地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 196-206.DOI: 10.13745/j.esf.sf.2025.3.16
收稿日期:
2025-01-09
修回日期:
2025-02-20
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*傅平青(1974—),男,博士,教授,博士生导师,主要从事地-气界面科学与大气环境科学方面研究。E-mail: 作者简介:
吴礼彬(1992—),男,副教授,硕士生导师,主要从事地-气界面氮循环与环境变化方面研究。E-mail: wulibin@tju.edu.cn
基金资助:
WU Libin(), BAI Jingqi, ZHAO Qingzi, FU Pingqing*(
)
Received:
2025-01-09
Revised:
2025-02-20
Online:
2025-03-25
Published:
2025-04-20
摘要:
氮循环是全球生物地球化学循环的重要组成部分,人类活动强度升高导致全球活性氮的排放增多,使得氮循环过程失衡,带来一系列生态环境问题。氮是大气气溶胶的重要组分,包括氨基酸在内的大气有机氮对氮循环和环境变化有重要影响。本文对大气中氨基酸的检测方法、成分组成、时空分布、来源和转化规律,以及环境效应等进行了综述。使用液相色谱-质谱、气相色谱-质谱和气相色谱-稳定同位素质谱等仪器可以检测氨基酸的含量、L型和D型氨基酸的含量,以及甘氨酸等单体氨基酸的同位素组成。大气中氨基酸的成分组成、粒径分布和分布规律受采样时间、地理位置和传输过程的影响。甘氨酸通常是大气气溶胶中丰度最高的游离态和结合态氨基酸。氨基酸的来源多样,包括生物和土壤释放、海洋泡沫破裂、生物质燃烧、人为排放,以及二次生成过程等。氨基酸可以影响大气化学过程、参与成云降雨影响气候、作为生物可利用的氮源,以及对人体健康构成威胁。尽管关于大气氨基酸已经开展了很多研究,但依然存在不足,例如,需要标准统一的氨基酸检测方法进行时空对比,结合多种方法进行源解析以提高其结果的准确性,对氨基酸的环境、气候和健康效应缺乏定量评估。同时,从地-气界面科学,乃至地球系统科学的视角分析和解决相关问题,进行全方位、多圈层、跨学科的创新性交叉研究,可以全面理解大气中氨基酸的循环过程和环境影响。
中图分类号:
吴礼彬, 白景淇, 赵青茈, 傅平青. 大气中氨基酸的研究进展与展望[J]. 地学前缘, 2025, 32(3): 196-206.
WU Libin, BAI Jingqi, ZHAO Qingzi, FU Pingqing. Research progress and prospects of amino acids in the atmosphere[J]. Earth Science Frontiers, 2025, 32(3): 196-206.
图1 大气中FAAs的分子组成图(图片改绘自文献[39]) 基于对广州天湖四季PM2.5样品分析结果的统计。
Fig.1 Molecular composition of FAAs in the atmosphere. Based on the analyses of year-round PM2.5 samples collected from Tianhu, Guangzhou, China. Modified after [39].
图2 不同采样地点的大气总FAAs浓度对比(据文献[23,27-28,37,50]) 图中展示的是对极地(南极罗斯海地区)、海洋(大西洋和山区(泰山)TSP样品,以及乡村(韩国济州岛)和城市(天津)PM2.5的分析结果。
Fig.2 A comparison of total FAAs concentrations in the atmosphere at different sampling sites. The figure shows the analysis results of TSP samples from the polar region (Antarctic Ross Sea area, the ocean (Atlantic Ocean), and mountainous areas (Mount Tai, China, as well as PM2.5 from rural areas (Jeju Island, South Korea) and urban areas (Tianjin, China). Adapted from [23,27-28,37,50].
图3 泰山春、秋季节TSP样品及可能的来源样品中游离态甘氨酸的稳定氮同位素组成(δ15NGly),以及基于贝叶斯稳定同位素混合模型MixSIAR的源解析结果(图片改绘自文献[28,72])
Fig.3 Compound-specific stable nitrogen isotopic composition of free Gly in TSP samples from Mount Tai, China, during spring and autumn, as well as potential source samples, and the source apportionment results based on the Bayesian stable isotope mixing model “MixSIAR”. Modified after [28,72].
