地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 333-346.DOI: 10.13745/j.esf.sf.2022.2.81
收稿日期:
2021-10-27
修回日期:
2022-06-07
出版日期:
2023-03-25
发布日期:
2023-01-05
通信作者:
蒋宏忱
作者简介:
黄柳琴(1987—),女,副研究员,硕士生导师,主要从事地质微生物学研究工作。E-mail: huanglq@cug.edu.cn
基金资助:
HUANG Liuqin(), LI Linxin, JIANG Hongchen(
)
Received:
2021-10-27
Revised:
2022-06-07
Online:
2023-03-25
Published:
2023-01-05
Contact:
JIANG Hongchen
摘要:
条带状铁建造(banded iron formations, BIFs)是早前寒武纪(3.8~1.8 Ga)缺氧古海洋中大规模Fe(II)氧化形成的一类富铁沉积岩,具有典型的硅质层与铁质层互层的条带状或层状结构,形成的铁矿物主要以磁铁矿和赤铁矿为主。BIFs构成了全球规模最大、储量最多的铁矿类型,具有重大的经济价值。BIFs也是地球环境与生命协同演化的产物,是研究早期地球许多重大演化事件(如大氧化事件)独特的载体。然而,由于早前寒武古海洋环境和沉积条件的独特性,尽管经过了近百年的研究,BIFs成因仍存在许多未解之谜。其中,最关键的科学问题莫过于溶解态Fe(II)如何在缺氧古海洋中大量氧化形成特定的铁矿物组合。本文首先概述了BIFs类型、物质组成及来源,以及沉积条件等基本信息;然后从BIFs特殊的沉积环境入手,综述了前人提出的Fe(II)氧化机理及存在的一些问题,讨论了微生物驱动下的氮元素生物地球化学循环对Fe(II)氧化及BIFs形成的贡献及相关研究进展,最后对BIFs成因研究提出了展望。
中图分类号:
黄柳琴, 李林鑫, 蒋宏忱. BIFs的形成及其铁氧化机制研究进展与展望[J]. 地学前缘, 2023, 30(2): 333-346.
HUANG Liuqin, LI Linxin, JIANG Hongchen. Formation and iron oxidation mechanisms of BIFs: Research progress review and outlook[J]. Earth Science Frontiers, 2023, 30(2): 333-346.
图1 (A)地质历史时期大气O2含量的变化(PAL表示present atmospheric level,即与现代大气O2含量比值),其中GOE(great oxidation event)和NOE(neoproterozoic oxygenation event)表示古元古代大氧化事件和新元古代氧化事件,图中的“?”代表氧化程度尚无定论,据文献[75]修改;(B)铁建造沉积(包括早期条带状铁建造BIFs,元古宙颗粒状铁建造GIFs和新元古代晚期拉皮坦型铁建造)形成的铁储量(柱状图)和各时期不同地质载体中记录的N同位素组成[7,85-86]。
Fig.1 Composite diagram illustrating co-evolution of life and Earth through geological time. (A) Stepwise rise of atmospheric O2 (modified from [75]). PAL: present atmospheric level; GOE: Great Oxidation Event during Paleoproterozoic; NOE: Neoproterozoic Oxygenation Event. Question marks indicate uncertain O2 levels. (B) Variation of Fe content (bar graph) in BIF sediments (BIFs, GIFs, Rapitan IFs) and N isotope records (scatter plot) in different rocks and forms (adapted from [7,85-86]).
