地学前缘 ›› 2022, Vol. 29 ›› Issue (1): 200-230.DOI: 10.13745/j.esf.sf.2021.8.5
郑有业1,2(), 王达1, 易建洲3, 余泽章4, 蒋宗洋3, 李晓霞5, 史功文5, 许剑5, 梁遇春5, 豆孝芳1, 任欢1
收稿日期:
2020-08-17
修回日期:
2021-06-28
出版日期:
2022-01-25
发布日期:
2022-02-22
作者简介:
郑有业(1962—),男,博士,长江学者特聘教授,主要从事找矿理论、成矿规律及矿产勘查评价工作。E-mail: Zhyouye@163.com
基金资助:
ZHENG Youye1,2(), WANG Da1, YI Jianzhou3, YU Zezhang4, JIANG Zongyang3, LI Xiaoxia5, SHI Gongwen5, XU Jian5, LIANG Yuchun5, DOU Xiaofang1, REN Huan1
Received:
2020-08-17
Revised:
2021-06-28
Online:
2022-01-25
Published:
2022-02-22
摘要:
北喜马拉雅成矿带是全球巨型成矿带——特提斯—喜马拉雅成矿域的重要组成部分,发育一系列锑、锑金、锑多金属、金、铅锌银、钨锡(铍)、汞、铯为主的矿床或矿(化)点,是全球地质学家关注的热点区域。北喜马拉雅成矿带锑成矿作用时间集中在24~16 Ma之间,与后碰撞造山成矿事件(N1: 25~9 Ma)时间一致,锑来源于深部岩浆减压分熔形成的富含挥发分的次火山岩浆活动,形成喷流沉积-改造型、岩浆热液型、热泉型矿床系列。因此,矿区内的幔源基性-中性脉岩是锑成矿的重要控制因素,也是找矿的重要标志。Sb元素异常主要围绕羊卓雍错裂谷盆地边缘分布,部分与Au元素异常重合。Sb异常主要与低温热液矿床相关,可单独成矿,亦可与Au共生。当Sb异常与Pb-Zn-Ag异常组合在一起时,多为后期叠加改造成矿,并伴生Ga、Se、In等。锑或锑多金属矿体走向多为近SN向,形成串珠状的地球化学异常组合及矿化组合,主要受走滑正断系统及其次级构造控制,并且在矿带的东部,矿化由北向南具有Sb矿→Au-Sb矿→Au矿→Sb-Pb-Zn-Ag矿→W-Sn矿的规律性分布,揭示成矿中心应在扎西康矿床的深部或南部。锑金矿体走向多为近EW向,主要受拆离构造及其次级构造控制。北喜马拉雅被动大陆边缘中生代裂谷(陷)盆地周围盆山转换部位,特别是同沉积断裂带与新生代SN向堑式构造的交汇部位,是寻找锑、锑金、锑多金属矿床的最有利地区,已发现特提斯—喜马拉雅成矿域中规模第一的扎西康锑多金属矿床等一系列大-超大型矿床,显示巨大的找矿前景。综上所述,北喜马拉雅成矿带将会成为我国最重要的锑资源勘查开发后备基地之一。
中图分类号:
郑有业, 王达, 易建洲, 余泽章, 蒋宗洋, 李晓霞, 史功文, 许剑, 梁遇春, 豆孝芳, 任欢. 西藏北喜马拉雅成矿带锑金属成矿作用及找矿方向[J]. 地学前缘, 2022, 29(1): 200-230.
ZHENG Youye, WANG Da, YI Jianzhou, YU Zezhang, JIANG Zongyang, LI Xiaoxia, SHI Gongwen, XU Jian, LIANG Yuchun, DOU Xiaofang, REN Huan. Antimony mineralization and prospecting orientation in the North Himalayan Metallogenic Belt, Tibet[J]. Earth Science Frontiers, 2022, 29(1): 200-230.
