地学前缘 ›› 2023, Vol. 30 ›› Issue (3): 399-424.DOI: 10.13745/j.esf.sf.2022.10.46
刘嘉文1,2(), 田世洪1,2,3,*(
), 王玲1,*(
)
收稿日期:
2022-04-27
修回日期:
2022-10-30
出版日期:
2023-05-25
发布日期:
2023-04-27
通信作者:
*田世洪(1973—),男,研究员,博士生导师,主要从事同位素地球化学与矿床学研究工作。E-mail: 作者简介:
刘嘉文(1996—),女,硕士研究生,地质工程专业,主要从事同位素地球化学与矿床学研究。E-mail: jiawenl96@126.com
基金资助:
LIU Jiawen1,2(), TIAN Shihong1,2,3,*(
), WANG Ling1,*(
)
Received:
2022-04-27
Revised:
2022-10-30
Online:
2023-05-25
Published:
2023-04-27
摘要:
Mg作为主要的造岩元素,其丰度在地球上排第四位(仅次于O、Fe和Si)。Mg在自然界中存在3种稳定同位素,分别为24Mg、25Mg和26Mg,其中26Mg和24Mg之间具有较大的质量差(8.33%),在各类地质过程中显示出不同程度的分馏,使之成为研究不同地质演化过程的有力指标和良好示踪剂。近年来,随着分析方法的改进和同位素质谱技术的发展,Mg同位素的应用得到大跨步的发展。前人从不同角度对Mg同位素研究进展进行了综述,本文在简要介绍Mg同位素标准物质和分析方法的基础上,详细阐述了Mg同位素在地质学4个领域方面的应用,包括:(1)Mg同位素在矿床成因方面的应用,能够有效示踪成矿过程、成矿物质来源等;(2)Mg同位素在煌斑岩成因方面的应用,可有效示踪源区物质组成;(3)Mg同位素在地质温度计方面的应用,概述了较为常见的四种矿物对Mg同位素地质温度计并分析了其适用性;(4)含石榴石的变质作用、转熔反应和岩浆作用中的Mg同位素分馏及其指示意义。总之,本文通过对Mg同位素在上述重要地质过程中研究成果的系统总结,旨在加深对Mg同位素体系的深入理解,进一步显示Mg同位素体系具有非常广阔的应用前景。
中图分类号:
刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3): 399-424.
LIU Jiawen, TIAN Shihong, WANG Ling. Application of magnesium stable isotopes for studying important geological processes—a review[J]. Earth Science Frontiers, 2023, 30(3): 399-424.
图1 自然界中不同储库的Mg同位素组成(据文献[4,6,11,36⇓⇓⇓-40]补充修改) 垂直虚线代表地幔的平均值δ26Mg=-(0.25±0.07)‰。
Fig.1 Mg isotopic compositions of various natural reservoirs. The vertical dashed line represents the average δ26Mg value of (-0.25±0.07)‰ for the mantle. Modified after [4,6,11,36⇓⇓⇓-40].
分析方法 | 化学前处理 | 精度(2SD) | 空间分辨率 | 干扰校正方法 | 参考文献 | |
---|---|---|---|---|---|---|
溶液法 | TIMS | 是 | 1‰~2‰ | [ | ||
MC-ICP- MS | 是 | 0.03‰~0.14‰ | SSB和DS校正仪器质量分馏、膜去溶进样去除(C2+、CN+等)原子离子干扰、优化化学纯化流程去除基质效应 | [ | ||
原位法 | LA-MC- ICP-MS | 否 | 0.11‰~0.15‰ | 50~200 μm | SSB校正仪器质量分馏、调整激光束斑等激光剥蚀条件以减少分馏效应、提高仪器的分辨率去除48Ca2+同质异位素的干扰 | [ |
SIMS | 否 | 0.2‰ | 10~20 μm | 传输过程优化、高分辨率去除同质异位素干扰 | [ |
表1 四种Mg同位素分析方法对比
Table 1 Comparison of four analytical methods for Mg isotope
分析方法 | 化学前处理 | 精度(2SD) | 空间分辨率 | 干扰校正方法 | 参考文献 | |
---|---|---|---|---|---|---|
溶液法 | TIMS | 是 | 1‰~2‰ | [ | ||
MC-ICP- MS | 是 | 0.03‰~0.14‰ | SSB和DS校正仪器质量分馏、膜去溶进样去除(C2+、CN+等)原子离子干扰、优化化学纯化流程去除基质效应 | [ | ||
原位法 | LA-MC- ICP-MS | 否 | 0.11‰~0.15‰ | 50~200 μm | SSB校正仪器质量分馏、调整激光束斑等激光剥蚀条件以减少分馏效应、提高仪器的分辨率去除48Ca2+同质异位素的干扰 | [ |
SIMS | 否 | 0.2‰ | 10~20 μm | 传输过程优化、高分辨率去除同质异位素干扰 | [ |
图2 白云鄂博矿床白云岩和碳酸岩样品δ26Mg分布图(据文献[81]修改)
Fig.2 δ26Mg value distribution plot for dolomite and carbonatite from the Bayan Obo deposit. Modified after [81].