[1] |
HIETZ P, TURNER B L, WANEK W, et al. Long-term change in the nitrogen cycle of tropical forests[J]. Science, 2011, 334(6056): 664-666.
DOI PMID |
[2] | ROCKSTRÖM J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263): 472-475. |
[3] |
STEVENS C J. Nitrogen in the environment[J]. Science, 2019, 363(6427): 578-580.
DOI PMID |
[4] |
FARZADFAR S, KNIGHT J D, CONGREVES K A. Soil organic nitrogen: an overlooked but potentially significant contribution to crop nutrition[J]. Plant and Soil, 2021, 462: 7-23.
DOI PMID |
[5] | ALTIERI K E, FAWCETT S E, HASTINGS M G. Reactive nitrogen cycling in the atmosphere and ocean[J]. Annual Review of Earth and Planetary Sciences, 2021, 49(1): 523-550. |
[6] | 李佩霖, 傅平青, 康世昌, 等. 大气气溶胶中的氮:化学形态与同位素特征研究进展[J]. 环境化学, 2016, 35(1): 1-10. |
[7] | NEFF J C, HOLLAND E A, DENTENER F J, et al. The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle?[J]. Biogeochemistry, 2002, 57: 99-136. |
[8] | LIU X, ZHANG Y, HAN W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462. |
[9] | YANG Z, TSONA N T, GEORGE C, et al. Nitrogen-containing compounds enhance light absorption of aromatic-derived brown carbon[J]. Environmental Science & Technology, 2022, 56(7): 4005-4016. |
[10] | HU C C, LIU X Y, DRISCOLL A W, et al. Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants[J]. Nature Communications, 2024, 15: 6407. |
[11] | 张倩. 北京PM2.5中有机氮的污染特征与来源研究[D]. 北京: 清华大学, 2015. |
[12] | WU L B, YUE S Y, SHI Z B, et al. Source forensics of inorganic and organic nitrogen using δ15N for tropospheric aerosols over Mt. Tai[J]. npj Climate and Atmospheric Science, 2021, 4(1): 8. |
[13] | HU W, WANG Z H, HUANG S, et al. Biological aerosol particles in polluted regions[J]. Current Pollution Reports, 2020, 6: 65-89. |
[14] | RUIZ-JIMENEZ J, OKULJAR M, SIETIÖ O M, et al. Determination of free amino acids, saccharides, and selected microbes in biogenic atmospheric aerosols-seasonal variations, particle size distribution, chemical and microbial relations[J]. Atmospheric Chemistry and Physics, 2021, 21(11): 8775-8790. |
[15] | HAAN D O D, CORRIGAN A L, SMITH K W, et al. Secondary organic aerosol-forming reactions of glyoxal with amino acids[J]. Environmental Science & Technology, 2009, 43(8): 2818-2824. |
[16] | MILNE P J, ZIKA R G. Amino acid nitrogen in atmospheric aerosols: occurrence, sources and photochemical modification[J]. Journal of Atmospheric Chemistry, 1993, 16: 361-398. |
[17] | MATOS J T V, DUARTE R M B O, DUARTE A C. Challenges in the identification and characterization of free amino acids and proteinaceous compounds in atmospheric aerosols: a critical review[J]. TrAC Trends in Analytical Chemistry, 2016, 75: 97-107. |
[18] | 赵青茈. 城市与高山大气溶胶中游离态氨基酸的物种组成与来源研究[D]. 天津: 天津大学, 2024. |
[19] | REN L, BAI H, YU X, et al. Molecular composition and seasonal variation of amino acids in urban aerosols from Beijing, China[J]. Atmospheric Research, 2018, 203: 28-35. |
[20] | HUANG X, KAO S J, LIN J, et al. Development and validation of a HPLC/FLD method combined with online derivatization for the simple and simultaneous determination of trace amino acids and alkyl amines in continental and marine aerosols[J]. PLOS One, 2018, 13(11): e0206488. |
[21] | MASHAYEKHY RAD F, ZURITA J, GILLES P, et al. Measurements of atmospheric proteinaceous aerosol in the Arctic using a selective UHPLC/ESI-MS/MS strategy[J]. Journal of The American Society for Mass Spectrometry, 2018, 30(1): 161-173. |
[22] |
MANDALAKIS M, APOSTOLAKI M, STEPHANOU E G. Trace analysis of free and combined amino acids in atmospheric aerosols by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(1): 143-150.