图2 区域地质矿产图 (a据文献[32]修改;b据文献[31]修改) a—喜马拉雅地体构造格架简图;b—北喜马拉雅成矿带区域地质图。
Fig.2 (a) Simplified structural map of the Himalayan region (modified after [32]) and (b) geological map of the NHMB (modified after [31])
图3 扎西康锑多金属矿床地质图(a)及勘探线剖面图(b) (据文献[31,32]修改)
Fig.3 (a) Geological map of the Zhaxikang polymetallic Sb deposit (modified from [32]) and (b) cross-section along the exploration line 7 (modified from [31])
图4 扎西康锑多金属矿床手标本照片 Mcar1—第①阶段锰铁碳酸盐;Apy1—第①阶段毒砂;Py1—第①阶段黄铁矿;Sp1—第①阶段闪锌矿;Mcar2—第②阶段锰铁碳酸盐;Apy2—第②阶段毒砂;Py2—第②阶段黄铁矿;Sp2—第②阶段闪锌矿;Gn2—第②阶段闪锌矿;Py3—第③阶段黄铁矿;Sp3—第③阶段闪锌矿;Gn3—第③阶段方铅矿;Qtz3—第③阶段石英;Cal3—第③阶段方解石;Blr4—第④阶段硫锑铅矿;Jam4—第④阶段硫锑铅矿;Qtz4—第④阶段石英;Stb5—第⑤阶段辉锑矿;Ci5—第⑤阶段辰砂;Qtz5—第⑤阶段石英;Cal6—第⑥阶段方解石;Qtz6—第⑥阶段石英;Lm—褐铁矿。
Fig.4 Photos of hand specimen from the Zhaxikang polymetallic Sb deposit
图5 扎西康矿床元素图解 (据文献[78]修改) (a)—闪锌矿Fe-Cd图:I—岩浆热液矿床区,II—火山热液矿床区,III—沉积改造矿床区;(b)—闪锌矿Cd-In图:I—岩浆热液、火山型、斑岩型矿床区,II—沉积改造层控矿床区;(c)—方铅矿Pb-InAg图解:I—岩浆热液矿床区,II—火山热液矿床区,III—沉积改造矿床区;(d)—方铅矿Sb-Bi-Ag图解:I—岩浆热液(含夕卡岩)矿床区,II—火山岩(含火山喷气)矿床区,III—沉积热液改造型矿床区;(e)—闪锌矿Ga-In图解:I—岩浆热液矿床区,II—火山热液矿床区,III—沉积改造矿床区。
Fig.5 Multi-element variation in sulfides from the Zhaxikang deposit. Modified after [78].
图7 扎西康矿床碳酸盐矿物、围岩地层、辉绿岩δ13CPDB-δ18OSMOW图 (底图据文献[80]修改)
Fig.7 δ13CPDB-δ18 O SMO Wdiagram for carbonate minerals, wall-rocks and diabase from the Zhaxikang deposit. Modified after [80].
图8 扎西康矿床锰铁碳酸盐和石英δD-δ18 O H 2 O图 (底图据文献[81]修改)
Fig.8 δD-δ18 O H 2 Odiagram for Mn-Fe carbonate and quartz from the Zhaxikang deposit. Modified after [81].
图9 扎西康矿床与典型SEDEX矿床硫同位素对比图 (底图据文献[82]修改)
Fig.9 Comparison of S isotopic compositions between the Zhaxikang deposit and typical SEDEX deposits. Modified after [82].
图10 扎西康矿床Pb同位素构造环境判别图以及Pb同位素增长曲线 (底图据文献[83]修改)
Fig.10 Pb-isotope tectonic setting discrimination diagram and growth curve for the Zhaxikang deposit. Modified after [83].
图12 扎西康矿床锰铁碳酸盐和方解石样品Sr同位素 二元混合模式图 (底图据文献[85]修改)
Fig.12 Sr-isotope two-component mixing model for Mn-Fe carbonate and calcite from Zhaxikang deposit. Modified after [85].
图13 不同成矿系统Zn/Cd-δ114/110Cd图及与扎西康矿床对比 (底图据文献[86]修改)
Fig.13 Zn/Cd-δ114/110Cd diagram for sphalerite in different mineralization systems and from the Zhaxikang deposit (blue dot). Modified after [86].
