地学前缘 ›› 2020, Vol. 27 ›› Issue (2): 79-98.DOI: 10.13745/j.esf.sf.2020.3.13
刘家军1,2(), 翟德高1,2, 王大钊3, 高燊4, 尹超1,2, 柳振江1,2, 王建平1,2, 王银宏1,2, 张方方1,2
收稿日期:
2020-01-18
修回日期:
2020-02-25
出版日期:
2020-03-25
发布日期:
2020-03-25
作者简介:
刘家军(1963—),男,教授,博士生导师,主要从事矿床学研究。E-mail: liujiajun@cugb.edu.cn
基金资助:
LIU Jiajun1,2(), ZHAI Degao1,2, WANG Dazhao3, GAO Shen4, YIN Chao1,2, LIU Zhenjiang1,2, WANG Jianping1,2, WANG Yinhong1,2, ZHANG Fangfang1,2
Received:
2020-01-18
Revised:
2020-02-25
Online:
2020-03-25
Published:
2020-03-25
摘要:
根据金矿床中碲、硒赋存特点与富集程度,可将Au-(Ag)-Te-Se成矿系统的矿床成因类型划分为:(1) 浅成低温热液型金-银矿床;(2) 造山型金矿床;(3) 卡林-类卡林型金矿床;(4) 碱性-偏碱性侵入岩型金矿床;(5)斑岩型(铜)金矿床;(6) 夕卡岩型(铜)金矿床;(7) VMS型金多金属矿床。碲、硒都是亲地幔的元素,侵入岩与火山岩是Au-(Ag)-Te-Se成矿系统中碲、硒的重要来源,黑色岩系也是硒的重要来源。温度、pH、氧逸度等是控制Te、Se的迁移与富集的重要因素。Au-(Ag)-Te-Se成矿系统的成矿机制与岩浆脱气、流体-熔体分离、水-岩反应、流体沸腾与混合、有机作用密切相关。其中岩浆脱气、流体-熔体分离、流体沸腾与流体混合是碲化物型金矿床的重要成矿机制,而水-岩反应、流体混合、有机作用是硒化物型金矿床的重要成矿机制。在成矿过程中,先期形成一些亚稳定或不稳定的过渡态矿物易发生固溶体分离作用,或是不饱和流体与已形成的矿物发生溶解-再沉淀作用,导致矿石具有丰富的物质组成和结构特点。
中图分类号:
刘家军, 翟德高, 王大钊, 高燊, 尹超, 柳振江, 王建平, 王银宏, 张方方. Au-(Ag)-Te-Se成矿系统与成矿作用[J]. 地学前缘, 2020, 27(2): 79-98.
LIU Jiajun, ZHAI Degao, WANG Dazhao, GAO Shen, YIN Chao, LIU Zhenjiang, WANG Jianping, WANG Yinhong, ZHANG Fangfang. Classification and mineralization of the Au-(Ag)-Te-Se deposits[J]. Earth Science Frontiers, 2020, 27(2): 79-98.
图1 三道湾子Au-Ag-Te矿床中的碲化物矿物组合 反射光照片。A—碲金矿与自然金的固溶体圆球粒包裹于碲金银矿和碲银矿中,圆球粒边缘分布有碲金矿;B—石英中的自然金与碲金银矿共生;C—碲金银矿、碲银矿与碲铅矿共生,碲金矿-自然金与碲金银矿-碲银矿共生;D—针碲金银矿与碲金银矿共生,并与黄铜矿和闪锌矿共生;E—针碲金银矿与碲金矿共生,被碲金银矿和碲银矿细脉交代;F—碲银矿与碲金银矿、斜方碲金矿、针碲金银矿共生;G—碲铅矿与针碲金银矿、斜方碲金矿共生,并与碲金银矿-碲银矿交生体接触;H—晚期形成的自然金交代碲金银矿、碲银矿和碲铅矿。Cav—碲金矿;Hes—碲银矿;Kre—斜方碲金矿;Ptz—碲金银矿;Syl—针碲金银矿;Alt—碲铅矿;Au—自然金;Cp—黄铜矿;Sp—闪锌矿;Qtz-石英。
Fig.1 Photomicrograph of telluride mineral assemblages at the Sandaowanzi Au-Ag-Te deposit
图2 拉尔玛—邛莫Au-Se矿床中的硒化物矿物组合 反射光照片。A—硒汞矿与自然金、重晶石共生;B—自然金与硒汞矿、辉锑矿、重晶石共生;C—硒汞矿与重晶石共生;D—硒锑矿与辉锑矿、重晶石、Ni-As-Se-S矿物共生;E—硒铅矿与铜蓝、重晶石共生;F—硒汞矿与硒锑矿、辉锑矿、块硫锑铜矿、重晶石共生;G—含Se块硫锑铜矿与含Se铜蓝、重晶石共生;H—斜方硒镍矿与赤铁矿、重晶石共生(BSE图像);I—富含Se的 辉锑矿(BSE图像)。Tie—硒汞矿;Ans—硒锑矿;Kul—斜方硒镍矿;Cla—硒铅矿;Nse—Ni-As-S-Se矿物;Au—自然金;Stb—含Se辉锑矿;Cv—含Se铜蓝;Fam—含Se块硫锑铜矿;Au—自然金;Brt—重晶石;Qtz-石英;Hem—赤铁矿。