DOI PMID |
[23] | WEDYAN M A, PRESTON M R. The coupling of surface seawater organic nitrogen and the marine aerosol as inferred from enantiomer-specific amino acid analysis[J]. Atmospheric Environment, 2008, 42(37): 8698-8705. |
[24] |
GAO X, MA Q, ZHU H. Distribution, industrial applications, and enzymatic synthesis of D-amino acids[J]. Applied Microbiology and Biotechnology, 2015, 99(8): 3341-3349.
DOI PMID |
[25] | VRANOVA V, ZAHRADNICKOVA H, JANOUS D, et al. The significance of D-amino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps[J]. Plant and Soil, 2012, 354(1): 21-39. |
[26] | FUJII N, SAITO T. Homochirality and life[J]. The Chemical Record, 2004, 4(5): 267-278. |
[27] |
LI Y, LI X Y, WU L B, et al. Analysis of amino acid enantiomers in ambient aerosols: effects and removal of coexistent aerosol matrix[J]. Journal of Environmental Sciences, 2024, 137: 732-740.
DOI PMID |
[28] | ZHAO Q Z, WU L B, FU X L, et al. Molecular composition and sources of free amino acids in atmospheric aerosols from Mt. Tai and a nearby city[J]. Atmospheric Environment, 2024, 328: 120516. |
[29] | BARBARO E, MORABITO E, GREGORIS E, et al. Col margherita observatory: a background site in the eastern Italian Alps for investigating the chemical composition of atmospheric aerosols[J]. Atmospheric Environment, 2020, 221: 117071. |
[30] | ZHANG Z, TIAN J, XIAO H, et al. A reliable compound-specific nitrogen isotope analysis of amino acids by GC-C-IRMS following derivatisation into N-pivaloyl-iso-propyl (NPIP) esters for high-resolution food webs estimation[J]. Journal of Chromatography B, 2016, 1033: 382-389. |
[31] | WU L B, LIU X D, XU L Q, et al. Compound‐specific 15N analysis of amino acids: a tool to estimate the trophic position of tropical seabirds in the South China Sea[J]. Ecology and Evolution, 2018, 8(17): 8853-8864. |
[32] | YAMAGUCHI Y T, MCCARTHY M D. Sources and transformation of dissolved and particulate organic nitrogen in the North Pacific Subtropical Gyre indicated by compound-specific δ15N analysis of amino acids[J]. Geochimica et Cosmochimica Acta, 2018, 220: 329-347. |
[33] | PHILBEN M, BILLINGS S A, EDWARDS K A, et al. Amino acid δ15N indicates lack of N isotope fractionation during soil organic nitrogen decomposition[J]. Biogeochemistry, 2018, 138: 69-83. |
[34] | ZHU R, XIAO H Y, LV Z, et al. Nitrogen isotopic composition of free Gly in aerosols at a forest site[J]. Atmospheric Environment, 2020, 222: 117179. |
[35] | LIN X, XU Y, ZHU R G, et al. Proteinaceous matter in PM2.5 in suburban Guiyang, southwestern China: decreased importance in long‐range transport and atmospheric degradation[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(12): e2023JD038516. |
[36] | ZHANG Q, ANASTASIO C. Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from northern California[J]. Atmospheric Environment, 2003, 37(16): 2247-2258. |
[37] | BARBARO E, ZANGRANDO R, VECCHIATO M, et al. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol[J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5457-5469. |
[38] | MACE K A, DUCE R A, TINDALE N W. Organic nitrogen in rain and aerosol at Cape Grim, Tasmania, Australia[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D11): 4338. |
[39] | SONG T, WANG S, ZHANG Y, et al. Proteins and amino acids in fine particulate matter in rural Guangzhou, Southern China: seasonal cycles, sources, and atmospheric processes[J]. Environmental Science & Technology, 2017, 51(12): 6773-6781. |