图17 马扎拉锑金矿床主要载金矿物BSE图像 a,b—草莓状黄铁矿Py1与自形中粒黄铁矿Py2、毒砂Apy共生;c—自形中粒黄铁矿Py2与长条状毒砂Apy共生;d,e—自形中粒黄铁矿Py2早期的Py1形成环带黄铁矿;f—自形中粒的Py2向碎裂状Py3转化的中间状态;g—与毒砂Apy共生的碎裂状黄铁矿Py2;h,i—含辉锑矿Stb和纤硫锑铅矿Rbn的石英脉。
Fig.17 BES images of main Au-bearing minerals in the Mazhala Sb-Au deposit
矿物名称 | 沉积变质期 | 热液成矿期 | 表生期 | ||
---|---|---|---|---|---|
毒砂-黄铁矿-石英阶段 | 辉锑矿-石英阶段 | 石英-碳酸盐阶段 | |||
石英 | --------- | --------- | ===== | --------- | |
白云母/绢云母 | --------- | --------- | --------- | ||
伊利石 | --------- | --------- | --------- | ||
绿泥石 | --------- | --------- | --------- | ||
方解石 | --------- | ===== | |||
铁镁碳酸盐 | --------- | --------- | |||
草莓状黄铁矿 | --------- | ||||
热液黄铁矿 | ===== | --------- | --------- | ||
毒砂 | ===== | --------- | --------- | ||
辉锑矿 | ===== | ||||
自然金 | --------- | ===== | --------- | ||
褐铁矿 | ===== | ||||
锑华 | --------- |
表2 马扎拉锑金矿床矿物生成顺序表
Table 2 Paragenetic sequence in the Mazhala Sb-Au deposit
矿物名称 | 沉积变质期 | 热液成矿期 | 表生期 | ||
---|---|---|---|---|---|
毒砂-黄铁矿-石英阶段 | 辉锑矿-石英阶段 | 石英-碳酸盐阶段 | |||
石英 | --------- | --------- | ===== | --------- | |
白云母/绢云母 | --------- | --------- | --------- | ||
伊利石 | --------- | --------- | --------- | ||
绿泥石 | --------- | --------- | --------- | ||
方解石 | --------- | ===== | |||
铁镁碳酸盐 | --------- | --------- | |||
草莓状黄铁矿 | --------- | ||||
热液黄铁矿 | ===== | --------- | --------- | ||
毒砂 | ===== | --------- | --------- | ||
辉锑矿 | ===== | ||||
自然金 | --------- | ===== | --------- | ||
褐铁矿 | ===== | ||||
锑华 | --------- |
矿物名称 | 热液(泉)期 | 表生期 | ||
---|---|---|---|---|
石英-黄铁矿阶段 | 辉锑矿-石英阶段 | 辉锑矿-方解石阶段 | ||
乳白色石英 | --------- | |||
灰色/透明石英 | ===== | --------- | --------- | |
辉锑矿 | ===== | ===== | ||
黄铁矿 | --------- | --------- | ||
毒砂 | --------- | --------- | ||
方解石 | ===== | |||
褐铁矿 | --------- | |||
锑华 | --------- |
表3 车穷卓布锑矿床矿物生成顺序表
Table 3 Paragenetic sequence in the Cheqiongzhuobu Sb deposit
矿物名称 | 热液(泉)期 | 表生期 | ||
---|---|---|---|---|
石英-黄铁矿阶段 | 辉锑矿-石英阶段 | 辉锑矿-方解石阶段 | ||
乳白色石英 | --------- | |||
灰色/透明石英 | ===== | --------- | --------- | |
辉锑矿 | ===== | ===== | ||
黄铁矿 | --------- | --------- | ||
毒砂 | --------- | --------- | ||
方解石 | ===== | |||
褐铁矿 | --------- | |||
锑华 | --------- |
矿床 | 测试样品 | 测试方法 | 年龄/Ma |
---|---|---|---|
扎西康锑多金属矿床 | 与石英-黄铁矿共生的含铬绢云母 | 40Ar/39Ar | 17.9±0.5 |
石英辉锑矿脉中石英 | ESR | 18.3±1.8 | |
车穷卓布锑矿床 | 辉锑矿石英脉 | ESR | 18.0±1.8 |
壤拉锑矿床 | 冰洲石-石英脉 | ESR | 18.6 |
哲古锑金矿床 | 辉锑矿石英脉 | ESR | 18.4±1.8 |
马扎拉锑金矿床 | 石英矿脉 | ESR | 24.2±2.4 |
得龙锑矿床 | 辉锑矿石英脉 | ESR | 23.2±2.3 |
沙拉岗锑矿床 | 辉锑矿石英脉 | ESR | 18.0±1.8 |
辉绿岩中的锆石 | U-Pb | 23.6±0.8 |
表4 北喜马拉雅成矿带主要锑矿床成矿年龄表(数据引自[31,51,74,93])
Table 4 Summary of metallogenic ages of major Sb deposits in the NHMB. Data adapted from [31,51,74,93].
矿床 | 测试样品 | 测试方法 | 年龄/Ma |
---|---|---|---|
扎西康锑多金属矿床 | 与石英-黄铁矿共生的含铬绢云母 | 40Ar/39Ar | 17.9±0.5 |
石英辉锑矿脉中石英 | ESR | 18.3±1.8 | |
车穷卓布锑矿床 | 辉锑矿石英脉 | ESR | 18.0±1.8 |
壤拉锑矿床 | 冰洲石-石英脉 | ESR | 18.6 |
哲古锑金矿床 | 辉锑矿石英脉 | ESR | 18.4±1.8 |
马扎拉锑金矿床 | 石英矿脉 | ESR | 24.2±2.4 |
得龙锑矿床 | 辉锑矿石英脉 | ESR | 23.2±2.3 |
沙拉岗锑矿床 | 辉锑矿石英脉 | ESR | 18.0±1.8 |
辉绿岩中的锆石 | U-Pb | 23.6±0.8 |
图24 北喜马拉雅成矿带控矿构造格架及主要矿床、矿集区分布图 (据文献[31]修改)
Fig.24 Ore-controlling structural framework and distributions of main ore deposits and mineralization districts in the NHMB. Modified after [31].
