地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 347-369.DOI: 10.13745/j.esf.sf.2022.2.76
陈欣1(), 王辉1,*(
), 毛景文1,2, 于淼3, 乔建峰4, 王治安4
收稿日期:
2022-03-02
修回日期:
2022-04-28
出版日期:
2023-03-25
发布日期:
2023-01-05
通信作者:
王辉
作者简介:
陈欣(2000—),男,硕士研究生,从事矿床学研究工作。E-mail: chenxin21s@163.com
基金资助:
CHEN Xin1(), WANG Hui1,*(
), MAO Jingwen1,2, YU Miao3, QIAO Jianfeng4, WANG Zhian4
Received:
2022-03-02
Revised:
2022-04-28
Online:
2023-03-25
Published:
2023-01-05
Contact:
WANG Hui
摘要:
夏日哈木是近年来在东昆仑成矿带探明的一个超大型岩浆型Ni-Co硫化物矿床,然而,随着矿区深部和外围找矿工作的不断深入,矿区内相继发现与岩浆硫化物型矿体特征明显不同的热液型Pb-Zn±Cu±Ag矿体,已探明的金属量达10万吨。为进一步揭示热液型矿体的成因及其产出背景,本文系统地开展了矿化蚀变特征和成矿年代学研究工作。新发现的热液型矿体主要呈似层状产于古元古代金水口群白沙河岩组的大理岩与片麻岩的层间构造带内,矿石矿物主要为方铅矿、闪锌矿和黄铜矿,脉石矿物为辉石、石榴子石、绿帘石、绿泥石、榍石、磷灰石、石英及方解石等。电子探针分析结果显示,辉石属于透辉石-钙铁辉石系列,矿物端员组分为Di65.44~79.01Hd18.55~30.78Jo1.63~0.51;石榴子石属于钙铝榴石-锰铝榴石系列,矿物端员组分为Gro24.93~92.17And3.29~9.95(Spe+Alm)1.68~67.29;绿帘石和绿泥石均有高Mn特征。综合以上矿物学研究工作,认为其属于夕卡岩型矿体。LA-ICP-MS微量元素分析显示,榍石稀土元素总量较低,稀土配分模式为右倾的轻稀土富集型,Th/U为0.23~1.97,平均值为0.94,与典型的热液榍石稀土元素组成相近。LA-ICP-MS微区原位U-Pb定年获得的热液榍石207Pb校正后的206Pb/238U加权平均年龄为(413.3±3.6) Ma(n=23, MSWD=0.96);热液磷灰石207Pb校正后的206Pb/238U加权平均年龄为(414±13) Ma(n=17, MSWD=1.03),代表夕卡岩型矿体成矿作用发生于早泥盆世,与岩浆型镍钴硫化物矿体的成矿时代在误差范围内基本一致。结合成矿地质条件,本文认为夏日哈木矿区发育具有时空联系的岩浆型与热液型两套成矿系统,区域伸展背景下幔源岩浆上涌导致地壳岩石发生部分熔融,形成浅部酸性岩浆房,熔体沿着伸展作用形成的构造薄弱带上升,分异产生岩浆流体,与古元古代金水口群大理岩发生接触交代作用,形成夕卡岩型Pb-Zn±Cu±Ag矿体。此外,本文为东昆仑成矿带泥盆纪夕卡岩型铅锌成矿作用的存在提供了直接的成矿年代学佐证,关注岩浆型与热液型两套成矿系统的共存,对开展综合找矿评价具有重要的理论和实际意义。
中图分类号:
陈欣, 王辉, 毛景文, 于淼, 乔建峰, 王治安. 东昆仑夏日哈木矿区热液型铅锌矿体成因及地质意义[J]. 地学前缘, 2023, 30(2): 347-369.
CHEN Xin, WANG Hui, MAO Jingwen, YU Miao, QIAO Jianfeng, WANG Zhian. Genesis and geological significance of hydrothermal Pb-Zn orebodies in the Xiarihamu mining area, East Kunlun Mountains, China[J]. Earth Science Frontiers, 2023, 30(2): 347-369.
图2 夏日哈木地区地质图(a)和夏日哈木HS31异常区地质图(b)(a据文献[20,41]修改,b据文献[29]修改)
Fig.2 (a) Simplified geologic map of the Xiarihamu area (modified after [20,41]), and (b) geological map of the hydrothermal Pb-Zn deposit in the HS31 anomaly area of Xiarihamu (modified after [29])
图3 夏日哈木HS31异常区东0勘探线剖面图(据文献[29]修改)
Fig.3 Geological section along Exploratory Line 0 at the eastern HS31 anomaly area of Xiarihamu. Modified after [29].
矿物 | 早期夕卡岩阶段 | 退化蚀变阶段 | 石英-硫化物阶段 | 碳酸盐阶段 |
---|---|---|---|---|
辉石 | ![]() | |||
石榴子石 | ||||
磷灰石 | ||||
榍石 | ||||
透闪石 | ||||
绿帘石 | ||||
绿泥石 | ||||
磁铁矿 | ||||
黄铜矿 | ||||
黄铁矿 | ||||
方铅矿 | ||||
闪锌矿 | ||||
辉银矿 | ||||
石英 | ||||
方解石 |
表1 夏日哈木矿区热液型铅锌矿体成矿阶段及矿物生成顺序表
Table 1 Metallogenic stages and mineral forming sequence of the Xiarihamu hydrothermal Pb-Zn skarn ore body
矿物 | 早期夕卡岩阶段 | 退化蚀变阶段 | 石英-硫化物阶段 | 碳酸盐阶段 |
---|---|---|---|---|
辉石 | ![]() | |||
石榴子石 | ||||
磷灰石 | ||||
榍石 | ||||
透闪石 | ||||
绿帘石 | ||||
绿泥石 | ||||
磁铁矿 | ||||
黄铜矿 | ||||
黄铁矿 | ||||
方铅矿 | ||||
闪锌矿 | ||||
辉银矿 | ||||
石英 | ||||
方解石 |
图4 夏日哈木矿区铅锌矿体夕卡岩矿物特征 a—石榴子石与透辉石共生;b—石榴子石的背散射电子照片,具“核边结构”,核部为钙铝榴石,边部为锰铝榴石;c—被榍石穿插交代的透辉石;d—磷灰石和榍石被绿泥石交代;e—石英硫化物脉中的闪锌矿、石英、榍石和绿泥石;f—夕卡岩中的典型硫化物组合,包括方铅矿、黄铜矿、闪锌矿和辉银矿。Ap—磷灰石;Arg—辉银矿;Cal—方解石;Ccp—黄铜矿;Chl—绿泥石;Di—透辉石;Ep—绿帘石;Gn—方铅矿;Gro—钙铝榴石;Grt—石榴子石;Qtz—石英;Spe—锰铝榴石;Sp—闪锌矿;Ttn—榍石。
Fig.4 Features of skarn minerals from the Xiarihamu Pb-Zn ore body
图5 夏日哈木矿区夕卡型铅锌矿体石榴子石(a)、辉石(b)端员组分图解(底图据文献[67]) Alm—铁铝榴石;And—钙铁榴石;Di—透辉石;Gro—钙铝榴石;Hd—钙铁辉石;Jo—锰钙辉石;Spe—锰铝榴石。
Fig.5 End-member mixing diagrams for garnet (a) and pyroxene (b) from the Xiarihamu Pb-Zn ore body. Adapted from [67].