[40] | MANDALAKIS M, APOSTOLAKI M, TZIARAS T, et al. Free and combined amino acids in marine background atmospheric aerosols over the eastern Mediterranean[J]. Atmospheric Environment, 2011, 45(4): 1003-1009. |
[41] | DI FILIPPO P, POMATA D, RICCARDI C, et al. Free and combined amino acids in size-segregated atmospheric aerosol samples[J]. Atmospheric Environment, 2014, 98: 179-189. |
[42] |
朱济奇, 孙文文, 冯加良. 上海大气 PM2.5 中水溶性氨基酸的浓度及组成特征[J]. 生态环境学报, 2020, 29(6): 1173-1180.
DOI |
[43] |
SAMY S, ROBINSON J, HAYS M D. An advanced LC-MS (Q-TOF) technique for the detection of amino acids in atmospheric aerosols[J]. Analytical and Bioanalytical Chemistry, 2011, 401: 3103-3113.
DOI PMID |
[44] | 石金辉, 范得国, 韩静, 等. 青岛大气气溶胶中氨基化合物的分布特征[J]. 环境科学, 2010, 31(11): 2547-2554. |
[45] | ZHU R G, XIAO H Y, LUO L, et al. Measurement report: hydrolyzed amino acids in fine and coarse atmospheric aerosol in Nanchang, China: concentrations, compositions, sources and possible bacterial degradation state[J]. Atmospheric Chemistry and Physics, 2021, 21(4): 2585-2600. |
[46] | SCALABRIN E, ZANGRANDO R, BARBARO E, et al. Amino acids in Arctic aerosols[J]. Atmospheric Chemistry and Physics, 2012, 12(21): 10453-10463. |
[47] | KANG H, XIE Z, HU Q. Ambient protein concentration in PM10 in Hefei, central China[J]. Atmospheric Environment, 2012, 54: 73-79. |
[48] | MATSUMOTO K, KIM S, HIRAI A. Origins of free and combined amino acids in the aerosols at an inland urban site in Japan[J]. Atmospheric Environment, 2021, 259: 118543. |
[49] | BAEK K M, PARK E H, KANG H, et al. Seasonal characteristics of atmospheric water-soluble organic nitrogen in PM2.5 in Seoul, Korea: source and atmospheric processes of free amino acids and aliphatic amines[J]. Science of The Total Environment, 2022, 811: 152335. |
[50] | YANG H, XU J, WU W S, et al. Chemical characterization of water-soluble organic aerosols at Jeju Island collected during ACE-Asia[J]. Environmental Chemistry, 2004, 1(1): 13-17. |
[51] | MENETREZ M Y, FOARDE KK, ESCH R K, et al. An evaluation of indoor and outdoor biological particulate matter[J]. Atmospheric Environment 2009, 43(34): 5476-5483. |
[52] | STATON S J R, WOODWARD A, CASTILLO J A, et al. Ground level environmental protein concentrations in various ecuadorian environments: potential uses of aerosolized protein for ecological research[J]. Ecological Indicators, 2015, 48: 389-395. |
[53] | HELIN A, SIETIÖ O M, HEINONSALO J, et al. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions[J]. Atmospheric Chemistry and Physics, 2017, 17(21): 13089-13101. |
[54] | 朱玉雯, 朱仁果, 方小珍, 等. 森林地区PM2.5中氨基酸的水平、 来源及转化[J]. 中国环境科学, 2021, 41(1): 81-90. |
[55] | KUZNETSOVA M, LEE C, ALLER J. Characterization of the proteinaceous matter in marine aerosols[J]. Marine Chemistry, 2005, 96(3/4): 359-377. |
[56] | MATSUMOTO K, UEMATSU M. Free amino acids in marine aerosols over the western North Pacific Ocean[J]. Atmospheric Environment, 2005, 39(11): 2163-2170. |
[57] | SAIJO S, TANOUE E. Chemical forms and dynamics of amino acid-containing particulate organic matter in Pacific surface waters[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(10): 1865-1884. |
[58] | TRIESCH N, VAN PINXTEREN M, ENGEL A, et al. Concerted measurements of free amino acids at the Cape Verde Islands: high enrichments in submicron sea spray aerosol particles and cloud droplets[J]. Atmospheric Chemistry and Physics, 2021, 21: 163-181. |
[59] |
FELTRACCO M, BARBARO E, KIRCHGEORG T, et al. Free and combined L- and D-amino acids in Arctic aerosol[J]. Chemosphere, 2019, 220: 412-421.