Fig.2 Photomicrograph of sellenide mineral assemblages at the La’erma and Qiongmo Au-Se deposits
图3 东坪Au-Te矿床碲化物矿物组合 反射光照片。A—碲金矿+碲金银矿+自然金矿物组合产在黄铁矿中;B—碲金矿+碲金银矿+自然金+黄铜矿矿物组合产在黄铁矿中;C—自然金+碲铅矿产在黄铁矿中;D—自然金+碲金银矿+碲金矿+杂碲金银矿矿物组合产在黄铁矿中;E—自然金+方铅矿+碲铋矿+辉碲铋矿矿物组合;F—碲铅矿+铅碲铋矿+碲银矿+碲铋银矿矿物组合产在黄铁矿中;G—碲铋矿+针碲金银矿产在黄铁矿中;H—TeO2填充方铅矿和黄铜矿裂缝中。Au—自然金;Alt—碲铅矿;Cav—碲金矿;Hes—碲银矿;Ptz—碲金银矿;Syl—针碲金银矿;Mut—杂碲金银矿;Voy—碲铋银矿;Ted—辉碲铋矿;Tel—碲铋矿;Rkl—铅碲铋矿;TeO2—碲氧化物;Py—黄铁矿;Cp—黄铜矿;Gn—方铅矿;Qtz—石英。
Fig.3 Photomicrograph of telluride mineral assemblages at the Dongping Au-Te deposit
图4 大湖Au-Mo-Te矿床碲化物矿物组合 反射光照片。A—方铅矿中碲铅矿、碲金矿、碲金银矿与自然金和黄铜矿共生;B—方铅矿中自然金与碲铅矿紧密共生;C—方铅矿中六方碲银矿与碲铅矿和黄铜矿紧密共生;D—黄铁矿中的碲铋矿;E—黄铁矿中硫铜铅铋矿与辉碲铋矿共生;F—硫铜铅铋矿、针硫铋铅矿和辉碲铋矿充填在黄铁矿中;G—铋铜铅矿交代黄铁矿;H—萨硫碲铋铅矿与黄铜矿共生于黄铁矿孔隙中。Ttr—辉碲铋矿;Tlb—碲铋矿;Alt—碲铅矿;Cav—碲金矿;Ptz—碲金银矿;Stz—六方碲银矿;Sbk—萨硫碲铋铅矿;Py—黄铁矿;Cp—黄铜矿;Gn—方铅矿;Sp—闪锌矿;Krp—铋铜铅矿;Akn—针硫铋铅矿;Ham—硫铜铅铋矿;Au—自然金;Qtz—石英。
Fig.4 Photomicrograph of telluride mineral assemblages at the Dahu Au-Mo-Te deposit
图5 碲化物的固溶体出溶结构 A—碲金银矿-碲银矿-针碲金银矿固溶体分离(反射光,东坪);B—碲金银矿-碲金矿固溶体分离(BSE图像,三道湾子);C—碲金银矿-碲银矿固溶体出溶结构(BSE图像,三道湾子);D—碲金银矿-碲银矿、针碲金银矿-斜方碲金矿固溶体分离(BSE图像,三道湾子)。Cav—碲金矿;Hes—碲银矿;Kre—斜方碲金矿;Ptz—碲金银矿;Syl—针碲金银矿;Alt—碲铅矿;Qtz—石英。
Fig.5 The exsolution texture of telluride solid solution
图6 东坪Au-Te矿床中微孔隙金显微照片和二次电子图像 A,C,E—原生矿石中微孔隙金;B,D,F—对应于左图中微孔隙金颗粒的二次电子图像。MA—微孔隙金;Cav—碲金矿; Ptz—碲金银矿;Py—黄铁矿;Qtz—石英;Brt—重晶石;Lim—褐铁矿。
Fig.6 Photomicrograph and secondary electron images of microporous gold at the Dongping Au-Te deposit
[1] | 涂光炽. 初论碲的成矿问题[J]. 矿物岩石地球化学通报, 2000, 19(4): 211-214. |
[2] | COOKE D R, MCPHAIL D C. Epithermal Au-Ag-Te mineralization, Acupan, Baguio district, the Philippiness: numerical simulations of mineral deposition[J]. Economic Geology, 2001, 96(1): 109-131. |
[3] | COOK N J, CIOBANU C L. Tellurides in Au deposits: implications for modelling[M]// MAO J W, BIERLEIN F P. Mineral deposit research: meeting the global challenge. Berlin, Heidelberg: Springer, 2005: 1387-1390. |
[4] |
CIOBANU C L, COOK N J, SPRY P G. Preface-special issue: telluride and selenide minerals in gold deposits-how and why?[J]. Mineralogy and Petrology, 2006, 87(3/4): 163-169.