编号 | 岩性 | wB/% | 矿物定名 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | Cr2O3 | SrO | Total | |||
1 | 夕卡岩 | 38.4 | 0.04 | 25.46 | 8.2 | 1.68 | 0 | 22.42 | — | — | — | — | 0.43 | 96.63 | 绿帘石 |
2 | 夕卡岩 | 37.78 | 0.05 | 24.11 | 9.95 | 1.5 | 0.02 | 22.15 | 0.01 | — | 0.01 | 0 | 0.54 | 96.12 | 绿帘石 |
3 | 夕卡岩 | 37.56 | — | 23.36 | 10.52 | 1.33 | 0.01 | 21.91 | — | — | — | 0.04 | 0.48 | 95.21 | 绿帘石 |
4 | 夕卡岩 | 38.17 | 0.02 | 24.45 | 9.36 | 1.22 | 0.01 | 22.4 | 0.08 | — | 0.03 | — | 0.47 | 96.22 | 绿帘石 |
5 | 夕卡岩 | 36.9 | 0.04 | 20.79 | 12.96 | 1.01 | 0.01 | 21.99 | 0.01 | — | — | 0.04 | 0.54 | 94.28 | 绿帘石 |
6 | 夕卡岩 | 38.66 | 0.06 | 27.24 | 5.43 | 2.55 | 0.08 | 22 | — | — | 0.04 | 0.03 | 0.45 | 96.53 | 绿帘石 |
7 | 夕卡岩 | 37.95 | 0.08 | 23.04 | 11.4 | 3.42 | — | 20.13 | — | — | 0.15 | — | 0.61 | 96.76 | 绿帘石 |
8 | 夕卡岩 | 38.76 | 0.09 | 26.9 | 6 | 2.19 | 0.04 | 22.35 | — | 0.01 | 0.04 | — | 0.52 | 96.89 | 绿帘石 |
9 | 夕卡岩 | 37.48 | — | 23.57 | 10.55 | 1.5 | 0.08 | 21.84 | — | 0 | — | — | 0.47 | 95.48 | 绿帘石 |
10 | 夕卡岩 | 38.72 | 0.14 | 26.98 | 5.7 | 1.09 | 0.03 | 23.21 | — | — | — | 0.05 | 0.51 | 96.42 | 绿帘石 |
11 | 夕卡岩 | 39.36 | 0.03 | 27.54 | 5.5 | 1.08 | 0.01 | 23.31 | — | — | 0.07 | — | 0.48 | 97.39 | 绿帘石 |
12 | 夕卡岩 | 38.09 | 0.17 | 21.08 | 13.66 | 1.18 | 0.02 | 22.14 | 0.01 | — | 0.02 | 0.03 | 0.44 | 96.82 | 绿帘石 |
13 | 夕卡岩 | 38.47 | 0.14 | 24.23 | 8.82 | 1.66 | 0.13 | 22.76 | 0.06 | — | — | — | 0.51 | 96.78 | 绿帘石 |
14 | 夕卡岩 | 37.73 | 0.1 | 21.08 | 14.02 | 1.17 | — | 22.19 | — | 0.01 | — | 0.01 | 0.53 | 96.84 | 绿帘石 |
15 | 夕卡岩 | 27.6 | — | 18.37 | 15.37 | 5.61 | 18.16 | 0.02 | 0.03 | — | — | 0.08 | 0.63 | 85.86 | 密绿泥石 |
16 | 夕卡岩 | 27.23 | — | 19.16 | 14.73 | 7.13 | 16.76 | 0.12 | 0.06 | — | — | 0.53 | 0.55 | 86.27 | 密绿泥石 |
17 | 夕卡岩 | 27.55 | 0.03 | 18.81 | 15.39 | 6.14 | 17.95 | 0.01 | — | 0.01 | 0.03 | 0.01 | 0.68 | 86.59 | 密绿泥石 |
18 | 夕卡岩 | 27.83 | 0.08 | 19.24 | 16.46 | 5.73 | 17.5 | 0.03 | — | 0.02 | 0.02 | 0.03 | 0.8 | 87.73 | 密绿泥石 |
19 | 夕卡岩 | 28.16 | 0.05 | 18.73 | 17.58 | 4.52 | 17.99 | 0.02 | 0.02 | 0.04 | — | 0 | 0.68 | 87.78 | 密绿泥石 |
20 | 夕卡岩 | 28.61 | 0.01 | 17.47 | 17.81 | 4.44 | 18.15 | 0.06 | 0 | — | — | 0.06 | 0.71 | 87.32 | 密绿泥石 |
21 | 夕卡岩 | 28.45 | 0.03 | 17.98 | 16.48 | 4.43 | 18.72 | 0.08 | — | 0 | 0.01 | 0.24 | 0.74 | 87.15 | 密绿泥石 |
22 | 夕卡岩 | 27.67 | 0.01 | 19.28 | 19.04 | 5.49 | 16 | 0.08 | 0.04 | — | 0.05 | 0.18 | 0.63 | 88.46 | 密绿泥石 |
23 | 夕卡岩 | 27.65 | 0.02 | 19.28 | 18.6 | 5.82 | 16.4 | 0.03 | 0.01 | — | — | 0.07 | 0.66 | 88.53 | 密绿泥石 |
24 | 夕卡岩 | 27.93 | 0.03 | 18.21 | 18.6 | 4.96 | 17.33 | 0.03 | — | 0.02 | — | 0.05 | 0.71 | 87.85 | 密绿泥石 |
25 | 夕卡岩 | 27.95 | 0.01 | 18.3 | 17.48 | 4.86 | 18.3 | 0.05 | 0.02 | 0 | — | 0.05 | 0.74 | 87.76 | 密绿泥石 |
26 | 夕卡岩 | 27.73 | 0.04 | 17.84 | 18.16 | 5.01 | 16.79 | 0.05 | — | 0 | — | 0.09 | 0.55 | 86.25 | 密绿泥石 |
27 | 夕卡岩 | 27.58 | — | 18.73 | 15.7 | 7.15 | 16.15 | 0 | 0.06 | — | — | 0.01 | 0.29 | 85.67 | 密绿泥石 |
28 | 夕卡岩 | 29.68 | 0.07 | 17.28 | 14.55 | 4.46 | 20.36 | 0.03 | — | 0.01 | 0.02 | 0.07 | 0.31 | 86.85 | 密绿泥石 |
29 | 夕卡岩 | 28.26 | 0.06 | 16.13 | 17.3 | 4.23 | 17.81 | 0.2 | — | — | — | 0.1 | 0.29 | 84.36 | 密绿泥石 |
表4 夏日哈木矿区铅锌矿体绿帘石、绿泥石电子探针分析结果
Table 4 Results of electron microprobe analysis of epidote and chlorite from the Xiarihamu Pb-Zn ore body
编号 | 岩性 | wB/% | 矿物定名 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | Cr2O3 | SrO | Total | |||
1 | 夕卡岩 | 38.4 | 0.04 | 25.46 | 8.2 | 1.68 | 0 | 22.42 | — | — | — | — | 0.43 | 96.63 | 绿帘石 |
2 | 夕卡岩 | 37.78 | 0.05 | 24.11 | 9.95 | 1.5 | 0.02 | 22.15 | 0.01 | — | 0.01 | 0 | 0.54 | 96.12 | 绿帘石 |
3 | 夕卡岩 | 37.56 | — | 23.36 | 10.52 | 1.33 | 0.01 | 21.91 | — | — | — | 0.04 | 0.48 | 95.21 | 绿帘石 |
4 | 夕卡岩 | 38.17 | 0.02 | 24.45 | 9.36 | 1.22 | 0.01 | 22.4 | 0.08 | — | 0.03 | — | 0.47 | 96.22 | 绿帘石 |