DOI PMID |
[60] | RENARD P, BRISSY M, ROSSI F, et al. Free amino acid quantification in cloud water at the Puy de Dôme station (France)[J]. Atmospheric Chemistry and Physics, 2022, 22(4): 2467-2486. |
[61] | XU Y, WU D, XIAO H, et al. Dissolved hydrolyzed amino acids in precipitation in suburban Guiyang, southwestern China: seasonal variations and potential atmospheric processes[J]. Atmospheric Environment, 2019, 211: 247-255. |
[62] | GAO S, XU B, ZHENG X, et al. Developing an analytical method for free amino acids in atmospheric precipitation using gas chromatography coupled with mass spectrometry[J]. Atmospheric Research, 2021, 256: 105579. |
[63] | SHI J, GAO H, QI J, et al. Sources, compositions, and distributions of water-soluble organic nitrogen in aerosols over the China Sea[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D17303. |
[64] | DESPRÉS V R, HUFFMAN J, BURROWS S M, et al. Primary biological aerosol particles in the atmosphere: a review[J]. Tellus B, 2012, 64: 1-58. |
[65] | MOPPER K, ZIKA R G. Free amino acids in marine rains: evidence for oxidation and potential role in nitrogen cycling[J]. Nature, 1987, 325(6101): 246-249. |
[66] | AXELROD K, SAMBUROVA V, KHLYSTOV A Y. Relative abundance of saccharides, free amino acids, and other compounds in specific pollen species for source profiling of atmospheric aerosol[J]. Science of The Total Environment, 2021, 799: 149254. |
[67] | ABE R Y. Protein amino acids as markers for biological sources in urban aerosols[J]. Environmental Chemistry Letters, 2016, 14: 155-161. |
[68] | CHAN M N, CHOI M Y, NG N L, et al. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species[J]. Environmental Science & Technology, 2005, 39(6): 1555-1562. |
[69] | 石金辉, 李瑞芃, 祁建华, 等. 青岛大气气溶胶中游离氨基化合物的浓度、 组成和来源[J]. 环境科学学报, 2012, 32(2): 377-385. |
[70] | VAN PINXTEREN M, ZEPPENFELD S, FOMBA K W, et al. Amino acids, carbohydrates, and lipids in the tropical oligotrophic Atlantic Ocean: sea-to-air transfer and atmospheric in situ formation[J]. Atmospheric Chemistry and Physics, 2023, 23(11): 6571-6590. |
[71] | ZHU R G, XIAO H Y, WEN Z, et al. Oxidation of proteinaceous matter by ozone and nitrogen dioxide in PM2.5: reaction mechanisms and atmospheric implications[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(16): e2021JD034741. |
[72] | ZHU R, XIAO H Y, ZHU Y, et al. Sources and transformation processes of proteinaceous matter and free amino acids in PM2.5[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(5): e2020JD032375. |
[73] | WEN Z, LI B, XIAO H Y, et al. Combined positive matrix factorization (PMF) and nitrogen isotope signature analysis to provide insights into the source contribution to aerosol free amino acids[J]. Atmospheric Environment, 2022, 268: 118799. |
[74] | SHIRAIWA M, SELZLE K, YANG H, et al. Multiphase chemical kinetics of the nitration of aerosolized protein by ozone and nitrogen dioxide[J]. Environmental Science & Technology, 2012, 46(12): 6672-6680. |
[75] | KAMPF C J, LIU F, REINMUTH-SELZLE K, et al. Protein cross-linking and oligomerization through dityrosine formation upon exposure to ozone[J]. Environmental Science & Technology, 2015, 49(18): 10859-10866. |
[76] |
LIU F, LAKEY P S J, BERKEMEIER T, et al. Atmospheric protein chemistry influenced by anthropogenic air pollutants: nitration and oligomerization upon exposure to ozone and nitrogen dioxide[J]. Faraday Discussions, 2017, 200: 413-427.