DOI URL |
[5] | 翟裕生, 邓军, 彭润民, 等. 成矿系统论[M]. 北京: 地质出版社, 2011: 1-313. |
[6] |
KEITH M, SMITH D J, JENKIN G R T, et al. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: insights into ore-forming processes[J]. Ore Geology Reviews, 2018, 96: 269-282.
DOI URL |
[7] |
SIMON G, ESSENE E J. Phase relations among selenides, sulfides, tellurides, and oxides; I, thermodynamic properties and calculated equilibria[J]. Economic Geology, 1996, 91(7): 1183-1208.
DOI URL |
[8] |
SIMON G, KESLER S E, ESSENE E J. Phase relations among selenides, tellurides, and oxides: II.Applications to selenide-bearing ore deposits[J]. Economic Geology, 1997, 92(4): 468-484.
DOI URL |
[9] | 刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987:1-281. |
[10] | YAMAMOTO M, KASE K, TSUTSUMI M. Fractionation of sulfur isotopes and selenium between coexisting sulfide minerals from the Besshi deposit, Central Shikoku, Japan[J]. Mineralium Deposita, 1984, 19(3): 237-242. |
[11] |
HUSTON D L, SIE S H, SUTER G F, et al. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; part I, proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and part II, selenium levels in pyrite: comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic Geology, 1995, 90(5): 1167-1196.
DOI URL |
[12] |
CIOBANU C L, COOK N J, UTSUNOMIYA S, et al. Gold-telluride nanoparticles revealed in arsenic-free pyrite[J]. American Mineralogist, 2012, 97(8/9): 1515-1518.
DOI URL |
[13] | 钱汉东, 陈武, 谢家东, 等. 碲矿物综述[J]. 高校地质学报, 2000, 6(2): 178-187. |
[14] |
AHMAD M, SOLOMON M, WALSHE J L. Mineralogical and geochemical studies of the Emperor gold Telluride deposit, Fiji[J]. Economic Geology, 1987, 82(2): 345-370.
DOI URL |
[15] | SAUNDERS J A, MAY E R, BESSIE G. A high grade epithermal gold telluride deposit, La Plata Co., Colorado, U S A[M]// MACDONALD A J. Gold’86. An international symposium on the geology of gold deposits. Toronto: Konult International, 1986: 436-444. |
[16] |
LIU J L, ZHAO S J, COOK N J, et al. Bonanza-grade accumulations of gold tellurides in the Early Cretaceous Sandaowanzi deposit, Northeast China[J]. Ore Geology Reviews, 2013, 54: 110-126.
DOI URL |
[17] |
ZHAI D G, LIU J J. Gold-telluride-sulfide association in the Sandaowanzi epithermal Au-Ag-Te deposit, NE China: implications for phase equilibrium and physicochemical conditions[J]. Mineralogy and Petrology, 2014, 108(6): 853-871.
DOI URL |
[18] |
GAO S, XU H, ZANG Y Q, et al. Late Mesozoic magmatism and metallogeny in NE China: the Sandaowanzi-Beidagou example[J]. International Geology Review, 2017, 59(11): 1413-1438.
DOI URL |
[19] | 于学峰, 李大鹏, 李增胜, 等. 鲁西归来庄金矿田碲金元素地球化学过程研究[J]. 矿床地质, 2019, 38(2): 277-290 |
[20] |
DREW L J, BERGER B R, KURBANOV N K. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum Desert, Uzbekistan[J]. Ore Geology Reviews, 1996, 11(4): 175-196.
DOI URL |
[21] | IVANOV S M, ANSDELL K M, MELROSE D L. Ore texture and stable isotope constraints on ore deposition mechanisms at the Kumtor lode gold deposit [C]. Nevada: Society of Economic Geologists, 2000: 47-52. |
[22] |
DISTLER V V, YUDOVSKAYA M A, MITROFANOV G L, et al. Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia[J]. Ore Geology Reviews, 2004, 24(1/2): 7-44.
DOI URL |
[23] |
MUELLER A G, MUHLING J R. Silver-rich telluride mineralization at Mount Charlotte and Au-Ag zonation in the giant Golden Mile deposit, Kalgoorlie, Western Australia[J]. Mineralium Deposita, 2013, 48(3): 295-311.
DOI URL |
[24] |
ISPOLATOV V, LAFRANCE B, DUBÉ B, et al. Geologic and structural setting of gold mineralization in the Kirkland Lake-Larder Lake gold belt, Ontario[J]. Economic Geology, 2008, 103(6): 1309-1340.