5 | 夕卡岩 | 36.9 | 0.04 | 20.79 | 12.96 | 1.01 | 0.01 | 21.99 | 0.01 | — | — | 0.04 | 0.54 | 94.28 | 绿帘石 |
6 | 夕卡岩 | 38.66 | 0.06 | 27.24 | 5.43 | 2.55 | 0.08 | 22 | — | — | 0.04 | 0.03 | 0.45 | 96.53 | 绿帘石 |
7 | 夕卡岩 | 37.95 | 0.08 | 23.04 | 11.4 | 3.42 | — | 20.13 | — | — | 0.15 | — | 0.61 | 96.76 | 绿帘石 |
8 | 夕卡岩 | 38.76 | 0.09 | 26.9 | 6 | 2.19 | 0.04 | 22.35 | — | 0.01 | 0.04 | — | 0.52 | 96.89 | 绿帘石 |
9 | 夕卡岩 | 37.48 | — | 23.57 | 10.55 | 1.5 | 0.08 | 21.84 | — | 0 | — | — | 0.47 | 95.48 | 绿帘石 |
10 | 夕卡岩 | 38.72 | 0.14 | 26.98 | 5.7 | 1.09 | 0.03 | 23.21 | — | — | — | 0.05 | 0.51 | 96.42 | 绿帘石 |
11 | 夕卡岩 | 39.36 | 0.03 | 27.54 | 5.5 | 1.08 | 0.01 | 23.31 | — | — | 0.07 | — | 0.48 | 97.39 | 绿帘石 |
12 | 夕卡岩 | 38.09 | 0.17 | 21.08 | 13.66 | 1.18 | 0.02 | 22.14 | 0.01 | — | 0.02 | 0.03 | 0.44 | 96.82 | 绿帘石 |
13 | 夕卡岩 | 38.47 | 0.14 | 24.23 | 8.82 | 1.66 | 0.13 | 22.76 | 0.06 | — | — | — | 0.51 | 96.78 | 绿帘石 |
14 | 夕卡岩 | 37.73 | 0.1 | 21.08 | 14.02 | 1.17 | — | 22.19 | — | 0.01 | — | 0.01 | 0.53 | 96.84 | 绿帘石 |
15 | 夕卡岩 | 27.6 | — | 18.37 | 15.37 | 5.61 | 18.16 | 0.02 | 0.03 | — | — | 0.08 | 0.63 | 85.86 | 密绿泥石 |
16 | 夕卡岩 | 27.23 | — | 19.16 | 14.73 | 7.13 | 16.76 | 0.12 | 0.06 | — | — | 0.53 | 0.55 | 86.27 | 密绿泥石 |
17 | 夕卡岩 | 27.55 | 0.03 | 18.81 | 15.39 | 6.14 | 17.95 | 0.01 | — | 0.01 | 0.03 | 0.01 | 0.68 | 86.59 | 密绿泥石 |
18 | 夕卡岩 | 27.83 | 0.08 | 19.24 | 16.46 | 5.73 | 17.5 | 0.03 | — | 0.02 | 0.02 | 0.03 | 0.8 | 87.73 | 密绿泥石 |
19 | 夕卡岩 | 28.16 | 0.05 | 18.73 | 17.58 | 4.52 | 17.99 | 0.02 | 0.02 | 0.04 | — | 0 | 0.68 | 87.78 | 密绿泥石 |
20 | 夕卡岩 | 28.61 | 0.01 | 17.47 | 17.81 | 4.44 | 18.15 | 0.06 | 0 | — | — | 0.06 | 0.71 | 87.32 | 密绿泥石 |
21 | 夕卡岩 | 28.45 | 0.03 | 17.98 | 16.48 | 4.43 | 18.72 | 0.08 | — | 0 | 0.01 | 0.24 | 0.74 | 87.15 | 密绿泥石 |
22 | 夕卡岩 | 27.67 | 0.01 | 19.28 | 19.04 | 5.49 | 16 | 0.08 | 0.04 | — | 0.05 | 0.18 | 0.63 | 88.46 | 密绿泥石 |
23 | 夕卡岩 | 27.65 | 0.02 | 19.28 | 18.6 | 5.82 | 16.4 | 0.03 | 0.01 | — | — | 0.07 | 0.66 | 88.53 | 密绿泥石 |
24 | 夕卡岩 | 27.93 | 0.03 | 18.21 | 18.6 | 4.96 | 17.33 | 0.03 | — | 0.02 | — | 0.05 | 0.71 | 87.85 | 密绿泥石 |
25 | 夕卡岩 | 27.95 | 0.01 | 18.3 | 17.48 | 4.86 | 18.3 | 0.05 | 0.02 | 0 | — | 0.05 | 0.74 | 87.76 | 密绿泥石 |
26 | 夕卡岩 | 27.73 | 0.04 | 17.84 | 18.16 | 5.01 | 16.79 | 0.05 | — | 0 | — | 0.09 | 0.55 | 86.25 | 密绿泥石 |
27 | 夕卡岩 | 27.58 | — | 18.73 | 15.7 | 7.15 | 16.15 | 0 | 0.06 | — | — | 0.01 | 0.29 | 85.67 | 密绿泥石 |
28 | 夕卡岩 | 29.68 | 0.07 | 17.28 | 14.55 | 4.46 | 20.36 | 0.03 | — | 0.01 | 0.02 | 0.07 | 0.31 | 86.85 | 密绿泥石 |
29 | 夕卡岩 | 28.26 | 0.06 | 16.13 | 17.3 | 4.23 | 17.81 | 0.2 | — | — | — | 0.1 | 0.29 | 84.36 | 密绿泥石 |
编号 | 岩性 | 位置 | wB/% | 矿物 定名 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | Cr2O3 | SrO | F | Total | ||||
1 | 夕卡岩 | 30.4 | 34.26 | 3.56 | 0.2 | 0.02 | 0.02 | 28.15 | 0.09 | — | 0.06 | — | 0.29 | — | 97.04 | 榍石 | |
2 | 夕卡岩 | 30.41 | 33.85 | 3.6 | 0.19 | — | 0.03 | 28.22 | — | — | — | 0.04 | 0.34 | — | 96.68 | 榍石 | |
3 | 夕卡岩 | 30.59 | 34.94 | 2.89 | 0.22 | 0.01 | 0.04 | 27.84 | 0.04 | — | 0.03 | 0.06 | 0.35 | — | 96.99 | 榍石 | |
4 | 夕卡岩 | 30.96 | 33.22 | 4.47 | 0.32 | 0.04 | 0.06 | 28.28 | 0.02 | 0.02 | 0.02 | — | 0.31 | — | 97.71 | 榍石 | |
5 | 夕卡岩 | 30.5 | 36.78 | 2.07 | 0.2 | — | 0.06 | 28.03 | 0.01 | — | 0.04 | 0.09 | 0.34 | — | 98.11 | 榍石 | |
6 | 夕卡岩 | 核 | 30.93 | 31.6 | 3.8 | 0.35 | 0.03 | — | 29.1 | 0.01 | 0 | 0.05 | 0.03 | — | 1.1 | 96.99 | 榍石 |
7 | 夕卡岩 | ↓ | 30.9 | 34.08 | 1.65 | 0.33 | 0.08 | 0.01 | 28.68 | — | — | 0.03 | 0 | — | 0.46 | 96.21 | 榍石 |
8 | 夕卡岩 | ↓ | 30.3 | 31.95 | 3.81 | 0.32 | 0.15 | 0.03 | 29.04 | — | — | 0.01 | 0.01 | — | 1.18 | 96.78 | 榍石 |
9 | 夕卡岩 | 边 | 28.99 | 31.98 | 3.55 | 0.27 | 0.05 | 0.02 | 28.98 | 0.02 | — | 0.04 | 0.01 | — | 0.96 | 94.86 | 榍石 |