图3 金川岩浆硫化物矿床二辉橄榄岩和大理岩的εNd(t)与(87Sr/86Sr)i (a)、εNd(t)与δ26Mg (b)和(87Sr/86Sr)i与δ26Mg (c)的关系图(据文献[33]修改) 图中带圈曲线代表两端员混合模拟线,数值代表混染比例。
Fig.3 Plots of εNd(t) vs. (87Sr/86Sr)i (a), εNd(t) vs. δ26Mg (b) and (87Sr/86Sr)i vs. δ26Mg (c) for peridotites and marbles from the Jinchuan magmatic sulfide deposit for ore genetic study. Modified after [33].
图4 德兴斑岩矿床蚀变样品的δ26Mg与δ41K关系图(据文献[35]修改) 图中灰色阴影代表岩浆岩δ26Mg和δ41K的基线值。
Fig.4 δ26Mg vs. δ41K plot for altered samples from the Dexing porphyry deposit for the identification of thermal fluid types. Grey shadows represent δ26Mg and δ41K baseline values for igneous rock. Modified after [35].
图5 Leucite Hills煌斑岩的δ26Mg与CaO/Al2O3 (a)、Hf/Hf* (b)、Ti/Ti* (c)、87Sr/86Sr (d)、143Nd/144Nd (e)和206Pb/204Pb (f)的关系图(据文献[39]修改) 图d中带圈曲线代表两端员混合模拟线,数值代表交代比例。
Fig.5 Plots of δ26Mg vs. CaO/Al2O3 (a), Hf/Hf* (b), Ti/Ti* (c), 87Sr/86Sr (d), 143Nd/144Nd (e) and 206Pb/204Pb (f) for the Leucite Hills lamproites for lamporphyre genetic study. Modified after [39].
图6 Leucite Hills煌斑岩岩石圈幔源改造的两次交代事件的简图(据文献[39]修改)
Fig.6 Simplified cartoon describing two metasomatic events in modifying the lithospheric mantle sources of the Leucite Hills lamproites. Modified after [39].
图7 哀牢山煌斑岩的δ26Mg与CaO/Al2O3 (a)、Fe/Mn (b)和Ti/Ti* (c)的关系图(据文献[116]修改)
Fig.7 δ26Mg versus CaO/Al2O3 (a), Fe/Mn (b) and Ti/Ti* (c) for the Ailaoshan lamprophyres. Modified after [116].
图8 哀牢山煌斑岩的Mg-Sr同位素二元混合模型图(据文献[116]修改) 图中带圈曲线代表两端员混合模拟线,数值代表交代比例。
Fig.8 Mg-Sr isotope binary mixing model for the Ailaoshan lamprophyres. Modified after [116].
图10 山东煌斑岩的δ26Mg与MgO (a)、CaO/Al2O3 (b)、(87Sr/86Sr)i (c)和143Nd/144Nd (d)的关系图(据文献[40]修改) 图c中带圈曲线代表两端员混合模拟线,数值代表交代比例。
Fig.10 δ26Mg versus MgO (a), CaO/Al2O3 (b), (87Sr/86Sr)i (c) and 143Nd/144Nd (d) for the Shandong lamprophyres. Modified after [40].