DOI URL |
[25] |
BOWELL R J, FOSTER R P, STANLEY C J. Telluride mineralization at Ashanti gold mine, Ghana[J]. Mineralogical Magazine, 1990, 54(377): 617-627.
DOI URL |
[26] | 刘家军, 杨隆勃, 翟德高, 等. 捷克Jílové金矿集区中硒矿物的特征与硒化物-碲化物的形成物理化学条件[J]. 地学前缘, 2013, 20(1): 166-181. |
[27] |
JIAN W, LEHMANN B, MAO J, et al. Mineralogy, fluid characteristics, and Re-Os age of the late Triassic Dahu Au-Mo deposit, Xiaoqinling region, central China: evidence for a magmatic-hydrothermal origin[J]. Economic Geology, 2015, 110(1): 119-145.
DOI URL |
[28] |
YIN C, LIU J J, CARRANZA E J M, et al. Mineralogical constraints on the genesis of the Dahu quartz vein-style Au-Mo deposit, Xiaoqinling gold district, China: implications for phase relationships and physicochemical conditions[J]. Ore Geology Reviews, 2019, 113: 103107.
DOI URL |
[29] |
LI J W, LI Z K, ZHOU M F, et al. The early Cretaceous Yangzhaiyu lode gold deposit, North China Craton: a link between craton reactivation and gold veining[J]. Economic Geology, 2012, 107(1): 43-79.
DOI URL |
[30] |
JIAN W, LEHMANN B, MAO J W, et al. Telluride and Bi-sulfosalt mineralogy of the Yangzhaiyu gold deposit, Xiaoqinling region, Central China[J]. The Canadian Mineralogist, 2014, 52(5): 883-898.
DOI URL |
[31] |
EMSBO P, HOFSTRA A H, LAUHA E A, et al. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, Northern Carlin trend, Nevada[J]. Economic Geology, 2003, 98(6): 1069-1105.
DOI URL |
[32] |
ASADI H H, VONCKEN J H L, KÜHNEL R A, et al. Petrography, mineralogy and geochemistry of the Zarshuran Carlin-like gold deposit, Northwest Iran[J]. Mineralium Deposita, 2000, 35(7): 656-671.
DOI URL |
[33] |
LIU J J, DAI H Z, ZHAI D G, et al. Geological and geochemical characteristics and formation mechanisms of the Zhaishang Carlin-like type gold deposit, Western Qinling Mountains, China[J]. Ore Geology Reviews, 2015, 64: 273-298.
DOI URL |
[34] |
GAO S, XU H, ZHANG D S, et al. Ore petrography and chemistry of the tellurides from the Dongping gold deposit, Hebei Province, China[J]. Ore Geology Reviews, 2015, 64: 23-34.
DOI URL |
[35] |
WANG D Z, LIU J J, ZHAI D G, et al. Mineral paragenesis and ore-forming processes of the Dongping gold deposit, Hebei Province, China[J]. Resource Geology, 2019, 69(3): 287-313.
DOI URL |
[36] |
GREGORY M J, LANG J R, GILBERT S, et al. Geometallurgy of the Pebble porphyry copper-gold-molybdenum deposit, Alaska: implications for gold distribution and paragenesis[J]. Economic Geology, 2013, 108(3): 463-482.
DOI URL |
[37] |
PRENDERGAST K, CLARKE G W, PEARSON N J, et al. Genesis of pyrite-Au-As-Zn-Bi-Te zones associated with Cu-Au skarns: evidence from the Big Gossan and Wanagon gold deposits, Ertsberg district, Papua, Indonesia[J]. Economic Geology, 2005, 100(5): 1021-1050.
DOI URL |
[38] |
COCKERTON A B D, TOMKINS A G. Insights into the liquid bismuth collector model through analysis of the Bi-Au Stormont skarn prospect, Northwest Tasmania[J]. Economic Geology, 2012, 107(4): 667-682.
DOI URL |
[39] |
SOLOVIEV S G, KRYAZHEV S G, DVURECHENSKAYA S S, et al. Geology, mineralization, fluid inclusion, and stable isotope characteristics of the Sinyukhinskoe Cu-Au skarn deposit, Russian Altai, SW Siberia[J]. Ore Geology Reviews, 2019, 112: 103039.
DOI URL |
[40] |
ZHOU H Y, SUN X M, WU Z W, et al. Mineralogy of Bi-sulfosalts and tellurides from the Yaoan gold deposit, Southwest China: metallogenic implications[J]. Ore Geology Reviews, 2018, 98: 126-140.
DOI URL |
[41] |
ZHOU H Y, SUN X M, FU Y, et al. Mineralogy and mineral chemistry of Bi-minerals: constraints on ore genesis of the Beiya Giant Porphyry-skarn gold deposit, Southwestern China[J]. Ore Geology Reviews, 2016, 79: 408-424.