10 | 夕卡岩 | 核 | 30.81 | 35.43 | 1.62 | 0.27 | 0.02 | — | 28.88 | 0.02 | — | — | 0.01 | — | 0.13 | 97.19 | 榍石 |
11 | 夕卡岩 | ↓ | 31.34 | 31 | 3.74 | 0.24 | 0.06 | 0.03 | 28.91 | — | — | 0.04 | 0.02 | — | 0.86 | 96.23 | 榍石 |
12 | 夕卡岩 | 边 | 31.19 | 31.97 | 3.78 | 0.47 | 0.01 | 0.02 | 28.95 | — | — | 0.03 | 0.04 | — | 1.1 | 97.57 | 榍石 |
13 | 夕卡岩 | — | 0.04 | 0.01 | 0.09 | 0.03 | — | 56.81 | 0 | — | 40.64 | — | — | 3.38 | 101 | 磷灰石 | |
14 | 夕卡岩 | — | 0.06 | 0.02 | 0.01 | 0.04 | 0.01 | 55.1 | 0 | 0.01 | 40.13 | 0.01 | — | 6.93 | 102.33 | 磷灰石 | |
15 | 夕卡岩 | — | 0.04 | 0 | 0.07 | 0.01 | — | 55.68 | 0 | — | 38.59 | — | — | 3.63 | 98.03 | 磷灰石 | |
16 | 夕卡岩 | — | — | — | — | 0.04 | — | 55.14 | — | 0.01 | 39.54 | — | — | 5.75 | 100.48 | 磷灰石 | |
17 | 夕卡岩 | 核 | 0.01 | 0.05 | 0.02 | 0.04 | 0.06 | 0.06 | 55.45 | — | 0.02 | 40.28 | — | — | 4.92 | 100.89 | 磷灰石 |
18 | 夕卡岩 | 边 | 0.05 | 0.05 | 0.01 | — | 0.07 | 0.02 | 55.07 | 0.01 | 0.01 | 39.16 | 0.02 | — | 6.27 | 100.75 | 磷灰石 |
19 | 夕卡岩 | — | 0.07 | 0.03 | 0.13 | 0.03 | 0.02 | 56.46 | 0.02 | 0.03 | 40.77 | — | — | 3.98 | 101.52 | 磷灰石 | |
20 | 夕卡岩 | — | 0.03 | 0.01 | 0.01 | — | 0.01 | 55.38 | — | — | 40.18 | 0.08 | — | 3.69 | 99.4 | 磷灰石 |
表5 夏日哈木矿区铅锌矿体榍石、磷灰石电子探针分析结果
Table 5 Results of electron microprobe analysis of titanite and apatite from the Miarihamu Pb-Zn ore body
编号 | 岩性 | 位置 | wB/% | 矿物 定名 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | Cr2O3 | SrO | F | Total | ||||
1 | 夕卡岩 | 30.4 | 34.26 | 3.56 | 0.2 | 0.02 | 0.02 | 28.15 | 0.09 | — | 0.06 | — | 0.29 | — | 97.04 | 榍石 | |
2 | 夕卡岩 | 30.41 | 33.85 | 3.6 | 0.19 | — | 0.03 | 28.22 | — | — | — | 0.04 | 0.34 | — | 96.68 | 榍石 | |
3 | 夕卡岩 | 30.59 | 34.94 | 2.89 | 0.22 | 0.01 | 0.04 | 27.84 | 0.04 | — | 0.03 | 0.06 | 0.35 | — | 96.99 | 榍石 | |
4 | 夕卡岩 | 30.96 | 33.22 | 4.47 | 0.32 | 0.04 | 0.06 | 28.28 | 0.02 | 0.02 | 0.02 | — | 0.31 | — | 97.71 | 榍石 | |
5 | 夕卡岩 | 30.5 | 36.78 | 2.07 | 0.2 | — | 0.06 | 28.03 | 0.01 | — | 0.04 | 0.09 | 0.34 | — | 98.11 | 榍石 | |
6 | 夕卡岩 | 核 | 30.93 | 31.6 | 3.8 | 0.35 | 0.03 | — | 29.1 | 0.01 | 0 | 0.05 | 0.03 | — | 1.1 | 96.99 | 榍石 |
7 | 夕卡岩 | ↓ | 30.9 | 34.08 | 1.65 | 0.33 | 0.08 | 0.01 | 28.68 | — | — | 0.03 | 0 | — | 0.46 | 96.21 | 榍石 |
8 | 夕卡岩 | ↓ | 30.3 | 31.95 | 3.81 | 0.32 | 0.15 | 0.03 | 29.04 | — | — | 0.01 | 0.01 | — | 1.18 | 96.78 | 榍石 |
9 | 夕卡岩 | 边 | 28.99 | 31.98 | 3.55 | 0.27 | 0.05 | 0.02 | 28.98 | 0.02 | — | 0.04 | 0.01 | — | 0.96 | 94.86 | 榍石 |
10 | 夕卡岩 | 核 | 30.81 | 35.43 | 1.62 | 0.27 | 0.02 | — | 28.88 | 0.02 | — | — | 0.01 | — | 0.13 | 97.19 | 榍石 |
11 | 夕卡岩 | ↓ | 31.34 | 31 | 3.74 | 0.24 | 0.06 | 0.03 | 28.91 | — | — | 0.04 | 0.02 | — | 0.86 | 96.23 | 榍石 |
12 | 夕卡岩 | 边 | 31.19 | 31.97 | 3.78 | 0.47 | 0.01 | 0.02 | 28.95 | — | — | 0.03 | 0.04 | — | 1.1 | 97.57 | 榍石 |
13 | 夕卡岩 | — | 0.04 | 0.01 | 0.09 | 0.03 | — | 56.81 | 0 | — | 40.64 | — | — | 3.38 | 101 | 磷灰石 | |
14 | 夕卡岩 | — | 0.06 | 0.02 | 0.01 | 0.04 | 0.01 | 55.1 | 0 | 0.01 | 40.13 | 0.01 | — | 6.93 | 102.33 | 磷灰石 | |
15 | 夕卡岩 | — | 0.04 | 0 | 0.07 | 0.01 | — | 55.68 | 0 | — | 38.59 | — | — | 3.63 | 98.03 | 磷灰石 | |
16 | 夕卡岩 | — | — | — | — | 0.04 | — | 55.14 | — | 0.01 | 39.54 | — | — | 5.75 | 100.48 | 磷灰石 | |
17 | 夕卡岩 | 核 | 0.01 | 0.05 | 0.02 | 0.04 | 0.06 | 0.06 | 55.45 | — | 0.02 | 40.28 | — | — | 4.92 | 100.89 | 磷灰石 |
18 | 夕卡岩 | 边 | 0.05 | 0.05 | 0.01 | — | 0.07 | 0.02 | 55.07 | 0.01 | 0.01 | 39.16 | 0.02 | — | 6.27 | 100.75 | 磷灰石 |
19 | 夕卡岩 | — | 0.07 | 0.03 | 0.13 | 0.03 | 0.02 | 56.46 | 0.02 | 0.03 | 40.77 | — | — | 3.98 | 101.52 | 磷灰石 | |
20 | 夕卡岩 | — | 0.03 | 0.01 | 0.01 | — | 0.01 | 55.38 | — | — | 40.18 | 0.08 | — | 3.69 | 99.4 | 磷灰石 |
![]() |
表6 夏日哈木矿区夕卡岩型铅锌矿体榍石微量元素含量及榍石Zr饱和温度