DOI PMID |
[77] | WU S, ZHU Q, LIU F, et al. Multiphase reactions of proteins in the air: oligomerization, nitration and degradation of bovine serum albumin upon ambient exposure[J]. Science of The Total Environment, 2024, 924: 171617. |
[78] |
LIU F, LAI S, TONG H, et al. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals[J]. Analytical and Bioanalytical Chemistry, 2017, 409(9): 2411-2420.
DOI PMID |
[79] | XU Y, DONG X N, XIAO H Y, et al. Proteinaceous matter and liquid water in fine aerosols in Nanchang, eastern China: seasonal variations, sources, and potential connections[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(15): e2022JD036589. |
[80] | XU Y, LIN X, SUN Q B, et al. Elaborating the atmospheric transformation of combined and free amino acids from the perspective of observational studies[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(16): e2024JD040730. |
[81] | WANG S, SONG T, SHIRAIWA M, et al. Occurrence of aerosol proteinaceous matter in urban Beijing: an investigation on composition, sources, and atmospheric processes during the “APEC Blue” period[J]. Environmental Science & Technology, 2019, 53(13): 7380-7390. |
[82] | LI X, ZHANG Y, SHI L, et al. Aerosolproteinaceous matter in coastal Okinawa, Japan: influence of long-range transport and photochemical degradation[J]. Environmental Science & Technology, 2022, 56(8): 5256-5265. |
[83] | JABER S, JOLY M, BRISSY M, et al. Biotic and abiotic transformation of amino acids in cloud water: experimental studies and atmospheric implications[J]. Biogeosciences, 2021,18: 1067-1080. |
[84] | SUN J, ARIYA P. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review[J]. Atmospheric Environment, 2006, 40(5): 795-820. |
[85] | LI Y P, ZHANG H Y, LI A T, et al. High time-resolved variations of proteins in PM2.5 during haze pollution periods in Xi’an, China[J]. Environmental Pollution, 2022, 305: 119212. |
[86] | KRISTENSSON A, ROSENØRN T, BILDE M. Cloud droplet activation of amino acid aerosol particles[J]. The Journal of Physical Chemistry A, 2009, 114(1): 379-386. |
[87] |
GE P, LUO G, LUO Y, et al. Molecular understanding of the interaction of amino acids with sulfuric acid in the presence of water and the atmospheric implication[J]. Chemosphere, 2018, 210: 215-223.
DOI PMID |
[88] | CAO H, LIU Y R, HUANG T, et al. Contributions of alanine and serine to sulfuric acid-based homogeneous nucleation[J]. Atmospheric Environment, 2021, 246: 118139. |
[89] | ZHANG X, TAN S, CHEN X, et al. Computational chemistry of cluster: understanding the mechanism of atmospheric new particle formation at the molecular level[J]. Chemosphere, 2022, 308: 136109. |
[90] | WU L, WANG Z, CHANG T, et al. Morphological characteristics of amino acids in wet deposition of Danjiangkou Reservoir in China’s South-to-North Water Diversion Project[J]. Environmental Science and Pollution Research, 2022, 29(48): 73100-73114. |
[91] | XU Y, XIAO H, WU D, et al. Abiotic and biological degradation of atmospheric proteinaceous matter can contribute significantly to dissolved amino acids in wet deposition[J]. Environmental Science & Technology, 2020, 54(11): 6551-6561. |
[92] |
ESTILLORE A D, TRUEBLOOD J V, GRASSIAN V H. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases[J]. Chemical Science, 2016, 7(11): 6604-6616.