图2 (A)前人提出古海洋中Fe(II)氧化及BIFs矿物形成机制;(B)古海洋中微生物Fe、N循环耦合的可能过程 A中①—蓝藻(Cyanobacteria)光合作用产生的O2氧化;②—紫外线(hv)光催化氧化;③—厌氧不产氧光合细菌(AAPB)的嗜铁光合氧化。Fe(II)氧化生成水铁矿(Fe(OH)3)被④—异化铁还原微生物(dissimilatory iron reducing bacteria, 简称DIRB)通过氧化有机质([CH2O])还原Fe(III),生成纳米磁铁矿(Fe3O4)及菱铁矿(FeCO3)。B中微生物固氮作用及海底热液活动带来较高浓度的 NH 4 +,经微生物氧化(硝化作用或厌氧氧化)形成 NO 3 -进而参与Fe(II)氧化过程,包括:①微生物酶介作用下 NO 3 -还原Fe(II)氧化耦合反应及② NO 2 -化学氧化Fe(II),生成水铁矿、原生磁铁矿和菱铁矿等;水铁矿可经③微生物铁氨氧化作用(Feammox)还原结构Fe(III)生成磁铁矿等,同时将 NH 4 +氧化为N2、 NO 2 -或 NO 3 -。
Fig.2 Schematic diagrams illustrating (A) existing Fe(II) oxidation mechanisms for mineral formation in BIFs and (B) plausible Fe-N coupling processes in paleo marine environments
图3 西藏热泉高温微生物菌群(QZM-1、-2及-16,温度约80 ℃)还原 NO 3 -氧化Fe(II),以及 NO 2 -高温条件下(80 ℃)化学氧化Fe(II)形成的磁铁矿、菱铁矿等矿物组合(A),形成的矿物沉淀有明显的磁性(B),SEM观察下发现微生物作用形成微米级的自形磁铁矿(C)和菱铁矿(D),同等高温下 NO 2 -化学氧化Fe(II)生成的磁铁矿多为球形(E),据文献[136]修改。
Fig.3 Composite diagram showing the characteristics of mineral assembly (magnetite, siderite, calcite, quartz) formed by thermophilic NO 3 - reducing-Fe(II) oxidation microbial consortia (QZM-1, 2, 16, ~80 ℃) from Tibet hot springs and by chemical NO 2 - reduction-Fe(II) oxidation (80 ℃). (A) Geochemical composition analysis results. (B) Vials containing samples. (C, D) SEM images of biogenic μm-size euhedral magnetite and siderite particles. (E) Chemical oxidation product. Modified from [136].
[1] |
LI Y L. Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in early Precambrian oceans[J]. Astrobiology, 2012, 12(12): 1100-1108.
DOI URL |
[2] |
KLEIN C. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins[J]. American Mineralogist, 2005, 90(10): 1473-1499.
DOI URL |
[3] |
MLOSZEWSKA A M, PECOITS E, CATES N L, et al. The composition of Earth’s oldest iron formations: the Nuvvuagittuq Supracrustal Belt (Québec, Canada)[J]. Earth and Planetary Science Letters, 2012, 317/318: 331-342.
DOI URL |
[4] | ISLEY A E, ABBOTT D H. Plume-related mafic volcanism and the deposition of banded iron formation[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B7): 15461-15477. |
[5] | BEKKER A, PLANAVSKY N J, KRAPEŽ B, et al. Iron formations: their origins and implications for ancient seawater chemistry[M]//HOLLAND H D, TURKEKIAN K K. Treatise on geochemistry>. Amsterdam: Elsevier, 2014: 561-628. |
[6] |
DAUPHAS N, VAN ZUILEN M, WADHWA M, et al. Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland[J]. Science, 2004, 306(5704): 2077-2080.
PMID |
[7] |
KONHAUSER K O, PLANAVSKY N J, HARDISTY D S, et al. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history[J]. Earth-Science Reviews, 2017, 172: 140-177.
DOI URL |
[8] | 杨秀清, 毛景文, 张作衡, 等. 条带状铁建造: 特征、 成因及其对地球环境的制约[J]. 矿床地质, 2020, 39(4): 697-727. |
[9] |
POSTH N R, CANFIELD D E, KAPPLER A. Biogenic Fe(III) minerals: from formation to diagenesis and preservation in the rock record[J]. Earth-Science Reviews, 2014, 135: 103-121.
DOI URL |
[10] |
HAN T M, RUNNEGAR B. Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan[J]. Science, 1992, 257(5067): 232-235.
PMID |
[11] | KOEHLER M C, BUICK R, KIPP M A, et al. Transient surface ocean oxygenation recorded in the -2.66-Ga Jeerinah Formation, Australia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(30): 7711-7716. |
[12] |
LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315.
DOI URL |
[13] |
LI Y L, KONHAUSER K O, ZHAI M G. The formation of magnetite in the early Archean oceans[J]. Earth and Planetary Science Letters, 2017, 466: 103-114.
DOI URL |
[14] |
TAYLOR K G, MACQUAKER J H S. Iron minerals in marine sediments record chemical environments[J]. Elements, 2011, 7(2): 113-118.
