制及其元素地球化学循环效应
Fig.6 Mechanism interactions of photosensitive substances-microorganisms corresponding and their effects on elemental geochemical cycle
[1] |
XIONG J, FISCHER W M, INOUE K, et al. Molecular evidence for the early evolution of photosynthesis[J]. Science, 2000, 289(5485): 1724-1730.
PMID |
[2] | SYBESMA C, FOWLER C F. Evidence for two light-driven reactions in the purple photosynthetic bacterium, Rhodospirillum rubrum[J]. Proceedings of the National Academy of Sciences, 1968, 61(4): 1343-1348. |
[3] | KRUSE O, RUPPRECHT J, MUSSGNUG J H, et al. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies[J]. Photochemical & Photobiological Sciences, 2005, 4(12): 957-970. |
[4] |
COTTRELL M T, MANNINO A, KIRCHMAN D L. Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre[J]. Applied and Environmental Microbiology, 2006, 72(1): 557-564.
PMID |
[5] |
KOLBER Z S, GERALD F, LANG A S, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean[J]. Science, 2001, 292(5526): 2492-2495.
PMID |
[6] | SIERACKI M E, GILG I C, THIER E C, et al. Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the Northwest Atlantic[J]. Limnology and Oceanography, 2006, 51(1): 38-46. |
[7] | HOHMANN-MARRIOTT M F, BLANKENSHIP R E. Evolution of photosynthesis[J]. Annual Review of Plant Biology, 2011, 62: 515-548. |
[8] |
CROCE R, VAN AMERONGEN H. Natural strategies for photosynthetic light harvesting[J]. Nature Chemical Biology, 2014, 10(7): 492-501.
DOI PMID |
[9] | DI CAPUA F, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 2019, 362(1): 922-937. |
[10] | 鲁安怀, 王鑫, 李艳, 等. 矿物光电子与地球早期生命起源及演化初探[J]. 中国科学: 地球科学, 2014, 44(6): 1117-1123. |
[11] | KUMAR S, HERRMANN M, BLOHM A, et al. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer[J]. FEMS Microbiology Ecology, 2018, 94(10): fiy141. |
[12] | LAU M C Y, KIEFT T L, KULOYO O, et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers[J]. Proceedings of the National Academy of Sciences, 2016, 113(49): E7927 - E7936. |
[13] | LU A H, LI Y, JIN S, et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis[J]. Nature Communications, 2012, 3(3): 768. |
[14] |
SAKIMOTO K K, WONG A B, YANG P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77.
DOI PMID |
[15] | 鲁安怀, 李艳, 丁竑瑞, 等. 地表“矿物膜”: 地球“新圈层”[J]. 岩石学报, 2019, 35(1): 119-128. |
[16] | 胡文烨. 西北太平洋悬浮颗粒物的分布、组成及环境演变的初步研究[D]. 厦门: 国家海洋局第三海洋研究所, 2016. |
[17] |
鲁安怀, 李艳, 丁竑瑞, 等. 天然矿物光电效应: 矿物非经典光合作用[J]. 地学前缘, 2020, 27(5): 179-194.
DOI |
[18] | ALBERT A, WOOD H C S. Pteridine syntheses. II.isoxanthopterin[J]. Journal of Applied Chemistry, 1953, 3(11): 521-523. |
[19] | LANDYMORE A F, ANTIA N J. White-light promoted degradation of leucopterin and related pteridines dissolved in seawater, with evidence for involvement of complexation from major divalent cations of seawater[J]. Marine Chemistry, 1978, 6(4): 309-325. |
[20] | SUN C, YU Q L, ZHAO Z Q, et al. Establishment of an electroactive microorganism community in anaerobic digestion with photosynthetic bacteria agents for promoting methane production[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(46): 16521-16529. |
[21] | CHEN S S, CHEN J, ZHANG L L, et al. Biophotoelectrochemical process co-driven by dead microalgae and live bacteria[J]. The ISME Journal, 2023, 17(5): 712-719. |
[22] | YAMAMOTO M, KAWADA Y, TAKAKI Y, et al. Electrochemical survey of electroactive microbial populations in deep-sea hydrothermal fields[J]. Progress in Earth and Planetary Science, 2024, 11(1): 1-15. |
[23] |
ROWE A R, YOSHIMURA M, LAROWE D E, et al. In situ electrochemical enrichment and isolation of a magnetite-reducing bacterium from a high pH serpentinizing spring[J]. Environmental Microbiology, 2017, 19(6): 2272-2285.