[1] | 孟郁苗, 胡瑞忠, 高剑峰, 等. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 2016, 35(4):339-348. |
[2] | 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984. |
[3] | 刘家军, 郑明华, 卢文全. 首次发现块硫锑铜矿的变种: 硒硫锑铜矿[J]. 科学通报, 1993, 38(18):1726-1727. |
[4] | SCHWARZ-SCHAMPERA U. Critical metals handbook: antimony[M]// GUNN G. Critical metals handbook. Keyworth: British Geological Survey, 2014: 70-98. |
[5] |
BOYLE R W, JONASSON I R. The geochemistry of antimony and its use as an indicator element in geochemical prospecting[J]. Journal of Geochemical Exploration, 1984, 20(3):223-302.
DOI URL |
[6] |
PENG J T, HU R Z, BURNARD P G. Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): the potential of calcite as a geochronometer[J]. Chemical Geology, 2003, 200:129-136.
DOI URL |
[7] | PAVALOVA G G, BORISENKO A S, GOVERDOVSKII V A, et al. Permian-Triassic magmatism and Ag-Sb mineralization in southeastern Altai and northwestern Mongolia[J]. Ore Geology Reviews, 2008, 49:545-555. |
[8] |
NEMEC M, ZACHARIAS J. The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation[J]. Mineralium Deposita, 2018, 53(2):225-244.
DOI URL |
[9] | HU X W, PEI R F, ZHOU S. Sm-Nd dating for antimony mineralization in the Xikuangshan deposit, Hunan, China[J]. Resource Geology, 1996, 46:227-231. |
[10] |
FU S L, HU R Z, BATT G E, et al. Zircon (U-Th)/He thermochronometric constraints on the mineralization of the giant Xikuangshan Sb deposit in central Hunan, South China[J]. Mineralium Deposita, 2019, 55:1-12.
DOI URL |
[11] |
FU S L, HU R Z, YAN J, et al. The mineralization age of the Banxi Sb deposit in Xiangzhong metallogenic province in southern China[J]. Ore Geology Reviews, 2019, 112:103033.
DOI URL |
[12] |
DILL H G, MELCHER F, BOTZ R. Meso- to epithermal W-bearing Sb vein-type deposits in calcareous rocks in western Thailand; with special reference to their metallogenetic position in SE Asia[J]. Ore Geology Review, 2008, 34:242-262.
DOI URL |
[13] |
LI H, WU Q H, EVANS N J, et al. Geochemistry and geochronology of the Banxi Sb deposit: implications for fluid origin and the evolution of Sb mineralization in central-western Hunan, South China[J]. Gondwana Research, 2008, 55:112-134.
DOI URL |
[14] |
ZHANG L, YANG L Q, GROVES D L, et al. An overview of timing and structural geometry of gold, gold-antimony and antimony mineralization in the Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 2019, 115:103173.