DOI URL |
[15] | 代堰锫, 朱玉娣, 张连昌, 等. 国内外前寒武纪条带状铁建造研究现状[J]. 地质论评, 2016, 62(3): 735-757. |
[16] | 李延河, 侯可军, 万德芳, 等. 前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋[J]. 地质学报, 2010, 84(9): 1359-1373. |
[17] |
BUSIGNY V, MARIN-CARBONNEJ, MULLER E, et al. Iron and sulfur isotope constraints on redox conditions associated with the 3.2 Ga barite deposits of the Mapepe Formation (Barberton Greenstone Belt, South Africa)[J]. Geochimica et Cosmochimica Acta, 2017, 210: 247-266.
DOI URL |
[18] |
BEKKER A, HOLLAND H D, WANG P L, et al. Dating the rise of atmospheric oxygen[J]. Nature, 2004, 427(6970): 117-120.
DOI URL |
[19] |
POULTON S W, CANFIELD D E. Ferruginous conditions: a dominant feature of the ocean through earth’s history[J]. Elements, 2011, 7(2): 107-112.
DOI URL |
[20] |
SLACK JF, GRENNE T, BEKKER A, et al. Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 243-256.
DOI URL |
[21] |
VIEHMANN S, BAU M, HOFFMANN J E, et al. Geochemistry of the Krivoy Rog Banded Iron Formation, Ukraine, and the impact of peak episodes of increased global magmatic activity on the trace element composition of Precambrian seawater[J]. Precambrian Research, 2015, 270: 165-180.
DOI URL |
[22] | 李延河, 侯可军, 万德芳, 等. Algoma型和Superior型硅铁建造地球化学对比研究[J]. 岩石学报, 2012, 28(11): 3513-3519. |
[23] |
GOURCEROL B, THURSTON P C, KONTAK D J, et al. Depositional setting of Algoma-type banded iron formation[J]. Precambrian Research, 2016, 281: 47-79.
DOI URL |
[24] |
BLAKE R E, CHANG S J, LEPLAND A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean Ocean[J]. Nature, 2010, 464(7291): 1029-1032.
DOI URL |
[25] |
MUHLING J R, RASMUSSEN B. Widespread deposition of greenalite to form Banded Iron Formations before the Great Oxidation Event[J]. Precambrian Research, 2020, 339: 105619.
DOI URL |
[26] | 张连昌, 翟明国, 万渝生, 等. 华北克拉通前寒武纪 BIF 铁矿研究: 进展与问题[J]. 岩石学报, 2012, 28(11): 3431-3445. |
[27] |
CLOUD P. Paleoecological significance of the banded iron-formation[J]. Economic Geology, 1973, 68(7): 1135-1143.
DOI URL |
[28] |
SWANNER E D, LAMBRECHT N, WITTKOP C, et al. The biogeochemistry of ferruginous lakes and past ferruginous oceans[J]. Earth-Science Reviews, 2020, 211: 103430.
DOI URL |
[29] | MAND K, ROBBINS L J, PLANAVSKY N J, et al. Iron formations as palaeoenvironmental archives[M]. Cambridge: Cambridge University Press, 2022. |
[30] |
GONZÁLEZ-SANTANA D, GONZÁLEZ-DÁVILA M, LOHAN M C, et al. Variability in iron (II) oxidation kinetics across diverse hydrothermal sites on the northern Mid Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 2021, 297: 143-157.
DOI URL |
[31] | 沈保丰. 中国 BIF 型铁矿床地质特征和资源远景[J]. 地质学报, 2012, 86(9): 1376-1395. |
[32] | GROSS G A. Tectonic systems and the deposition of iron-formation[J]. Developments in Precambrian Geology, 1983, 7: 63-79. |
[33] |
SIMONSON B M, HASSLER S W. Was the deposition of large Precambrian iron formations linked to major marine transgressions?[J]. The Journal of Geology, 1996, 104(6): 665-676.
DOI URL |
[34] |
ROBBINS L J, FUNK S P, FLYNN S L, et al. Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations[J]. Nature Geoscience, 2019, 12(7): 558-563.
DOI URL |
[35] |
GERMAN C R, THURNHERR A M, KNOERY J, et al. Heat, volume and chemical fluxes from submarine venting: a synthesis of results from the Rainbow hydrothermal field, 36°N MAR[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(4): 518-527.