Table 6 Trace compositions (μg/g) and Zr-in-titanite temperatures (°C) for titanite samples from the hydrothermal Pbr Zn ore body at Xiarihamu
![]() |
图6 夏日哈木矿区铅锌矿体榍石稀土元素球粒陨石标准化配分模式(阮家湾、Ray Gulch、Mactung和马厂菁榍石稀土元素范围据文献[73,76,78],球粒陨石稀土元素标准化值据文献[79])
Fig.6 Chondrite-normalized REE patterns for titanite from the Xiarihamu Pb-Zn ore body. Ranges of REE values for Ruanjiawan, Ray Gulch, Mactung and Machangqing deposits adapted from [73,76,78]. Chondrite-normalized REE values adapted from [79].
图7 夏日哈木矿区热液型铅锌矿体榍石Tera-Wasserburg 图解(a)及其207Pb校正206Pb/238U加权平均年龄(b)
Fig.7 Tera-Wasserburg diagram of titanite from the Pb-Zn orebody in Xiarihamu mining area (a) and 207Pb corrected 206Pb/238U weighted mean age (b).
图8 夏日哈木矿区热液型铅锌矿体磷灰石Tera-Wasserburg 图解(a)及其207Pb校正206Pb/238U加权平均年龄(b)
Fig.8 Tera-Wasserburg diagram (a) and 207Pb-corrected 206Pb/238U weighted mean age diagram (b) for apatite samples from the hydrothermal Pb-Zn ore body
图9 夏日哈木矿区成岩成矿年龄柱状图(各年龄据文献[19-20,42,44-45,48,92⇓⇓-95])
Fig.9 Histogram of metallogenic ages in the Xiarihamu mining area. Adapted from [19-20,42,44-45,48,92⇓⇓-95].
图10 夏日哈木矿区夕卡岩型Pb-Zn矿体成矿构造背景(a)及成矿模式示意图(b)(a据文献[28]修改)
Fig.10 Simplified schematic showing tectonic setting (a) and metallogenic model (b) of the skarn Pb-Zn ore body at the Xiarihamu mining area. Modified after [28].
[1] | 姜春发, 杨经绥, 冯秉贵, 等. 昆仑开合构造[M]. 北京: 地质出版社, 1992. |
[2] | 姜春发, 王宗起, 李锦轶. 中央造山带开合构造[M]. 北京: 地质出版社, 2000. |
[3] |
DONG Y P, HE D F, SUN S S, et al. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 2018, 186: 231-261.
DOI URL |
[4] |
DONG Y P, SUN S S, SANTOSH M, et al. Central China orogenic belt and amalgamation of east Asian continents[J]. Gondwana Research, 2021, 100: 131-194.
DOI URL |
[5] |
SONG S G, BI H Z, QI S S, et al. HP-UHP metamorphic belt in the East Kunlun Orogen: final closure of the proto-Tethys ocean and formation of the pan-north-China continent[J]. Journal of Petrology, 2018, 59(11): 2043-2060.
DOI URL |
[6] | 裴先治, 李瑞保, 李佐臣, 等. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学, 2018, 43(12): 4498-4520. |
[7] | 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627-1674. |
[8] | 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414. |
[9] | 马昌前, 熊富浩, 尹烁, 等. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555-3568. |
[10] |
YU M, DICK J M, FENG C Y, et al. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: a critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences, 2020, 191: 104168.
DOI URL |
[11] | 丰成友, 李东生, 吴正寿, 等. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, 2010, 43(4): 10-17. |
[12] | 丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(2): 665-678. |
[13] | 潘彤. 青海矿床成矿系列探讨[J]. 地球科学与环境学报, 2019, 41(3): 297-315. |
[14] | 李文渊, 张照伟, 高永宝, 等. 昆仑古特提斯构造转换与镍钴锰锂关键矿产成矿作用研究[J]. 中国地质, 2022, 49(05): 1385-1407. |
[15] | 张德全, 党兴彦, 佘宏全, 等. 柴北缘—东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义[J]. 矿床地质, 2005, 24(2): 87-98. |
[16] | WANG H, FENG C Y, LI R X, et al. Geological characteristics, metallogenesis, and tectonic setting of porphyry-skarn Cu deposits in East Kunlun Orogen[J]. Geological Journal, 2018, 53: 58-76. |
[17] |
WU J J, ZENG Q D, SANTOSH M, et al. Intrusion-related orogenic gold deposit in the East Kunlun belt, NW China: a multiproxy investigation[J]. Ore Geology Reviews, 2021, 139: 104550.
DOI URL |
[18] |
LI C S, ZHANG Z W, LI W Y, et al. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet Plateau, western China[J]. Lithos, 2015, 216/217: 224-240.
DOI URL |
[19] | 张照伟, 李文渊, 钱兵, 等. 东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义[J]. 中国地质, 2015, 42(3): 438-451. |
[20] |
SONG X Y, YI J N, CHEN L M, et al. The giant xiarihamu Ni-co sulfide deposit in the East Kunlun orogenic belt, northern Tibet Plateau, China[J]. Economic Geology, 2016, 111(1): 29-55.