DOI URL |
[15] | ZHANG Z Y, XIE G Q, MAO J W, et al. Sm-Nd dating and in-situ LA-ICP-MS trace element analyses of scheelite from the Longshan Sb-Au deposit, Xiangzhong metallogenic province, South China[J]. Minerals, 2019, 99:166-179. |
[16] | 张志远, 谢桂青, 李惠纯, 等. 湖南龙山锑金矿床白云母 40Ar-39Ar 年代学及其意义初探[J]. 岩石学报, 2018, 34(9):2535-2547. |
[17] | 王永磊, 陈毓川, 王登红, 等. 湖南渣滓溪 W-Sb 矿床白钨矿Sm-Nd 测年及其地质意义[J]. 中国地质, 2012, 39(5):1339-1344. |
[18] | 陈毓川, 王登红, 李厚民, 等. 重要矿产预测类型划分方案[M]. 北京: 地质出版社, 2010. |
[19] | 赵一鸣, 吴良士, 白鸽, 等. 中国主要金属矿床成矿规律[M]. 北京: 地质出版社, 2004. |
[20] | 张国林, 姚金炎, 谷相平. 中国锑矿床类型及时空分布规律[J]. 矿产与地质, 1998(5):306-312. |
[21] | 王永磊, 陈毓川, 王登红, 等. 中国锑矿床主要矿集区及其资源潜力探讨[J]. 中国地质, 2013, 40(5):1366-1378. |
[22] | 王永磊, 徐珏, 张长青, 等. 中国锑矿成矿规律概要[J]. 地质学报, 2014, 88(12):2208-2215. |
[23] | 肖启明, 曾笃仁, 金富秋, 等. 中国锑矿床时空分布规律及找矿方向[J]. 地质与勘探, 1992(12):9-14. |
[24] | 丁建华, 杨毅恒, 邓凡. 中国锑矿资源潜力及成矿预测[J]. 中国地质, 2013, 40(3):846-858. |
[25] | UK House of Commons. Strategically important metals[R]. London: UK House of Commons, 2011. |
[26] | US Department of Defense. Strategic non-proprietary materials[R]. Washington: US Department of Defense, 2013. |
[27] | Prime Minister of Japan and His Cabinet. Resource securement strategies[R]. Tokyo: Japanese Government, 2012. |
[28] | European Commission. Study on the review of the list of critical raw materials[R]. Brussels: European Commission, 2017. |
[29] | 张所续, 刘伯恩, 马朋林. 美国关键矿产战略调整对我国的相关启示[J]. 中国国土资源经济, 2019, 32(7):38-45. |
[30] | 王登红. 关键矿产的研究意义、 矿种厘定、 资源属性、 找矿进展、 存在问题及主攻方向[J]. 地质学报, 2019, 93(6):1189-1209. |
[31] | 郑有业, 孙祥, 田立明, 等. 北喜马拉雅东段金锑多金属成矿作用, 矿床类型与成矿时代[J]. 大地构造与成矿学, 2014, 38(1):108-118. |
[32] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2005, 76:1-131.
DOI URL |
[33] | LEFORT P. Himalayas-collided range-present knowledge of continental arc[J]. American Journal of Science, 1975, A275:l-44. |
[34] |
SPRATT J E, JONES A G, NELSON K D. Crustal structure of the India-Asia collision zone, southern Tibet, from Indepth Mt investigations[J]. Physics of the Earth and Planetary Interiors, 2005, 150:227-237.
DOI URL |
[35] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.
DOI URL |
[36] |
HARRISON T M, COPELAND P, KIDD W S F, et al. Raising Tibet[J]. Science, 1992, 255:1663-1670.
DOI URL |
[37] |
JEFFREY L, HACKER B R, DINKLAGE W S, et al. Evolution of the Kangmar dome, southern Tibet: structural, petrologic, and thermochronologic constraints[J]. Tectonics, 2000, 19:872-895.
DOI URL |
[38] |
MURPHY M A, YIN A, KAPP P, et al. Structural evolution of the GurlaMandhata detachment system, southwest Tibet[J]. Geological Society of America Bulletin, 2002, 114:428-447.
DOI URL |
[39] |
ZHAO W J, NELSON K D. Deep seismic reflection evidence for continental underthrusting beneath the south Tibet[J]. Nature, 1993, 366:557-559.
DOI URL |
[40] | 赵文津 NELSON K D, 徐中信,, 等. 雅鲁藏布江缝合带的双陆内俯冲构造与部分熔融层特征[J]. 地球物理学报, 1997, 40(3):325-336. |
[41] | 陈智梁, 刘宇平. 藏南拆离系[J]. 沉积与特提斯地质, 1996, 20:31-51. |
[42] | RATSCHBACHER L, FRISCH W, LIU G, et al. Distributed deformation in southern and western Tibet during and after the India-Asia collision[J]. Journal of Geophysical Research: Solid Earth, 1994, 99:19817-19945. |
[43] | BURCHFIEL B C, CHEN Z, HODGES K V, et al. The south Tibetan detachment system, Himalayan orogen, extension contemporaneous with and parallel to shortening in a collisional mountain belt[J]. Geological Society of America Special Papers, 1992, 269:1-41. |
[44] | 余光明, 王成善. 西藏特提斯沉积地质[M]. 北京: 地质出版社, 1990. |
[45] |
BURCHFIEL B C, ROYDEN L H. North-south extension within the convergent Himalayan region[J]. Geology, 1985, 13:679-682.
DOI URL |
[46] |
COPELAND P, PARRISH R R, HARRISON T M. Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics[J]. Nature, 1988, 333:760-763.
DOI URL |
[47] |
HARRISON T M, COPELAND P, KIDD W S F, et al. Activation of the Nyainqentanghla shear zone: implications for uplift of the southern Tibetan Plateau[J]. Tectonics, 1995, 14:658-676.