DOI URL |
[36] |
SAITO M A, NOBLE A E, TAGLIABUE A, et al. Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source[J]. Nature Geoscience, 2013, 6(9): 775-779.
DOI URL |
[37] |
TOYAMA K, TERAKADO Y. Estimation of the practical partition coefficients of rare earth elements between limestone and seawater: discussion and application[J]. Geochemical Journal, 2019, 53(2): 139-150.
DOI URL |
[38] |
ZHAI Q G, JAHN B M, WANG J, et al. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics[J]. Lithos, 2013, 168/169: 186-199.
DOI URL |
[39] | JOHANNESSON K H, TELFEYAN K, CHEVIS D A, et al. Rare earth elements in stromatolites—1. evidence that modern terrestrial stromatolites fractionate rare earth elements during incorporation from ambient waters[M]// Modern approaches in solid Earth sciences. Dordrecht: Springer Netherlands, 2013: 385-411. |
[40] |
LI W Q, BEARD B L, JOHNSON C M. Biologically recycled continental iron is a major component in banded iron formations[J]. PNAS, 2015, 112(27): 8193-8198.
DOI PMID |
[41] |
HAMADE T, KONHAUSER K O, RAISWELL R, et al. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations[J]. Geology, 2003, 31(1): 35-38.
DOI URL |
[42] |
KONHAUSER K O, AMSKOLD L, LALONDE S V, et al. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 87-100.
DOI URL |
[43] |
HECK P R, HUBERTY J M, KITA N T, et al. SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations[J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 5879-5891.
DOI URL |
[44] |
STEINHOEFEL G, HORN I, VON BLANCKENBURG F. Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation[J]. Geochimica et Cosmochimica Acta, 2009, 73(18): 5343-5360.
DOI URL |
[45] |
SCHAD M, HALAMA M, BISHOP B, et al. Temperature fluctuations in the Archean Ocean as trigger for varve-like deposition of iron and silica minerals in banded iron formations[J]. Geochimica et Cosmochimica Acta, 2019, 265: 386-412.
DOI URL |
[46] |
DELSTANCHE S, OPFERGELT S, CARDINAL D, et al. Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide[J]. Geochimica et Cosmochimica Acta, 2009, 73(4): 923-934.
DOI URL |
[47] |
BEKKER A, SLACK J F, PLANAVSKY N, et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Economic Geology, 2010, 105(3): 467-508.
DOI URL |
[48] | HAN X H, TOMASZEWSKI E J, SORWAT J, et al. Oxidation of green rust by anoxygenic phototrophic Fe(II)-oxidising bacteria[J]. Geochemical Perspectives Letters, 2020: 52-57. |
[49] |
KONHAUSER K O, HAMADE T, RAISWELL R, et al. Could bacteria have formed the Precambrian banded iron formations?[J]. Geology, 2002, 30(12): 1079.
DOI URL |
[50] |
KAPPLER A, PASQUERO C, KONHAUSER K O, et al. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria[J]. Geology, 2005, 33(11): 865.
DOI URL |
[51] |
RASMUSSEN B, MUHLING J R, KRAPEZ B. Greenalite and its role in the genesis of early Precambrian iron formations- a review[J]. Earth-Science Reviews, 2021, 217: 103613.
DOI URL |
[52] |
SUN S, KONHAUSER K O, KAPPLER A, et al. Primary hematite in neoarchean to Paleoproterozoic oceans[J]. Geological Society of America Bulletin, 2015, 127(5/6): 850-861.
DOI URL |
[53] |
CHI FRU E, IVARSSON M, KILIAS S P, et al. Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation[J]. Nature Communications, 2013, 4: 2050.
DOI PMID |
[54] |
TAITEL-GOLDMAN N, SINGER A. Synthesis of clay-sized iron oxides under marine hydrothermal conditions[J]. Clay Minerals, 2002, 37(4): 719-731.
DOI URL |
[55] |
LI Y L, KONHAUSER K O, KAPPLER A, et al. Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations[J]. Earth and Planetary Science Letters, 2013, 361: 229-237.
DOI URL |
[56] | 王长乐, 张连昌, 兰彩云, 等. 山西吕梁袁家村条带状铁建造沉积相与沉积环境分析[J]. 岩石学报, 2015, 31(6): 1671-1693. |
[57] |
JOHNSON C M, ZHENG X, DIOKIC T, et al. Early Archean biogeochemical iron cycling and nutrient availability: new insights from a 3.5 Ga land-sea transition[J]. Earth-Science Reviews, 2022, 228: 103992.