DOI URL |
[42] |
XIE G Q, MAO J W, RICHARDS J P, et al. Distal Au deposits associated with Cu-Au skarn mineralization in the Fengshan Area, Eastern China[J]. Economic Geology, 2019, 114(1): 127-142.
DOI URL |
[43] | 韩颖霄, 谢桂青. 鄂东南鸡笼山夕卡岩型金铜矿床金、银、碲、铋的赋存状态及其对成矿条件的制约[J]. 岩石矿物学杂志, 2016, 35(4): 655-676. |
[44] | 张伟, 王宏强, 邓晓东, 等. 鄂东南地区鸡冠嘴铜金矿床Au-Ag-Bi-Te-Se矿物学研究与金银富集机理[J]. 岩石学报, 2016, 32(2): 456-470. |
[45] |
VIKENTYEV I V, BELOGUB E V, NOVOSELOV K A, et al. Metamorphism of volcanogenic massive sulphide deposits in the Urals[J]. Ore Geology Reviews, 2017, 85: 30-63.
DOI URL |
[46] |
HASSAN L Y, ROBERTS M P. Tellurides associated with volcanogenic massive sulfide (VMS) mineralization at Yuinmery and Austin, Western Australia[J]. Ore Geology Reviews, 2017, 80: 352-362.
DOI URL |
[47] |
TOURIGNY G, DOUCET D, BOURGET A. Geology of the Bousquet 2 Mine: an example of a deformed, gold-bearing, polymetallic sulfide deposit[J]. Economic Geology, 1993, 88(6): 1578-1597.
DOI URL |
[48] |
REVAN M K, GENÇ Y, MASLENNIKOV V V, et al. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey)[J]. Ore Geology Reviews, 2014, 63: 129-149.
DOI URL |
[49] | SHIKAZONO N, NAKATA M, SHIMIZU M. Geochemical, mineralogic and geologic characteristics of Se-and Te-bearing epithermal gold deposits in Japan[J]. Mining Geology, 1990, 40: 337-352. |
[50] |
SHIMIZU T, MATSUEDA H, ISHIYAMA D, et al. Genesis of epithermal Au-Ag mineralization of the Koryu Mine, Hokkaido, Japan[J]. Economic Geology, 1998, 93(3): 303-325.
DOI URL |
[51] |
LIU J J, ZHENG M H, LIU J M, et al. Geochemistry of the La'erma and Qiongmo Au-Se Deposits in the Western Qinling Mountains, China[J]. Ore Geology Reviews, 2000, 17(1/2): 91-111.
DOI URL |
[52] | AYUPOVA N R, MASLENNIKOV V V, MASLENNIKOVA S P, et al. Rare mineral and trace element assemblages in submarine supergene zone at the Devonian Molodezhnoye VMS deposit, the Urals, Russia [C]. Proceedings of the 13 SGA Biennial Meeting. Mineral resources in a sustainable world. Nancy, France: Universitéde Lorraine, 2015: 2051-2054. |
[53] | NEKRASOV I Y, LUNIN S E. Conditions for the formation of silver sulfides, selenides and sulfoselenides of the Ag-Sb-S-Se system (as to the experiment data)[J]. Mineralogical Magazine, 1987, 9: 25-28. |
[54] |
PLOTINSKAYA O Y, KOVALENKER V A, SELTMANN R, et al. Te and Se mineralogy of the high-sulfidation Kochbulak and Kairagach epithermal gold telluride deposits (Kurama Ridge, Middle Tien Shan, Uzbekistan)[J]. Mineralogy and Petrology, 2006, 87(3/4): 187-207.
DOI URL |
[55] |
VIKENTYEV I V. Precious metal and telluride mineralogy of large volcanic-hosted massive sulfide deposits in the Urals[J]. Mineralogy and Petrology, 2006, 87(3/4): 305-326.
DOI URL |
[56] |
MASLENNIKOV V V, MASLENNIKOVA S P, LARGE R R, et al. Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia[J]. Mineralogy and Petrology, 2013, 107(1): 67-99.
DOI URL |
[57] | JOHN D A, VIKRE P G, DU BRAY E A, et al. Descriptive models for epithermal gold-silver deposits: U.S. geological survey scientific investigations report[M]. Virginia: U.S. Geological Survey, 2018, 1-264. |
[58] | SCHULZ K J, DEYOUNG J H Jr, SEAL R R II, et al. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply [R]. Virginia: US Geological Survey, 2017:1-797. |
[59] |
CHOUINARD A, PAQUETTE J, WILLIAMS-JONES A E. Crystallographic Controls on Trace-element Incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile Argentina[J]. The Canadian Mineralogist, 2005, 43(3): 951-963.