DOI URL |
[48] | FIELDING E J. Tibet and Erosion[J]. Tectonophysics, 1996, 60:55-84. |
[49] |
MURPHY M A, HARRISON T M. Relationship between leucogranite and the Qomolangma detachment in Rongbuk Valley, South Tibet[J]. Geology, 1999, 27:831-834.
DOI URL |
[50] |
SEARLE M P, GODIN L. The South Tibetan detachment and the Manaslu leucogranite: a structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal[J]. Journal of Geology, 2003, 111:505-523.
DOI URL |
[51] | 张刚阳. 藏南金锑多金属成矿带成矿模式与找矿前景研究[D]. 武汉:中国地质大学(武汉),2012. |
[52] | 侯增谦, 莫宣学, 杨志明, 等. 青藏高原碰撞造山带成矿作用: 构造背景, 时空分布和主要类型[J]. 中国地质, 2006, 33(2):340-351. |
[53] |
COLEMAN M, HODGES K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension[J]. Nature, 1995, 374:49.
DOI URL |
[54] |
KAPP P, TAYLOR M, STOCKLI D, et al. Development of active low-angle normal fault systems during orogenic collapse: insight from Tibet[J]. Geology, 2008, 36:7-10.
DOI URL |
[55] |
BLISNIUK P M, HACKER B R, GLODNY J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature, 2001, 412:628-632.
DOI URL |
[56] |
ZHANG J J, GUO L. Structure and geochronology of the southern Xainza-Dinggye rift and is relationship to the South Tibetan detachment system[J]. Journal of Asian Earth Sciences, 2007, 29:722-736.
DOI URL |
[57] | 郑有业, 赵永鑫, 王苹, 等. 藏南金锑成矿带成矿规律研究及找矿取得重大进展[J]. 地球科学: 中国地质大学学报, 2004, 29(1):44-45. |
[58] | 聂凤军, 胡朋, 江思宏, 等. 藏南地区金和锑矿床(点)类型及其时空分布特征[J]. 地质学报, 2005, 79(3):373-385. |
[59] | 杨竹森, 侯增谦, 高伟, 等. 藏南拆离系锑金成矿特征与成因模式[J]. 地质学报, 2006, 80(9):1377-1391. |
[60] |
LEE J, HACKER B, WANG Y. Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mabja Dome, southern Tibet[J]. Journal of Structural Geology, 2004, 26(12):2297-2316.
DOI URL |
[61] | 李德威, 刘德民, 廖群安, 等. 藏南拉轨岗日变质核杂岩的厘定及其成因[J]. 地质通报, 2003, 22(5):303-307. |
[62] | 许志琴, 杨经绥, 戚学祥, 等. 印度-亚洲碰撞:南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论[J]. 地质通报, 2006, 25(1/2):l-14. |
[63] | 张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007, 26(6):639-649. |
[64] | 王根厚, 周详, 曾庆高, 等. 西藏康马热伸展变质核杂岩构造研究[J]. 成都理工学院学报, 1997, 24:62-67. |
[65] |
CHEN Z, LIU Y, HODGES K V, et al. Structural evolution of the Kangmar dome: a metamorphic core complex in southern Xizang (Tibet)[J]. Science, 1990, 250:1552-1556.
DOI URL |
[66] | 朱弟成, 潘桂棠, 莫宣学, 等. 特提斯喜马拉雅桑秀组英安岩锆石SHRIMP年龄及其意义[J]. 科学通报, 2005, 50(4):375-379. |
[67] | 童劲松, 刘俊, 钟华明, 等. 藏南洛扎地区基性岩墙群锆石U-Pb定年、 地球化学特征及构造意义[J]. 地质通报, 2007, 26:1654-1665. |
[68] | 江思宏, 聂凤军, 胡朋, 等. 藏南基性岩墙群的地球化学特征[J]. 地质学报, 2007, 81(1):60-72. |
[69] | 江思宏, 聂凤军, 胡朋, 等. 新特提斯洋在侏罗纪晚期—白垩纪早期的一次重要的扩张事件:来自藏南浪卡子地区辉绿岩中锆石SHRIMP U-Pb测年的证据[J]. 地质学报, 2006, 80(8):1130. |
[70] | 边千韬, 丁林. 特提斯喜马拉雅带东段哲古错含金(砷)细粒石英闪长岩的发现及其意义[J]. 岩石学报, 2006, 22(4):977-988. |
[71] |
ZHU D C, CHUNG S L, MO X X, et al. The 132 Ma Comei-Bunbury large igneous province: remnants identified in present-day SE Tibet and SW Australia[J]. Geology, 2009, 37:583-586.