DOI URL |
[58] |
CZAJA A D, JOHNSON C M, BEARD B L, et al. Biological Fe oxidation controlled deposition of banded iron formation in the Ca. 3770 Ma Isua Supracrustal Belt (West Greenland)[J]. Earth and Planetary Science Letters, 2013, 363: 192-203.
DOI URL |
[59] |
JOHNSON C M, BEARD B L, KLEIN C, et al. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 151-169.
DOI URL |
[60] |
HALAMA M, SWANNER E D, KONHAUSER K O, et al. Evaluation of siderite and magnetite formation in BIFs by pressure-temperature experiments of Fe(III) minerals and microbial biomass[J]. Earth and Planetary Science Letters, 2016, 450: 243-253.
DOI URL |
[61] |
THOMAZO C, PINTI D L, BUSIGNY V, et al. Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record[J]. Comptes Rendus Palevol, 2009, 8(7): 665-678.
DOI URL |
[62] |
HAN XH, TOMASZEWSKI E J, SORWAT J, et al. Effect of microbial biomass and humic acids on abiotic and biotic magnetite formation[J]. Environmental Science and Technology, 2020, 54(7): 4121-4130.
DOI PMID |
[63] |
ANBAR A D, KNOLL A H. Proterozoic Ocean chemistry and evolution: a bioinorganic bridge[J]? Science, 2002, 297(5584): 1137-1142.
DOI URL |
[64] |
BAUER K W, BYRNE J M, KENWARD P, et al. Magnetite biomineralization in ferruginous waters and early Earth evolution[J]. Earth and Planetary Science Letters, 2020, 549: 116495.
DOI URL |
[65] |
HALEVY I, ALESKER M, SCHUSTER E M, et al. A key role for green rust in the Precambrian oceans and the genesis of iron formations[J]. Nature Geoscience, 2017, 10(2): 135-139.
DOI URL |
[66] |
RASMUSSEN B, MUHLING J R, SUVOROVA A, et al. Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform[J]. Precambrian Research, 2017, 290: 49-62.
DOI URL |
[67] |
MIOT J, LI J H, BENZERARA K, et al. Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation[J]. Geochimica et Cosmochimica Acta, 2014, 139: 327-343.
DOI URL |
[68] | CATLING D C, ZAHNLE K J. The Archean atmosphere[J]. Science Advances, 2020, 6(9): eaax1420. |
[69] |
ZAHNLE K J. Earth’s earliest atmosphere[J]. Elements, 2006, 2(4): 217-222.
DOI URL |
[70] |
FARQUHAR J, BAO H, THIEMENS M. Atmospheric influence of Earth’s earliest sulfur cycle[J]. Science, 2000, 289(5480): 756-759.
DOI URL |
[71] |
PAVLOV A A, KASTING J F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere[J]. Astrobiology, 2002, 2(1): 27-41.
PMID |
[72] |
HU GX, RUMBLE D, WANG P L. An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring Archean sulfur isotope mass-independent anomalies[J]. Geochimica et Cosmochimica Acta, 2003, 67(17): 3101-3118.
DOI URL |
[73] |
ONO S. Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa[J]. South African Journal of Geology, 2006, 109(1/2): 97-108.
DOI URL |
[74] |
MOJZSIS S J, COATH C D, GREENWOOD J P, et al. Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis[J]. Geochimica et Cosmochimica Acta, 2003, 67(9): 1635-1658.
DOI URL |
[75] |
LEPOT K. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon[J]. Earth-Science Reviews, 2020, 209: 103296.
DOI URL |
[76] |
HOLLAND H D. Volcanic gases, black smokers, and the great oxidation event[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3811-3826.
DOI URL |
[77] |
ZHAI M G, SANTOSH M. Metallogeny of the North China Craton: link with secular changes in the evolving Earth[J]. Gondwana Research, 2013, 24(1): 275-297.
DOI URL |
[78] |
KASTING J F. What caused the rise of atmospheric O2?[J]. Chemical Geology, 2013, 362: 13-25.