DOI URL |
[60] | POPESCU G C, NEACSU A. Tellurium—Mineralogy, resources, energetic implications[C]// Gold-silver-telluride deposits of the golden quadrilateral, South Apuseni Mts., Romania: guidebook of the International Field Workshop of IGCP project 486. Alba Iulia: International Association on the Genesis of Ore Deposits (IAGOD), 2004, 12: 19-25. |
[61] | JACOBSON M I, KELLER J W, ATKINSON W W JR. The where of mineral names: Moctezumite, Moctezuma Mine (La Bambolla Mine), Moctezuma, Municipality of Moctezuma, State of Sonora, Mexico[J]. Rocks & Minerals, 2018, 93(5): 466-471. |
[62] | 薛良伟, 柴世刚, 朱嘉伟, 等. 小秦岭金矿伴生碲资源研究[J]. 矿产保护与利用, 2004(2): 42-45. |
[63] |
VOUDOURIS P, MELFOS V, MAVROGONATOS C, et al. Amethyst occurrences in Tertiary volcanic rocks of Greece: mineralogical, fluid inclusion and oxygen isotope constraints on their genesis[J]. Minerals, 2018, 8(8): 324.
DOI URL |
[64] |
GAO S, XU H, LI S R, et al. Hydrothermal alteration and ore-forming fluids associated with gold-tellurium mineralization in the Dongping gold deposit, China[J]. Ore Geology Reviews, 2017, 80: 166-184.
DOI URL |
[65] |
COOK N J, CIOBANU C L, MAO J W. Textural control on gold distribution in as-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China craton (Hebei Province, China)[J]. Chemical Geology, 2009, 264(1/2/3/4): 101-121.
DOI URL |
[66] |
MUNTEAN J L, CLINE J S, SIMON A C, et al. Magmatic-hydrothermal origin of Nevada’s Carlin-type gold deposits[J]. Nature Geoscience, 2011, 4(2): 122-127.
DOI URL |
[67] | LEVINE R M. The mineral industry of Uzbekistan[C]// Area reports: International-Europe and Central Eurasia: U.S. Geological Survey Minerals Yearbook 2009. Virginia: U.S. Geological Survey, 2011, III: 49.1-49.7. |
[68] | JOHN D A, TAYLOR R D. By-products of porphyry copper and molybdenum deposits[M]// VERPLANCK P L, HITZMAN M W. Rare earth and critical elements in ore deposits. New York: Society of Economic Geologists, 2016: 137-164. |
[69] |
MASLENNIKOV V V, MASLENNIKOVA S P, LARGE R R, et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers[J]. Ore Geology Reviews, 2017, 85: 64-106.
DOI URL |
[70] | SAFIROVA E. The mineral industry of Russia[C]// Area reports: International-Europe and Central Eurasia: U.S. Geological Survey Minerals Yearbook 2010. Virginia: U.S. Geological Survey, 2012, III: 38.1-38.1. |
[71] |
LAYTON-MATTHEWS D, LEYBOURNE M I, PETER J M, et al. Multiple sources of selenium in ancient seafloor hydrothermal systems: compositional and Se, S, and Pb isotopic evidence from volcanic-hosted and volcanic-sediment-hosted massive sulfide deposits of the Finlayson Lake District, Yukon, Canada[J]. Geochimica et Cosmochimica Acta, 2013, 117: 313-331.
DOI URL |
[72] |
ZHAI D G, WILLIAMS-JONES A E, LIU J J, et al. Mineralogical, fluid inclusion, and multiple isotope (H-O-S-Pb) constraints on the genesis of the Sandaowanzi epithermal Au-Ag-Te deposit, NE China[J]. Economic Geology, 2018, 113(6): 1359-1382.
DOI URL |
[73] |
LIU J J, LIU J M, ZHENG M H, et al. The Au-Se paragenesis in Cambrian stratabound gold deposits, western Qinling mountains, China[J]. International Geology Review, 2000, 42(11): 1037-1045.
DOI URL |
[74] | MAO J, LI Y, GOLDFARB R, et al. Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: a mantle connection for mineralization?[J]. Economic Geology, 2003, 98(3): 517-534. |
[75] |
WANG D Z, LIU J J, ZHAI D G, et al. New founding of molybdenite and Re-Os geochronological implication in the Dongping gold deposit, Hebei province, China[J]. Acta Geologica Sinica (English Edition), 2019, 93: 769-770.
DOI URL |
[76] | JENSEN E P, BARTON M D. Gold deposits related to alkaline magmatism[M]// HAGEMANN S G, BROWN P E. Gold in 2000. New York: Society of Economic Geologists, 2000: 279-314. |
[77] |
SCHIRMER T, KOSCHINSKY A, BAU M. The ratio of tellurium and selenium in geological material as a possible paleo-redox proxy[J]. Chemical Geology, 2014, 376: 44-51.