DOI URL |
[21] | 丰成友, 于淼, 李大新, 等. 新疆祁漫塔格巴什尔希钨锡矿床流体包裹体地球化学研究[J]. 矿床地质, 2013, 32(1): 20-36. |
[22] | 李加多, 王新雨, 祝新友, 等. 青海祁漫塔格海西期成矿初探: 以牛苦头M1铅锌矿床为例[J]. 矿产勘查, 2019, 10(8): 1775-1783. |
[23] | 王新雨, 祝新友, 李加多, 等. 青海牛苦头矿区两期岩浆岩及其矽卡岩型成矿作用[J]. 岩石学报, 2021, 37(5): 1567-1586. |
[24] | 姚磊, 吕志成, 赵财胜, 等. 青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA-ICP-MS锆石U-Pb年龄: 对泥盆纪成岩成矿作用的指示[J]. 地质通报, 2016, 35(7): 1158-1169. |
[25] | 高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014, 30(6): 1647-1665. |
[26] |
ZHONG S H, LI S Z, FENG C Y, et al. Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai-Tibet Plateau: a zircon perspective[J]. Ore Geology Reviews, 2021, 139: 104560.
DOI URL |
[27] |
SONG X Y, WANG K Y, BARNES S J, et al. Petrogenetic insights from chromite in ultramafic cumulates of the Xiarihamu intrusion, northern Tibet Plateau, China[J]. American Mineralogist, 2020, 105(4): 479-497.
DOI URL |
[28] | 张照伟, 钱兵, 王亚磊, 等. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示[J]. 西北地质, 2020, 53(3): 153-168. |
[29] | 青海省第五地质勘查院. 青海省格尔木市拉陵灶火地区铜多金属矿整装勘查项目报告[R]. 青海: 青海省第五地质勘查院, 2021. |
[30] |
CLARK M K, FARLEY K A, ZHENG D W, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 78-88.
DOI URL |
[31] | COWGILL E, YIN A, HARRISON T M, et al. Reconstruction of the Altyn Tagh Fault based on U-Pb geochronology: role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 108(B7: 1-28.). |
[32] |
YIN A, DANG Y Q, WANG L C, et al. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (Part 1): the southern Qilian Shan-Nan Shan thrust belt and northern Qaidam Basin[J]. Geological Society of America Bulletin, 2008, 120(7/8): 813-846.
DOI URL |
[33] |
YIN A, DANG Y Q, ZHANG M, et al. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (part 2): wedge tectonics in southern Qaidam Basin and the eastern Kunlun Range[J]. Geological Society of America Bulletin, 2007, DOI: https://doi.org/10.1130/2007.2433(18).
DOI |
[34] | 姜春发, 冯秉贵, 杨经绥, 等. 昆仑地质构造轮廓[J]. 中国地质科学院地质研究所文集, 1986(2): 70-80. |
[35] | 古凤宝. 东昆仑地质特征及晚古生代: 中生代构造演化[J]. 青海地质, 1994(1): 4-14. |
[36] | 许志琴, 李海兵, 杨经绥, 等. 东昆仑山南缘大型转换挤压构造带和斜向俯冲作用[J]. 地质学报, 2001, 75(2): 156-164. |
[37] |
YU M, FENG C Y, SANTOSH M, et al. The Qiman Tagh Orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau[J]. Earth-Science Reviews, 2017, 167: 103-123.
DOI URL |
[38] |
HE D F, DONG Y P, LIU X M, et al. Tectono-thermal events in East Kunlun, northern Tibetan Plateau: evidence from zircon U-Pb geochronology[J]. Gondwana Research, 2016, 30: 179-190.
DOI URL |
[39] | 孟繁聪, 崔美慧, 吴祥珂, 等. 东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件[J]. 岩石学报, 2013, 29(6): 2107-2122. |
[40] |
HE D F, DONG Y P, ZHANG F F, et al. The 1.0 Ga S-type granite in the East Kunlun Orogen, Northern Tibetan Plateau: implications for the Meso- to Neoproterozoic tectonic evolution[J]. Journal of Asian Earth Sciences, 2016, 130: 46-59.
DOI URL |
[41] | 张勤山, 马楠, 郝亚青, 等. 综合化探方法在青海夏日哈木超大型铜镍矿床中的找矿应用[J]. 物探与化探, 2016, 40(3): 429-437. |
[42] | 王冠. 东昆仑造山带镍矿成矿作用研究[D]. 长春: 吉林大学, 2014. |
[43] | 姜常义, 凌锦兰, 周伟, 等. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景[J]. 岩石学报, 2015, 31(4): 1117-1136. |
[44] | 王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义[J]. 大地构造与成矿学, 2013, 37(4): 685-697. |
[45] | 奥琮, 孙丰月, 李碧乐, 等. 青海夏日哈木矿区中泥盆世闪长玢岩锆石U-Pb年代学、地球化学及其地质意义[J]. 西北地质, 2014, 47(1): 96-106. |
[46] |
王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义[J]. 地学前缘, 2014, 21(6): 381-401.
DOI |
[47] | 王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木矿区新元古代早期二长花岗岩锆石U-Pb年代学、地球化学及其构造意义[J]. 大地构造与成矿学, 2016, 40(6): 1247-1260. |
[48] | 郭峰, 王盘喜, 卞孝东, 等. 东昆仑夏日哈木地区二长花岗岩年代学、地球化学特征及地质意义[J]. 中国地质调查, 2020, 7(6): 51-60. |
[49] | 路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464. |
[50] |
BRANDELIK A. CALCMIN - an EXCELTM Visual Basic application for calculating mineral structural formulae from electron microprobe analyses[J]. Computers & Geosciences, 2009, 35(7): 1540-1551.
DOI URL |
[51] |
GÜNTHER D, HEINRICH C A. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1363-1368.
DOI URL |
[52] |
LUO T, HU Z C, ZHANG W, et al. Reassessment of the influence of carrier gases He and Ar on signal intensities in193 nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655-1663.
DOI URL |
[53] |
HU Z C, ZHANG W, LIU Y S, et al. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis[J]. Analytical Chemistry, 2015, 87(2): 1152-1157.
DOI URL |
[54] |
LUO T, HU Z C, ZHANG W, et al. Watervapor-assisted “universal” nonmatrix-matched analytical method for the in situ U-Pb dating of zircon, monazite, titanite, and xenotime by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2018, 90(15): 9016-9024.
DOI URL |
[55] | WIEDENBECK M, ALLÉ P, CORFU F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and ree analyses[J]. Geostandards and Geoanalytical Research, 1995, 19(1): 1-23. |
[56] |
SPANDLER C, HAMMERLI J, SHA P, et al. MKED1: a new titanite standard for in situ analysis of Sm-Nd isotopes and U-Pb geochronology[J]. Chemical Geology, 2016, 425: 110-126.
DOI URL |
[57] |
LIU Y S, GAO S, HU Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2009, 51(1/2): 537-571.