DOI URL |
[79] |
LANEUVILLE M, KAMEYA M, CLEAVES H J II. Earth without life: a systems model of a global abiotic nitrogen cycle[J]. Astrobiology, 2018, 18(7): 897-914.
DOI PMID |
[80] |
MATHER T A, PYLE D M, ALLEN A G. Volcanic source for fixed nitrogen in the early Earth’s atmosphere[J]. Geology, 2004, 32(10): 905.
DOI URL |
[81] |
YUNG Y L, MCELROY M B. Fixation of nitrogen in the prebiotic atmosphere[J]. Science, 1979, 203(4384): 1002-1004.
PMID |
[82] |
STÜEKEN E E, BUICK R, GUY B M, et al. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr[J]. Nature, 2015, 520(7549): 666-669.
DOI URL |
[83] |
YANG J, JUNIUM C K, GRASSINEAU N V, et al. Ammonium availability in the Late Archaean nitrogen cycle[J]. Nature Geoscience, 2019, 12(7): 553-557.
DOI |
[84] |
MCCOLLOM T M, SEEWALD J S, GERMAN C R. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 2015, 156: 122-144.
DOI URL |
[85] |
STÜEKEN E E, KIPP M A, KOEHLER M C, et al. The evolution of Earth’s biogeochemical nitrogen cycle[J]. Earth-Science Reviews, 2016, 160: 220-239.
DOI URL |
[86] |
THOMAZO C, ADER M, PHILIPPOT P. Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle[J]. Geobiology, 2011, 9(2): 107-120.
DOI PMID |
[87] |
KIPP M A, STÜEKEN E E, YUN M, et al. Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era[J]. Earth and Planetary Science Letters, 2018, 500: 117-126.
DOI URL |
[88] |
THOMAZO C, PAPINEAU D. Biogeochemical cycling of nitrogen on the early earth[J]. Elements, 2013, 9(5): 345-351.
DOI URL |
[89] |
LUO G M, JUNIUM C K, IZON G, et al. Nitrogen fixation sustained productivity in the wake of the Palaeoproterozoic Great Oxygenation Event[J]. Nature Communications, 2018, 9: 978.
DOI PMID |
[90] |
CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of Earth’s nitrogen cycle[J]. Science, 2010, 330(6001): 192-196.
DOI URL |
[91] |
ANBAR A D. Elements and evolution[J]. Science, 2008, 322(5907): 1481-1483.
DOI URL |
[92] |
REINHARD C T, PLANAVSKY N J. Biogeochemical controls on the redox evolution of earth’s oceans and atmosphere[J]. Elements, 2020, 16(3): 191-196.
DOI URL |
[93] |
ANBAR A D, ROUXEL O. Metal stable isotopes in paleoceanography[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 717-746.
DOI URL |
[94] |
MOORE E K, JELEN B I, GIOVANNELLI D, et al. Metal availability and the expanding network of microbial metabolisms in the Archaean eon[J]. Nature Geoscience, 2017, 10(9): 629-636.
DOI URL |
[95] |
ROBERT F, CHAUSSIDON M. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts[J]. Nature, 2006, 443(7114): 969-972.
DOI URL |
[96] | KNAUTH L P. Temperature and salinity history of the Precambrian Ocean: implications for the course of microbial evolution[M]//NOFFKE N. Geobiology:objectives, concepts, perspectives. Amsterdam: Elsevier, 2005: 53-69. |
[97] |
MCGUNNIGLE J P, CANO E J, SHARP Z D, et al. Triple oxygen isotope evidence for a hot Archean ocean[J]. Geology, 2022, 50(9): 991-995.
DOI URL |
[98] |
WHITEHOUSE M J, FEDO C M. Microscale heterogeneity of Fe isotopes in >3.71 Ga banded iron formation from the Isua Greenstone Belt, southwest Greenland[J]. Geology, 2007, 35(8): 719.
DOI URL |
[99] |
GAUCHER E A, GOVINDARAJAN S, GANESH O K. Palaeotemperature trend for Precambrian life inferred from resurrected proteins[J]. Nature, 2008, 451(7179): 704-707.
DOI URL |
[100] |
VARGAS M, KASHEFI K, BLUNT-HARRIS E L, et al. Microbiological evidence for Fe(III) reduction on early Earth[J]. Nature, 1998, 395(6697): 65-67.