DOI PMID |
[24] | CAMACHO A, MIRACLE M R, ROMERO-VIANA L, et al. Lake La Cruz, an iron-rich karstic meromictic lake in central spain[M]. New York: Springer International Publishing, 2017: 187-233. |
[25] | CROWE S A, JONES C A, KATSEV S, et al. Photoferrotrophs thrive in an Archean Ocean analogue[J]. Proceedings of the National Academy of Sciences, 2008, 105(41): 15938-15943. |
[26] | CHEN S S, JING X Y, YAN Y L, et al. Bioelectrochemical nitrogen fixation to extracellular ammonium by Pseudomonas stutzeri[J]. Applied and Environmental Microbiology, 2021, 87(5): e01998-20. |
[27] | JING X, LIU X, ZHANG Z, et al. Anode respiration-dependent biological nitrogen fixation by Geobacter sulfurreducens[J]. Water Research, 2022, 208: 117860. |
[28] |
WONG P Y, CHENG K Y, KAKSONEN A H, et al. Enrichment of anodophilic nitrogen fixing bacteria in a bioelectrochemical system[J]. Water Research, 2014, 64: 73-81.
DOI PMID |
[29] | MOMZIKOFF A, SANTUS R, GIRAUD M. A study of the photosensitizing properties of seawater[J]. Marine Chemistry, 1983, 12(1): 1-14. |
[30] | TRUEBLOOD J V, ALVES M R, POWER D, et al. Shedding light on photosensitized reactions within marine-relevant organic thin films[J]. ACS Earth and Space Chemistry, 2019, 3(8): 1614-1623. |
[31] | DONG H L, HUANG L Q, ZHAO L D, et al. A critical review of mineral-microbe interaction and co-evolution: mechanisms and applications[J]. National Science Review, 2022, 9(10): 209-229. |
[32] | 刘佳, 丁竑瑞, 葛潇, 等. 海洋透光层代表性铁氧化物半导体矿物: 针铁矿和纤铁矿光还原特性及其环境效应[J]. 矿物岩石地球化学通报, 2022, 41(6): 1273-1283. |
[33] | MAO J, AN X Q, GU Z N, et al. Visualizing the interfacial charge transfer between photoactive microcystis aeruginosa and hydrogenated TiO2[J]. Environmental Science & Technology, 2020, 54(16): 10323-10332. |
[34] | KRACHLER R, KRACHLER R F. Northern high-latitude organic soils as a vital source of river-borne dissolved iron to the ocean[J]. Environmental Science & Technology, 2021, 55(14): 9672-9690. |
[35] | CHESTER R. Marine Geochemistry[M]. London: Unwin Hyman, 1990. |
[36] | KRACHLER R, KRACHLER R F, VON DER KAMMER F, et al. Relevance of peat-draining rivers for the riverine input of dissolved iron into the ocean[J]. Science of The Total Environment, 2010, 408(11): 2402-2408. |
[37] | 张兰兰, 陈姗姗, 栾天罡. 天然光催化物质的光电特性与环境效应研究进展[J]. 环境化学, 41(12): 3893-3903. |
[38] | KOLBER Z S, PRÁŠIL O, FALKOWSKI P G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols[J]. Biochimica et Biophysica Acta - Bioenergetics, 1998, 1367(1): 88-106. |
[39] | LI Y Y, NAMAN C B, ALEXANDER K L, et al. The chemistry, biochemistry and pharmacology of marine natural products from Leptolyngbya: a chemically endowed genus of cyanobacteria[J]. Marine Drugs. 2020, 18(508): 1-29. |
[40] | HUANG S F, CHEN M, DIAO Y M, et al. Dissolved organic matter acting as a microbial photosensitizer drives photoelectrotrophic denitrification[J]. Environmental Science & Technology, 2022, 56(7): 4632-4641. |
[41] | CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. |
[42] | BATISTA A P S, TEIXEIRA A C S C, COOPER W J, et al. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine[J]. Water Research, 2016, 93(1): 20-29. |
[43] |
REN D, HUANG B, YANG B Q, et al. Mitigating 17α-ethynylestradiol water contamination through binding and photosensitization by dissolved humic substances[J]. Journal of Hazardous Materials, 2017, 327: 197-205.
DOI PMID |
[44] | ZHOU S F, LIAO Z Y, ZHANG B P, et al. Photochemical behavior of microbial extracellular polymeric substances in the aquatic environment[J]. Environmental Science & Technology, 2021, 55(22): 15090-15099. |
[45] |
COBLE P G. Marine optical biogeochemistry: the chemistry of ocean color[J]. Chemical Reviews, 2007, 107(2): 402-418.