DOI URL |
[72] | 裘碧波, 朱弟成, 赵志丹, 等. 藏南措美残余大火成岩省的西延及意义[J]. 岩石学报, 2010, 26(7):2207-2216. |
[73] | 张进江, 丁林. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 2003, 38(2):179-189. |
[74] |
SEARLE M P, PARRISH R R, HODGES K V, et al. Shisha Pangma leucogranite, South Tibetan Himalaya: field relations, geochemistry, age, origin and emplacement[J]. Journal of Geology, 1997, 105:295-317.
DOI URL |
[75] |
WANG D, ZHENG Y Y, MATHUR R, et al. Multiple mineralization events in the Zhaxikang Sb-Pb-Zn-Ag deposit and their relationship with the geodynamic evolution in the North Himalayan Metallogenic Belt, South Tibet[J]. Ore Geology Reviews, 2019, 105:201-215.
DOI URL |
[76] | 李光明, 张林奎, 焦彦杰, 等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(4):1003-1008. |
[77] | 林彬, 唐菊兴, 郑文宝, 等. 西藏扎西康锌多金属矿床地质特征及银的赋存状态研究[J]. 矿床地质, 2014(5):899-914. |
[78] | 张苏坤. 藏南扎西康锑多金属矿床地质与地球化学特征[D]. 北京:中国地质大学(北京), 2013. |
[79] | 于淼. 藏南扎西康锑铅锌银矿床地质及成矿流体特征[D]. 北京:中国地质大学(北京), 2015. |
[80] | HOEFS J. Stable isotope geochemistry[M]. Berlin: Springer Science & Business Media, 2008. |
[81] |
YANG Z S, HOU Z Q, MENG X J, et al. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen[J]. Ore Geology Reviews, 2009, 36:194-212.
DOI URL |
[82] | LEACH D L, SANGSTER D F, KELLEY K D, et al. Sediment-hosted Pb-Zn deposits: a global perspective[J]. Economic Geology, 2005, 100:561-608. |
[83] |
ZARTMAN R E, DOE B R. Plumbotectonics: the model[J]. Tectonophysics, 1981, 75(1/2):135-162.
DOI URL |
[84] | 赵葵东, 蒋少涌, 肖红权, 等. 大厂锡:多金属矿床成矿流体来源的 He 同位素证据[J]. 科学通报, 2002, 47(8):633-635. |
[85] |
WANG D, ZHENG Y, ZHANG J, et al. The Sr-He-Ar isotopic and elemental evidence constraints on the ore genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet[J]. Geological Journal, 2020, 55:2631-2645.
DOI URL |
[86] |
WEN H J, ZHU C W, ZHANG Y X, et al. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits[J]. Scientific Reports, 2016, 6:25273.
DOI URL |
[87] | 王达. 藏南扎西康锑铅锌银矿床同位素地球化学研究[D]. 北京:中国地质大学(北京),2018. |
[88] |
WANG D, SUN X, ZHENG Y Y, et al. Two pulses of mineralization and genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet: constraints from Fe-Zn isotopes[J]. Ore Geology Reviews, 2017, 84:347-363.
DOI URL |
[89] | WANG D, ZHENG Y, MATHUR R, et al. The Fe-Zn isotopic characteristics and fractionation models: implications for the genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet[J]. Geofluids, 2018, 2018:1-23. |
[90] |
WANG D, ZHENG Y, MATHUR R, et al. Fractionation of cadmium isotope caused by vapour-liquid partitioning in hydrothermal ore-forming system: a case study of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet[J]. Ore Geology Reviews, 2020, 119:103400.
DOI URL |
[91] |
SUN X, ZHENG Y, PIRAJNO F, et al. Geology, S-Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet: implications for multiple mineralization events at Zhaxikang[[J]. Mineralium Deposita, 2018, 53:435-458.
DOI URL |
[92] |
ZHOU Q, LI W, QING C, et al. Origin and tectonic implications of the Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya: evidence from structures, R-Os-Pb-S isotopes, and fluid inclusions[J]. Mineralium Deposita, 2018, 53:585-600.