DOI URL |
[101] |
HUANG L Q, FENG C, JIANG H C, et al. Reduction of structural Fe(III) in nontronite by thermophilic microbial consortia enriched from hot springs in Tengchong, Yunnan Province, China[J]. Chemical Geology, 2018, 479: 47-57.
DOI URL |
[102] |
BRATERMAN P S, CAIRNS-SMITH A G, SLOPER R W. Photo-oxidation of hydrated Fe2+: significance for banded iron formations[J]. Nature, 1983, 303(5913): 163-164.
DOI URL |
[103] |
NIE N X, DAUPHAS N, GREENWOOD R C. Iron and oxygen isotope fractionation during iron UV photo-oxidation: implications for early Earth and Mars[J]. Earth and Planetary Science Letters, 2017, 458: 179-191.
DOI URL |
[104] |
BUICK R. The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes[J]. Science, 1992, 255(5040): 74-77.
PMID |
[105] |
NUTMAN A P, WAN Y S, DU L L, et al. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei[J]. Precambrian Research, 2011, 189(1/2): 43-65.
DOI URL |
[106] |
EDWARDS D, CHERNS L, RAVEN J A. Could land-based early photosynthesizing ecosystems have bioengineered the planet in mid-Palaeozoic times?[J]. Palaeontology, 2015, 58(5): 803-837.
DOI URL |
[107] |
EIGENBRODE J L, FREEMAN K H, SUMMONS R E. Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis[J]. Earth and Planetary Science Letters, 2008, 273(3/4): 323-331.
DOI URL |
[108] |
FISCHER W W, HEMP J, JOHNSON J E. Evolution of oxygenic photosynthesis[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 647-683.
DOI URL |
[109] |
LALONDE S V, KONHAUSER K O. Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis[J]. PNAS, 2015, 112(4): 995-1000.
DOI URL |
[110] |
EMERSON D, FLEMING E J, MCBETH J M. Iron-oxidizing bacteria: an environmental and genomic perspective[J]. Annual Review of Microbiology, 2010, 64: 561-583.
DOI PMID |
[111] |
SWANNER E D, MLOSZEWSKA A M, CIRPKA O A, et al. Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity[J]. Nature Geoscience, 2015, 8(2): 126-130.
DOI URL |
[112] |
STRAUB K L, RAINEY F A, WIDDEL F. Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria[J]. International Journal of Systematic and Evolutionary Microbiology, 1999, 49(2): 729-735.
DOI URL |
[113] |
JIAO Y Q, KAPPLER A, CROAL L R, et al. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1[J]. Applied and Environmental Microbiology, 2005, 71(8): 4487-4496.
DOI URL |
[114] |
WU W F, SWANNER E D, KLEINHANNS I C, et al. Fe isotope fractionation during Fe(II) oxidation by the marine photoferrotroph Rhodovulum iodosum in the presence of Si: implications for Precambrian iron formation deposition[J]. Geochimica et Cosmochimica Acta, 2017, 211: 307-321.
DOI URL |
[115] |
GAUGER T, BYRNE J M, KONHAUSER K O, et al. Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox: implications for Fe(II) oxidation in ancient oceans[J]. Earth and Planetary Science Letters, 2016, 443: 81-89.
DOI URL |
[116] |
LEE C, BROCKS J J. Identification of carotane breakdown products in the 1.64 billion year old Barney Creek Formation, McArthur Basin, northern Australia[J]. Organic Geochemistry, 2011, 42(4): 425-430.
DOI URL |
[117] |
KAPPLER A, NEWMAN D K. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1217-1226.
DOI URL |
[118] |
POSTH N R, HUELIN S, KONHAUSER K O, et al. Size, density and composition of cell-mineral aggregates formed during anoxygenic phototrophic Fe(II) oxidation: impact on modern and ancient environments[J]. Geochimica et Cosmochimica Acta, 2010, 74(12): 3476-3493.
DOI URL |
[119] |
HEIMANN A, JOHNSON C M, BEARD B L, et al. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in -2.5 Ga marine environments[J]. Earth and Planetary Science Letters, 2010, 294(1/2): 8-18.
DOI URL |
[120] |
KANELLOPOULOS C, THOMAS C, XIROKOSTAS N, et al. Banded Iron Travertines at the Ilia Hot Spring (Greece): an interplay of biotic and abiotic factors leading to a modern Banded Iron Formation analogue?[J]. The Depositional Record, 2019, 5(1): 109-130.