DOI URL |
[58] |
LIU Y S, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
DOI URL |
[59] | LUDWIG K R. Isoplot 3.00: a geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4: 70. |
[60] |
SCHOENE B, BOWRING S A. U-Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the40Ar/39Ar standard MMhb[J]. Contributions to Mineralogy and Petrology, 2006, 151(5): 615-630.
DOI URL |
[61] |
BARFOD G H, KROGSTAD E J, FREI R, et al. Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: a first look at Lu-Hf isotopic closure in metamorphic apatite[J]. Geochimica et Cosmochimica Acta, 2005, 69(7): 1847-1859.
DOI URL |
[62] |
CHEW D M, SYLVESTER P J, TUBRETT M N. U-Pb and Th-Pb dating of apatite by LA-ICPMS[J]. Chemical Geology, 2011, 280(1/2): 200-216.
DOI URL |
[63] |
MCDOWELL F W, MCINTOSH W C, FARLEY K A. A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard[J]. Chemical Geology, 2005, 214(3/4): 249-263.
DOI URL |
[64] | THOMSON S N, GEHRELS G E, RUIZ J, et al. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2): doi:10.1029/2011GC003928. |
[65] |
COCHRANE R, SPIKINGS R A, CHEW D, et al. High temperature (>350 ℃) thermochronology and mechanisms of Pb loss in apatite[J]. Geochimica et Cosmochimica Acta, 2014, 127: 39-56.
DOI URL |
[66] |
MEFFRE S, LARGE R R, SCOTT R, et al. Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia[J]. Geochimica et Cosmochimica Acta, 2008, 72(9): 2377-2391.
DOI URL |
[67] | MEINERT L D, DIPPLE G M, NICOLESCU S. World skarn deposits[J]. Economic. Geology, 100th Anniversary Volume, 2005: 299-336. |
[68] |
ARMBRUSTER T, BONAZZI P, AKASAKA M, et al. Recommended nomenclature of epidote-group minerals[J]. European Journal of Mineralogy, 2006, 18(5): 551-567.
DOI URL |
[69] | Higgins J B, Ribbe P H. The structure of malayaite, CaSnOSiO4, a tin analog of titanite[J]. American Mineralogist, 1977, 62(7/8): 801-806. |
[70] | 朱乔乔, 谢桂青, 蒋宗胜, 等. 湖北金山店大型矽卡岩型铁矿热液榍石特征和原位微区LA-ICPMS U-Pb定年[J]. 岩石学报, 2014, 30(5): 1322-1338. |
[71] | 吕沅峻, 彭建堂, 蔡亚飞. 湖南杏枫山钨矿床热液榍石的地球化学特征、U-Pb定年及其地质意义[J]. 岩石学报, 2021, 37(3): 830-846. |
[72] |
FU Y, SUN X M, ZHOU H Y, et al. In-situ LA-ICP-MS U-Pb geochronology and trace elements analysis of polygenetic titanite from the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China[J]. Ore Geology Reviews, 2016, 77: 43-56.
DOI URL |
[73] |
DENG X D, LI J W, ZHOU M F, et al. In-situ LA-ICPMS trace elements and U-Pb analysis of titanite from the Mesozoic Ruanjiawan W-Cu-Mo skarn deposit, Daye district, China[J]. Ore Geology Reviews, 2015, 65: 990-1004.
DOI URL |
[74] |
LI J W, DENG X D, ZHOU M F, et al. Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore deposits: a case study of the Tonglushan Cu-Fe-Au skarn deposit, SE Hubei Province, China[J]. Chemical Geology, 2010, 270(1/2/3/4): 56-67.
DOI URL |
[75] |
ALEINIKOFF J N, WINTSCH R P, FANNING C M, et al. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: an integrated SEM, EMPA, TIMS, and SHRIMP study[J]. Chemical Geology, 2002, 188(1/2): 125-147.
DOI URL |
[76] |
FU Y, SUN X M, HOLLINGS P, et al. Geochronology and trace element geochemistry of titanite in the Machangqing Cu-Mo-dominated polymetallic deposit, Yunnan Province, southwest China[J]. Journal of Asian Earth Sciences, 2018, 158: 398-414.
DOI URL |
[77] |
HAYDEN L A, WATSON E B, WARK D A. A thermobarometer for sphene (titanite)[J]. Contributions to Mineralogy and Petrology, 2008, 155(4): 529-540.
DOI URL |
[78] |
CHE X D, LINNEN R L, WANG R C, et al. Distribution of trace and rare earth elements in titanite from tungsten and molybdenum deposits in Yukon and British Columbia, Canada[J]. The Canadian Mineralogist, 2013, 51(3): 415-438.
DOI URL |
[79] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
DOI URL |
[80] |
TERA F, WASSERBURG G J. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks[J]. Earth and Planetary Science Letters, 1972, 14(3): 281-304.
DOI URL |
[81] |
PACEY A, WILKINSON J J, COOKE D R. Chlorite and epidote mineral chemistry in porphyry ore systems: a case study of the north parkes district, new South Wales, Australia[J]. Economic Geology, 2020, 115(4): 701-727.
DOI URL |
[82] | 赵一鸣. 夕卡岩矿床研究的某些重要新进展[J]. 矿床地质, 2002, 21(2): 113-120, 136. |
[83] |
VEZZONI S, DINI A, ROCCHI S. Reverse telescoping in a distal skarn system (Campiglia Marittima, Italy)[J]. Ore Geology Reviews, 2016, 77: 176-193.
DOI URL |
[84] | CHANG Z S, SHU Q H, MEINERT L. Skarn deposits of China[J]. 2019, 189-234. |
[85] |
COOK N J, CIOBANU C L. Paragenesis of Cu-Fe ores from Ocna de Fier-Dognecea (Romania), typifying fluid plume mineralization in a proximal skarn setting[J]. Mineralogical Magazine, 2001, 65(3): 351-372.
DOI URL |
[86] |
LI J, XU L L, BI X W, et al. New titanite U-Pb and molybdenite Re-Os ages for a hydrothermal vein-type Cu deposit in the Lanping Basin, Yunnan, SW China: constraints on regional metallogeny and implications for exploration[J]. Mineralium Deposita, 2021, 56(3): 441-456.
DOI URL |
[87] |
LI Q L, LI X H, WU F Y, et al. In-situ SIMS U-Pb dating of Phanerozoic apatite with low U and high common Pb[J]. Gondwana Research, 2012, 21(4): 745-756.
DOI URL |
[88] |
ZHANG W, JIANG S Y, OUYANG Y P, et al. Geochronology and textural and compositional complexity of apatite from the mineralization-related granites in the world-class Zhuxi W-Cu skarn deposit: a record of magma evolution and W enrichment in the magmatic system[J]. Ore Geology Reviews, 2021, 128: 103885.
DOI URL |
[89] | 周红英, 耿建珍, 崔玉荣, 等. 磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年[J]. 地球学报, 2012, 33(6): 857-864. |
[90] | 刘敏, 宋世伟, 崔玉荣, 等. 赣东北朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石原位U-Pb年代学及微量元素研究[J]. 岩石学报, 2021, 37(3): 717-732. |
[91] |
LI H R, QIAN Y, SUN F Y, et al. Zircon U-Pb dating and sulfide Re-Os isotopes of the Xiarihamu Cu-Ni sulfide deposit in Qinghai Province, northwestern China[J]. Canadian Journal of Earth Sciences, 2020, 57(8): 885-902.