DOI PMID |
[46] | LAANE R W P M, KOOLE L. The relation between fluorescence and dissolved organic carbon in the Ems-Dollart estuary and the western Wadden Sea[J]. Netherlands Journal of Sea Research, 1982, 15(2): 217-227. |
[47] | BERGAMASCHI B A, KRABBENHOFT D P, AIKEN G R, et al. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary[J]. Environmental Science & Technology, 2012, 46(3): 1371-1378. |
[48] | LIU J, ZHU F C, YIN Q J, et al. Photocatalytic characteristic of semiconducting mineral anatase and microbial community in the marine euphotic zone of the Beibu Gulf, South China Sea[J]. Geomicrobiology Journal, 2024, 41(5): 530-542. |
[49] | 周曾, 刘瑶, 吴一鸣, 等. 河口海岸沉积层理特征与形成机制[J]. 水科学进展, 2024, 35(1): 167-182. |
[50] | 王鲁宁, 魏皓, 赵亮. 光衰减系数与悬浮颗粒物浓度的关系[J]. 中国海洋大学学报(自然科学版), 2014, 44(4): 8-14. |
[51] | HUANG L Y, LIU X, ZHANG Z S, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture[J]. The ISME Journal, 2022, 16(2): 370-377. |
[52] |
HANSON C A, FUHRMAN J A, HORNER-DEVINE M C, et al. Beyond biogeographic patterns: processes shaping the microbial landscape[J]. Nature Reviews Microbiology, 2012, 10(7): 497-506.
DOI PMID |
[53] | ZHAO K K, MA B, XU Y, et al. Light exposure mediates circadian rhythms of rhizosphere microbial communities[J]. The ISME Journal, 2021, 15(9): 2655-2664. |
[54] | POLZ M F, HUNT D E, PREHEIM S P, et al. Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1475): 2009-2021. |
[55] | RAMOS J. Pseudomonas: volume 1 genomics, life style and molecular architecture[M]. New York: Springer. 2004. |
[56] | PIRBADIAN S, BARCHINGER S E, LEUNG K M, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components[J]. Proceedings of the National Academy of Sciences, 2014, 111(35): 12883-12888. |
[57] | LI H, CHENG J, XIA R X, et al. Electron syntrophy between mixed hydrogenogens and Geobacter metallireducens boosted dark hydrogen fermentation: clarifying roles of electroactive extracellular polymeric substances[J]. Bioresource Technology, 2024, 395: 130350. |
[58] |
BRYANT M P, WOLIN E A, WOLIN M J, et al. Methanobacillus omelianskii, a symbiotic association of two species of bacteria[J]. Archiv für Mikrobiologie, 1967, 59(1): 20-31.
DOI PMID |
[59] | LOZUPONE C A, KNIGHT R. Global patterns in bacterial diversity[J]. Proceedings of the National Academy of Sciences, 2007, 104(27): 11436-11440. |
[60] | FUHRMAN J A, STEELE J A, HEWSON I, et al. A latitudinal diversity gradient in planktonic marine bacteria[J]. Proceedings of the National Academy of Sciences, 2008, 105(22): 7774-7778. |
[61] | ANDERSSON A F, RIEMANN L, BERTILSSON S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities[J]. The ISME Journal, 2010, 4(2): 171-181. |
[62] |
GILBERT J A, FIELD D, SWIFT P, et al. The seasonal structure of microbial communities in the western English Channel[J]. Environmental Microbiology, 2009, 11(12): 3132-3139.
DOI PMID |
[63] | YE J, YU J, ZHANG Y Y, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid[J]. Applied Catalysis B: Environmental, 2019, 257: 117916. |
[64] | WANG C, YU J, REN G P, et al. Self-replicating biophotoelectrochemistry system for sustainable CO methanation[J]. Environmental Science & Technology, 2022, 56(7): 4587-4596. |
[65] | UREY H C. Life-forms in meteorites: Origin of life-like forms in carbonaceous chondrites introduction[J]. Nature, 1962, 193(4821): 1119-1123. |
[66] | ZHANG X V, ELLERY S P, FRIEND C M, et al. Photodriven reduction and oxidation reactions on colloidal semiconductor particles: implications for prebiotic synthesis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(2): 301-311. |
[67] |
REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513.
PMID |
[68] | WANG W L, MOORE J K, MARTINY A C, et al. Convergent estimates of marine nitrogen fixation[J]. Nature, 2019, 566(7743): 205-211. |
[69] | TAYLOR P G, TOWNSEND A R. Stoichiometric control of organic carbon-nitrate relationships from soils to the sea[J]. Nature, 2010, 464(7292): 1178-1181. |
[1] | 刘芷彤, 周妮, 乔文静, 叶淑君. 邻硝基对甲基苯酚和邻氨基对甲基苯酚对1,2,4-TCB厌氧生物降解影响研究[J]. 地学前缘, 2021, 28(5): 159-166. |
[2] | 张晟瑀, 张朦幻, 王利刚, 万玉玉. 微生物对地下水中萘的降解特性及动力学研究[J]. 地学前缘, 2021, 28(5): 146-158. |
[3] | 鲁安怀, 李艳, 丁竑瑞, 王长秋, 许晓明, 刘菲菲, 刘雨薇, 朱莹, 黎晏彰. 天然矿物光电效应:矿物非经典光合作用[J]. 地学前缘, 2020, 27(5): 179-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||