DOI URL |
[121] | PICARDAL F. Abiotic and microbial interactions during anaerobic transformations of Fe(II) and NOX-[J]. Frontiers in Microbiology, 2012, 3: 112. |
[122] | SCHAEDLER F, LOCKWOOD C, LUEDER U, et al. Microbially mediated coupling of Fe and N cycles by nitrate-reducing Fe(II): oxidizing bacteria in littoral freshwater sediments[J]. Applied and Environmental Microbiology, 2018, 84(2): e02013-e02017. |
[123] |
STRAUB K L, BENZ M, SCHINK B, et al. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron[J]. Applied and Environmental Microbiology, 1996, 62(4): 1458-1460.
DOI PMID |
[124] |
PANTKE C, OBST M, BENZERARA K, et al. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1[J]. Environmental Science and Technology, 2012, 46(3): 1439-1446.
DOI URL |
[125] |
LIU T X, CHEN D D, LUO X B, et al. Microbially mediated nitrate-reducing Fe(II) oxidation: quantification of chemodenitrification and biological reactions[J]. Geochimica et Cosmochimica Acta, 2019, 256: 97-115.
DOI URL |
[126] |
GRABB K C, BUCHWALD C, HANSEL C M, et al. A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II) and its production of nitrous oxide[J]. Geochimica et Cosmochimica Acta, 2017, 196: 388-402.
DOI URL |
[127] |
BUCHWALD C, GRABB K, HANSEL C M, et al. Constraining the role of iron in environmental nitrogen transformations: dual stable isotope systematics of abiotic NO 2 - reduction by Fe(II) and its production of N2O[J]. Geochimica et Cosmochimica Acta, 2016, 186: 1-12.
DOI URL |
[128] |
DE RONDE C E J, CHANNER D M D, FAURE K, et al. Fluid chemistry of Archean seafloor hydrothermal vents: implications for the composition of circa 3.2 Ga seawater[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4025-4042.
DOI URL |
[129] |
LILLEY M D, BUTTERFIELD D A, OLSON E J, et al. Anomalous CH4 and NH 4 + concentrations at an unsedimented mid-ocean-ridge hydrothermal system[J]. Nature, 1993, 364(6432): 45-47.
DOI URL |
[130] |
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276.
DOI PMID |
[131] |
YANG W H, WEBER K A, SILVER W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541.
DOI URL |
[132] |
KRAFT B, JEHMLICH N, LARSEN M, et al. Oxygen and nitrogen production by an ammonia-oxidizing archaeon[J]. Science, 2022, 375(6576): 97-100.
DOI PMID |
[133] |
HUANG S, JAFFÉ P R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions[J]. Biogeosciences, 2015, 12(3): 769-779.
DOI URL |
[134] |
LI X F, HOU L J, LIU M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science and Technology, 2015, 49(19): 11560-11568.
DOI PMID |
[135] |
GODFREY L V, GLASS J B. The geochemical record of the ancient nitrogen cycle, nitrogen isotopes, and metal cofactors[J]. Methods in Enzymology, 2011, 486: 483-506.
DOI PMID |
[136] |
ZHANG Y M, HUANG L Q, JIANG H C, et al. Hyperthermophilic anaerobic nitrate-dependent Fe(II) oxidization by Tibetan hot spring microbiota and the formation of Fe minerals[J]. Geomicrobiology Journal, 2019, 36(1): 30-41.
DOI URL |
[1] | 王瑞敏, 沈冰. 条带状铁建造消失之谜:铁-硅互层机制研究进展与展望[J]. 地学前缘, 2024, 31(1): 111-126. |
[2] | 张瑜, 黄德将, 张六六, 万传辉, 罗欢, 邵德勇, 孟康, 闫建萍, 张同伟. 鄂西宜昌地区寒武系水井沱组页岩生物成因硅特征及其对页岩气富集的影响[J]. 地学前缘, 2023, 30(3): 83-100. |
[3] | 卢龙飞,秦建中,申宝剑,腾格尔,刘伟新,张庆珍. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4): 226-236. |
[4] | 刘凡 冯雄汉 陈秀华 邱国红 谭文峰 贺纪正. 氧化锰矿物的生物成因及其性质的研究进展[J]. 地学前缘, 2008, 15(6): 66-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||