DOI URL |
[78] |
WEN H J, CARIGNAN J. Selenium isotopes trace the source and redox processes in the black shale-hosted se-rich deposits in China[J]. Geochimica et Cosmochimica Acta, 2011, 75(6): 1411-1427.
DOI URL |
[79] |
GRUNDLER P V, BRUGGER J, ETSCHMANN B E, et al. Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition[J]. Geochimica et Cosmochimica Acta, 2013, 120: 298-325.
DOI URL |
[80] |
SMITH D J, NADEN J, JENKIN G R T, et al. Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems[J]. Ore Geology Reviews, 2017, 89: 772-779.
DOI URL |
[81] | DYACCHKOVA I B, KHODAKOVSKIY I L. Thermodynamic equilibria in the systems S-H2O, Se-H2O, and Te-H2O in the 25-300 ℃ temperature range and their geochemical interpretations[J]. Geochemistry International, 1968, 5: 1108-1125. |
[82] | YAMAMOTO M. Relationship between Se/S and sulfur isotope ratios of hydrothermal sulfide minerals[J]. Mineralium Deposita, 1976, 11(2): 197-209. |
[83] |
LAROCQUE A C L, STIMAC J A, SIEBE C, et al. Deposition of a high-sulfidation Au assemblage from a magmatic volatile phase, Volcán Popocatépetl, Mexico[J]. Journal of Volcanology and Geothermal Research, 2008, 170(1/2): 51-60.
DOI URL |
[84] |
FULIGNATI P, SBRANA A. Presence of native gold and tellurium in the active high-sulfidation hydrothermal system of the La Fossa volcano (Vulcano, Italy)[J]. Journal of Volcanology and Geothermal Research, 1998, 86(1/2/3/4): 187-198.
DOI URL |
[85] |
FROST B R, MAVROGENES J A, TOMKINS A G. Partial melting of sulfide ore deposits during medium-and high-grade metamorphism[J]. The Canadian Mineralogist, 2002, 40(1): 1-18.
DOI URL |
[86] | MEINERT L D. Gold in skarns related to epizonal intrusions[M]// HAGEMANN S G, BROWN P E. Gold in 2000. New York: Society of Economic Geologists, 2000: 347-375. |
[87] | DOUGLAS N, MAVROGENES J, HACK A, et al. The liquid bismuth collector model: an alternative gold deposition mechanism[C]. Sydney: 15th Australlia Geological Convension, 2000, 59: 135. |
[88] |
OBERTHÜR T, WEISER T W. Gold-bismuth-telluride-sulphide assemblages at the Viceroy Mine, Harare-Bindura-Shamva greenstone belt, Zimbabwe[J]. Mineralogical Magazine, 2008, 72(4): 953-970.
DOI URL |
[89] |
TOMBROS S, SEYMOUR K S, WILLIAMS-JONES A E. Controls on tellurium in base, precious, and telluride minerals in the Panormos Bay Ag-Au-Te deposits, Tinos Island, Cyclades, Greece[J]. Economic Geology, 2010, 105(6): 1097-1111.
DOI URL |
[90] | SIMMONS S F, WHITE N C, JOHN D A. Geological characteristics of epithermal precious and base metal deposits[M]// HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. New York: Society of Economic Geologists, 2005:485-522. |
[91] | GOLDFARB R J, BAKER T, DUBÉ B, et al. Distribution, character, and genesis of gold deposits in metamorphic Terran[M]// HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. New York: Society of Economic Geologists, 2005: 407-450. |
[92] |
HOFSTRA A H, LEVENTHAL J S, NORTHROP H R, et al. Genesis of sediment-hosted disseminated-gold deposits by fluid mixing and sulfidization: chemical-reaction-path modeling of ore-depositional processes documented in the Jerritt Canyon district, Nevada[J]. Geology, 1991, 19(1): 36-40.
DOI URL |
[93] |
HAYNES D W, CROSS K C, BILLS R T, et al. Olympic Dam ore genesis: a fluid-mixing model[J]. Economic Geology, 1995, 90(2): 281-307.
DOI URL |
[94] | 胡凯. 金矿床中的有机质及其有机成矿作用[J]. 矿物岩石地球化学通报, 1998, 17(2): 4-9. |
[95] | 林丽. 拉尔玛金矿床中的生物作用[M]. 成都: 成都科技大学出版社, 1994. 1-78. |
[96] | 温汉捷, 裘愉卓. 拉尔玛硒-金矿床元素有机/无机结合态及硒的赋存状态研究[J]. 中国科学:D辑, 1999(5): 426-432. |
[97] |
CABRI L J. Phase relations in the Au-Ag-Te systems and their mineralogical significance[J]. Economic Geology, 1965, 60(8): 1569-1606.
DOI URL |
[98] |
ALTREE-WILLIAMS A, PRING A, NGOTHAI Y, et al. Textural and compositional complexities resulting from coupled dissolution-reprecipitation reactions in geomaterials[J]. Earth-Science Reviews, 2015, 150: 628-651.