DOI URL |
[92] | 凌锦兰. 柴周缘镁铁质—超镁铁质岩体与镍矿床成因研究[D]. 西安: 长安大学, 2014. |
[93] | 杜玮, 姜常义, 凌锦兰, 等. 东昆仑夏日哈木铜镍矿床Ⅱ号岩体年代学、地球化学及其意义[J]. 矿床地质, 2017, 36(5): 1185-1196. |
[94] | 王冠, 孙丰月, 李碧乐, 等. 夏日哈木矿区早泥盆世镁铁质岩墙群的年代学特征及地质意义[J]. 黑龙江科技大学学报, 2019, 29(1): 35-40. |
[95] |
SONG X Y, DANYUSHEVSKY L V, KEAYS R R, et al. Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni-Cu sulfide deposit, NW China[J]. Mineralium Deposita, 2012, 47(3): 277-297.
DOI URL |
[96] | 靳树芳. 甘肃金川铜镍硫化物矿床磁黄铁矿与磁铁矿地球化学特征及成因研究[D]. 西安: 长安大学, 2018. |
[97] |
MARFIN A E, IVANOV A V, ABRAMOVA V D, et al. A trace element classification tree for chalcopyrite from oktyabrsk deposit, norilsk-talnakh ore district, Russia: LA-ICPMS study[J]. Minerals, 2020, 10(8): 716.
DOI URL |
[98] |
ORTEGA L, LUNAR R, GARCIA-PALOMERO F, et al. The aguablanca Ni Cu PGE deposit, southwestern Iberia: magmatic ore-forming processes and retrograde evolution[J]. The Canadian Mineralogist, 2004, 42(2): 325-350.
DOI URL |
[99] |
MENG F C, ZHANG J X, CUI M H. Discovery of Early Paleozoic eclogite from the East Kunlun, western China and its tectonic significance[J]. Gondwana Research, 2013, 23(2): 825-836.
DOI URL |
[100] | 贾丽辉, 孟繁聪, 冯惠彬. 榴辉岩相峰期流体活动: 来自东昆仑榴辉岩石英脉的证据[J]. 岩石学报, 2014, 30(8): 2339-2350. |
[101] | 祁生胜, 宋述光, 史连昌, 等. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 2014, 30(11): 3345-3356. |
[102] | 张照伟, 钱兵, 李文渊, 等. 东昆仑夏日哈木铜镍矿区发现早古生代榴辉岩: 锆石U-Pb定年证据[J]. 中国地质, 2017, 44(4): 816-817. |
[103] |
李文渊, 王亚磊, 钱兵, 等. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨[J]. 地学前缘, 2020, 27(2): 276-293.
DOI |
[104] |
WANG H, FENG C Y, LI D X, et al. Geology, geochronology and geochemistry of the Saishitang Cu deposit, East Kunlun Mountains, NW China: constraints on ore genesis and tectonic setting[J]. Ore Geology Reviews, 2016, 72: 43-59.
DOI URL |
[105] | 毛景文, 周振华, 丰成友, 等. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 2012, 39(6): 1437-1471. |
[1] | 陈可, 邵拥军, 刘忠法, 张俊柯, 李永顺, 陈雨莹. 岩浆因素对中国东部铜陵矿集区差异性矿化的控制作用:来自角闪石、斜长石矿物学证据[J]. 地学前缘, 2024, 31(3): 199-217. |
[2] | 仝霄飞, 徐啸, 郭晓玉, 李春森, 向波, 余嘉豪, 罗旭聪, 袁梓昭, 林燕琪, 时宏城. 接收函数成像揭示东昆仑断裂带及其周缘地壳结构[J]. 地学前缘, 2023, 30(4): 270-282. |
[3] | 刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3): 399-424. |
[4] | 范朝熙, 许成, 崔莹, 韦春婉, 匡光喜, 石爱国, 李卓骐. 碳酸岩岩浆与地壳反应综述[J]. 地学前缘, 2022, 29(4): 330-344. |
[5] | 孔志岗, 张斌臣, 吴越, 张长青, 刘益, 张锋, 李杨林. 四川大梁子富锗铅锌矿床的控矿构造样式及成矿机制研究[J]. 地学前缘, 2022, 29(1): 143-159. |
[6] | 徐林刚, 付雪瑞, 叶会寿, 郑伟, 陈勃, 方正龙. 南秦岭地区下寒武统黑色页岩赋存的千家坪大型钒矿地球化学特征及成矿环境[J]. 地学前缘, 2022, 29(1): 160-175. |
[7] | 王武名, 盛涛, 王丽娟, 董少波. 刚果(金)加丹加鲁苏西铜钴矿床S、C、O、Sr同位素特征及矿床成因[J]. 地学前缘, 2021, 28(6): 318-330. |
[8] | 洪双, 左仁广, 胡浩, 熊义辉, 王子烨. 磁铁矿元素地球化学大数据构建及其在矿床成因分类中的应用[J]. 地学前缘, 2021, 28(3): 87-96. |
[9] | 谢桂青, 毛景文, 张长青, 李伟, 宋世伟, 章荣清. 华南地区三叠纪矿床地质特征、成矿规律和矿床模型[J]. 地学前缘, 2021, 28(3): 252-270. |
[10] | 王秉璋, 潘彤, 任海东, 王涛, 赵志逸, 封建平, 张金明. 东昆仑祁漫塔格寒武纪岛弧:来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学、地球化学和Hf同位素证据[J]. 地学前缘, 2021, 28(1): 318-333. |
[11] | 陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘成军, 陈有炘, 王盟, 高峰, 魏均启. 东昆仑造山带东段晚古生代—早中生代构造岩浆演化与成矿作用[J]. 地学前缘, 2020, 27(4): 33-48. |
[12] | 欧阳永棚, 周显荣, 尧在雨, 饶建锋, 宋世伟, 魏锦, 卢弋. 赣东北朱溪钨(铜)矿床两期石榴石研究及其对成矿作用的指示[J]. 地学前缘, 2020, 27(4): 219-231. |
[13] | 刘家军, 翟德高, 王大钊, 高燊, 尹超, 柳振江, 王建平, 王银宏, 张方方. Au-(Ag)-Te-Se成矿系统与成矿作用[J]. 地学前缘, 2020, 27(2): 79-98. |
[14] | 邓军, 王庆飞, 陈福川, 李龚健, 杨立强, 王长明, 张静, 孙祥, 舒启海, 和文言, 高雪, 高亮, 刘学飞, 郑远川, 邱昆峰, 薛胜超, 徐佳豪. 再论三江特提斯复合成矿系统[J]. 地学前缘, 2020, 27(2): 106-136. |
[15] | 杜杨松, 曹毅, 秦新龙, 庞振山, 杜轶伦, 王功文. 皖赣沿江地区中生代壳幔相互作用与多成因夕卡岩成矿过程研究综述[J]. 地学前缘, 2020, 27(2): 165-181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||