DOI URL |
[93] | 张建芳. 北喜马拉雅扎西康铅锌锑银矿床成因研究[D]. 武汉:中国地质大学(武汉), 2010. |
[94] | 杨奇荻. 藏南马扎拉成矿流体特征及矿床成因研究[D]. 武汉:中国地质大学(武汉), 2011. |
[95] | 周天成. 藏南金锑多金属成矿带载金矿物特征及其指示意义[D]. 北京:中国地质大学(北京), 2015. |
[96] | 高伟. 藏南拆离带沙拉岗锑矿床地质地球化学特征及成因机制研究[D]. 北京:中国地质大学(北京), 2006. |
[97] | 郑有业, 陈静, 赵永鑫, 等. 西藏措美县马扎拉锑金矿控矿因素与成矿规律研究报告[R]. 拉萨: 西藏地质矿产勘查开发局第2地质大队, 2001. |
[98] | 郑明华. 西藏浪卡子地区岩金矿成矿地质条件、 控矿因素及找矿模式研究科研报告[R]. 拉萨: 西藏地质矿产勘查开发局第2地质大队, 1999. |
[99] | 邓舟, 张刚阳, 郑有业, 等. 藏南车穷卓布锑矿S、 Pb同位素对成矿物质来源的指示[J]. 合肥工业大学学报(自然科学版), 2019, 42(3):55-63. |
[100] | 彭建堂, 胡瑞忠, 林源贤, 等. 锡矿山锑矿床热液方解石的Sm-Nd 同位素定年[J]. 科学通报, 2002, 47(10):759-792. |
[101] | 彭建堂, 胡瑞忠. 湘中锡矿山超大型锑矿床的碳、 氧同位素体系[J]. 地质论评, 2001, 47(1):34-41. |
[102] | XIE G Q, HU R Z. Origin of lamprophyres in the Xikuangshan antimony deposits, Hunan, PR China: evidence for combined traceelement with Sr- and Nd- isotope studies[J]. Geochimica et Cosmochimica Acta, 2002, 66(15A):A296-A296. |
[103] | 谢桂青, 彭建堂, 胡瑞忠, 等. 湖南锡矿山锑矿区煌斑岩的地球化学特征[J]. 岩石学报, 2001, 17(4):629-636. |
[104] |
DE BOORDER H, WESTERHOF A B. Tectonic control of early to middle Paleozoic volcanism and related mercury and antimony mineralization in southern central Iberia[J]. Economic Geology, 1994, 89(3):656-661.
DOI URL |
[105] |
ASHLEY P M, COOK N D J, HILL R L, et al. Shoshonitic lamprophyre dykes and their relation to mesothermal Au-Sb veins at Hillgrove, New South Wales, Australia[J]. Lithos, 1994, 32(3/4):249-272.
DOI URL |
[106] | ROBINSON B W, FARRAND M G. Sulfur isotopes and the origin of stibnite mineralisation in New England, Australia[J]. Mineralium Deposita, 1982, 17(2):161-174. |
[107] |
JOCHUM K P, VERMA S P. Extreme enrichment of Sb, Tl and other trace elements in altered MORB[J]. Chemical Geology, 1996, 130(3/4):289-299.
DOI URL |
[108] |
JOCHUM K P, HOFMANN A W. Constraints on Earth evolution from antimony in mantle-derived rocks[J]. Chemical Geology, 1997, 139(1/2/3/4):39-49.
DOI URL |
[109] | 郑有业, 高顺宝, 程力军, 等. 西藏冲江大型斑岩铜(钼金)矿床的发现及意义[J]. 地球科学: 中国地质大学学报, 2004, 29(5):333-339. |
[110] | 郑有业, 高顺宝, 张大全, 等. 西藏朱诺斑岩铜矿床发现的重大意义及启示[J]. 地学前缘, 2006, 13(4):233-239. |
[111] | 郑有业, 薛迎喜, 程力军, 等. 西藏驱龙超大型斑岩铜(钼)矿床: 发现、 特征及意义[J]. 地球科学: 中国地质大学学报, 2004, 29(1):103-108. |
[112] | 郑有业, 张刚阳, 许荣科, 等. 西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束[J]. 科学通报, 2007, 52(21):2542-2548. |
[113] |
HOU Z Q, GAO Y F, QU X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220:139-155.
DOI URL |
[114] |
ZHENG Y Y, SUN X, GAO S W, et al. Analysis of stream sediment data for exploring the Zhunuo porphyry Cu deposit, southern Tibet[J]. Journal of Geochemical Exploration, 2014, 143:19-30.
DOI URL |
[1] | 王岩, 秦燕, 黎华, 王登红, 孙赫, 王成辉, 黄凡. 东北地区金矿成矿规律及找矿方向[J]. 地学前缘, 2024, 31(3): 235-244. |
[2] | 夏祥标, 李光明, 张林奎, 张志, 曹华文, 梁维. 西藏错那洞穹隆祥林铍锡多金属矿地质特征及找矿方向[J]. 地学前缘, 2022, 29(1): 93-106. |
[3] | 赵正,陈毓川,曾载淋,郭娜欣,陈郑辉,王登红,刘翠辉,刘宗翊,王平安,李江东. 江西银坑W-Ag-Au多金属矿田成矿规律与找矿方向:兼论华南两个成矿系列叠加问题[J]. 地学前缘, 2017, 24(5): 54-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||