DOI URL |
[99] |
PUTNIS A. Mineral replacement reactions[J]. Reviews in Mineralogy and Geochemistry, 2009, 70(1), 87-124.
DOI URL |
[100] |
ZHAO J, BRUGGER J, XIA F, et al. Dissolution-reprecipitation vs. solid-state diffusion: mechanism of mineral transformations in sylvanite, (AuAg)2Te4, under hydrothermal conditions[J]. American Mineralogist, 2013, 98(1): 19-32.
DOI URL |
[101] |
ZHAO J, BRUGGER J, GRUNDLER P V, et al. Mechanism and kinetics of a mineral transformation under hydrothermal conditions: calaverite to metallic gold[J]. American Mineralogist, 2009, 94(11/12): 1541-1555.
DOI URL |
[1] | 邱林飞, 李子颖, 张字龙, 王龙辉, 李振成, 韩美芝, 王婷婷. 鄂尔多斯盆地北部下白垩统赋矿砂岩中有机质特征及其与铀成矿的关系[J]. 地学前缘, 2024, 31(4): 281-296. |
[2] | 杨梦凡, 邱昆峰, 何登洋, 黄雅琪, 王玉玺, 付男, 于皓丞, 薛宪法. 西秦岭完肯金矿床载金硫化物矿物学和地球化学特征[J]. 地学前缘, 2023, 30(6): 371-390. |
[3] | 李建康, 李鹏, 黄志飚, 周芳春, 张立平, 黄小强. 湘北仁里伟晶岩型稀有金属矿田的地质特征及成矿机制概述[J]. 地学前缘, 2023, 30(5): 1-25. |
[4] | 董小宇, 孔若颜, 颜丹平, 邱亮, 邱骏挺. 辽东半岛青城子地区晚三叠世构造岩脉成因及其金成矿意义[J]. 地学前缘, 2023, 30(2): 215-238. |
[5] | 朱平平, 刘岳, 成秋明. 定量确定胶东毕郭地区勘查地球化学异常的分布方向及地质意义[J]. 地学前缘, 2023, 30(2): 440-446. |
[6] | 张洪瑞, 侯增谦. 碰撞带热结构与碰撞成矿系统[J]. 地学前缘, 2022, 29(2): 1-13. |
[7] | 刘宝山, 程招勋, 寇林林, 邓昌州, 杨晓平, 张春鹏, 李成禄, 韩仁萍. 黑龙江多宝山地区晚三叠世岩浆活动对蒙古—鄂霍茨克洋南向俯冲的响应[J]. 地学前缘, 2022, 29(2): 132-145. |
[8] | 邓淼, 韦春婉, 许成, 石爱国, 李卓骐, 范朝熙, 匡光喜. 白云鄂博超大型稀土矿床成因评述[J]. 地学前缘, 2022, 29(1): 14-28. |
[9] | 郑有业, 王达, 易建洲, 余泽章, 蒋宗洋, 李晓霞, 史功文, 许剑, 梁遇春, 豆孝芳, 任欢. 西藏北喜马拉雅成矿带锑金属成矿作用及找矿方向[J]. 地学前缘, 2022, 29(1): 200-230. |
[10] | 洪双, 左仁广, 胡浩, 熊义辉, 王子烨. 磁铁矿元素地球化学大数据构建及其在矿床成因分类中的应用[J]. 地学前缘, 2021, 28(3): 87-96. |
[11] | 谢桂青, 毛景文, 张长青, 李伟, 宋世伟, 章荣清. 华南地区三叠纪矿床地质特征、成矿规律和矿床模型[J]. 地学前缘, 2021, 28(3): 252-270. |
[12] | 郑有业, 次琼, 高顺宝, 吴松, 姜晓佳, 陈鑫. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向[J]. 地学前缘, 2021, 28(3): 379-402. |
[13] | 欧阳鑫, 章永梅, 顾雪祥, 刘丽, 王路智, 高丽晔. 内蒙古撰山子金矿床流体包裹体特征与矿床成因[J]. 地学前缘, 2021, 28(2): 320-332. |
[14] | 李成禄, 李胜荣, 袁茂文, 杜兵盈, 李文龙, Masroor ALAM, 刘东园, 刘浩. 黑龙江省嫩江—黑河构造混杂岩带科洛金矿床成因:来自黄铁矿化学成分及He-Ar、S、Pb同位素证据[J]. 地学前缘, 2020, 27(5): 99-115. |
[15] | Svetlana S. Timofeeva, Evgeniy V. Kislov, Lyudmila I. Khudyakova. 俄罗斯贝加尔湖北部 Yoko-Dovyren 层状纯橄岩-橄长岩-辉长岩地块: 结构、成分以及作为矿物原材料的用途[J]. 地学前缘, 2020, 27(5): 262-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||