DOI PMID |
[1] | 弓耀奇, 岳甫均, 刘鑫, 郭田丽, 王浩阳, 李思亮. 基于流域系统水文水环境耦合模型的氮循环研究进展[J]. 地学前缘, 2025, 32(3): 183-195. |
[2] | 张艳利, 冉浩汎, 曾建强, 鲁钰婷, 庞伟华, 郭昊, 王新明. 全球变化背景下天然源痕量活性有机气体研究进展与展望[J]. 地学前缘, 2025, 32(3): 288-310. |
[3] | 朱仁果, 肖化云. 大气中氨基酸的来源及氮同位素分馏机制[J]. 地学前缘, 2025, 32(3): 362-374. |
[4] | 严丽萍, 谢先明, 汤振华. 基于物质来源解析的汕头市土壤重金属环境容量研究[J]. 地学前缘, 2024, 31(4): 403-416. |
[5] | 陈泽亚, 陈践发, 黎茂稳, 付娆, 师肖飞, 徐学敏, 伍建军. 塔里木台盆区下古生界天然气甲烷氢同位素组成特征及地质意义[J]. 地学前缘, 2023, 30(6): 232-246. |
[6] | 宋颜, 董少春, 胡欢, 王汝成. 基于大数据的铌钽矿物全球时空分布特征分析[J]. 地学前缘, 2023, 30(5): 197-204. |
[7] | 宁文婧, 谢先明, 严丽萍. 清远市清城区土壤中重金属的空间分布、来源解析和健康评价:基于PCA和PMF模型的对比[J]. 地学前缘, 2023, 30(4): 470-484. |
[8] | 张广禄, 刘海燕, 郭华明, 孙占学, 王振, 吴通航. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485-503. |
[9] | 黄柳琴, 李林鑫, 蒋宏忱. BIFs的形成及其铁氧化机制研究进展与展望[J]. 地学前缘, 2023, 30(2): 333-346. |
[10] | 马力, 谢逸豪, 吴耿, 蒋宏忱. 地热生境中硫循环微生物研究进展——对早期地球生命过程的启示[J]. 地学前缘, 2023, 30(2): 479-494. |
[11] | 时瑶, 张雷, 秦延文, 马迎群, 杨晨晨, 刘志超, 竹怀林. 四川邛海水体氮、磷浓度时空分布特征及其生态环境响应研究[J]. 地学前缘, 2023, 30(2): 495-505. |
[12] | 段威, 田金强, 李三忠, 于强, 陈瑞雪, 龙祖烈. 南海珠江口盆地惠州凹陷东南缘远源凸起带油气成因及来源[J]. 地学前缘, 2022, 29(5): 176-187. |
[13] | 邹建军, 宗娴, 朱爱美, 豆汝席, 林锦辉, 冯旭光, 董智, Sergey A. GORBARENKO, 郑立伟, 石学法. 37 ka以来日本海沉积物有机质碳和氮稳定同位素变化及其古海洋学意义[J]. 地学前缘, 2022, 29(4): 123-135. |
[14] | 侯国华, 高茂生, 叶思源, 赵广明. 黄河三角洲浅层地下水盐分来源及咸化过程研究[J]. 地学前缘, 2022, 29(3): 145-154. |
[15] | 朱小辉, 陈丹玲, 冯益民, 任云飞, 张欣. 祁连山地区花岗质岩浆作用及构造演化[J]. 地学前缘, 2022, 29(2): 241-260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||