图12 黑云母-石榴石Mg同位素地质温度计和石榴石-单斜辉石Mg同位素地质温度计表达公式对比图(据文献[156]修改) 黑色实线由Li等[148]提出的经验公式Δ26MgCpx-Grt=0.83×106/T2计算;蓝色实线由Wang等[149]提出的经验公式Δ26MgCpx-Grt=0.86×106/T2计算;红色实线和虚线由Huang等[150]提出的理论计算公式Δ26MgCpx-Grt=f1(p)×(106/T2) + f2(p)×(106/T2)2 + f3(p)×(106/T2)3计算;紫色圆圈由Wang等[156]提出的经验公式Δ26MgBt-Grt=0.96×106/T2计算。
Fig.12 Comparison of expression formulas between biotite-garnet Mg isotope geothermometer and garnet-clinopyroxene Mg isotope geothermometer. Modified after [156]. Black solid line is an empirical equilibrium fractionation equation of Δ26MgCpx-Grt=0.83×106/T2 from [148]; Blue solid line is also an empirical equilibrium fractionation equation of Δ26MgCpx-Grt=0.86×106/T2 from [149]; Red solid line and dotted line represent the theoretically determined equilibrium fractionation equations of Δ26MgCpx-Grt=f1(p)×(106/T2) + f2(p)×(106/T2)2 + f3(p)×(106/T2)3 from [150]; Purple circle is an empirical equilibrium fractionation equation of Δ26MgBt-Grt=0.96×106/T2 from [156].
图13 绿片岩、角闪岩和榴辉岩的H2O与MgO含量关系图(据文献[181]修改) 带圈直线代表具不同绿泥石丰度的岩石,数值代表岩石含有绿泥石的比例。
Fig.13 H2O versus MgO for the greenschists, amphibolites and eclogites. Modified after [181].
图14 喜马拉雅淡色花岗岩的δ26Mg与Zr/Hf (a)、K/Rb (b)、Eu/Eu* (c)和1/TiO2 (d)的关系图(据文献[190]修改)
Fig.14 δ26Mg versus Zr/Hf (a), K/Rb (b), Eu/Eu* (c) and 1/TiO2 (d) for the Himalayan leucogranites. Modified after [190].
图15 石榴石橄榄岩和石榴石辉石岩熔体和残余体的δ26Mg值与部分熔融程度关系图(据文献[160,191]修改)
Fig.15 δ26Mg values versus degree of partial melting of melt and residual of garnet peridotite and garnet pyroxenite. Modified after [160,191].
[1] |
MCDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
DOI URL |
[2] | 柯珊, 刘盛遨, 李王晔, 等. 镁同位素地球化学研究新进展及其应用[J]. 岩石学报, 2011, 27(2): 383-397. |
[3] |
RUDNICK R L. Making continental crust[J]. Nature, 1995, 378(6557): 571-578.
DOI |
[4] |
GUO B J, ZHU X K, DONG A G, et al. Mg isotopic systematics and geochemical applications: a critical review[J]. Journal of Asian Earth Sciences, 2019, 176: 368-385.
DOI |
[5] | RUDNICK R L, GAO S. Composition of the continental crust[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
[6] |
TENG F Z. Magnesium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 219-287.
DOI URL |
[7] | PILSON M E Q. An introduction to the chemistry of the sea[M]. Cambridge: Cambridge University Press, 2012. |
[8] |
BERGLUND M, WIESER M E. Isotopic compositions of the elements 2009 (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2011, 83(2): 397-410.
DOI URL |
[9] | 范百龄, 陶发祥, 赵志琦. 地表及海洋环境的镁同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(1): 114-120. |
[10] | 戴梦宁. 溶液和(纳秒/飞秒)激光剥蚀进样多接收等离子体质谱技术及其在地球科学中的应用[D]. 西安: 西北大学, 2016. |
[11] | 陈洁, 龚迎莉, 陈露, 等. 镁同位素地球化学研究新进展及其在碳酸岩研究中的应用[J]. 地球科学, 2021, 46(12): 4366-4389. |
[12] |
TIPPER E T, GALY A, BICKLE M J. Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: lithological or fractionation control?[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1057-1075.
DOI URL |
[13] |
董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
DOI |
[14] |
WANG S J, TENG F Z, LI S G, et al. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes[J]. Lithos, 2017, 290/291: 94-103.
DOI URL |
[15] |
TENG F Z, LI W Y, RUDNICK R L, et al. Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth and Planetary Science Letters, 2010, 300(1/2): 63-71.
DOI URL |
[16] |
HUANG K J, TENG F Z, PLANK T, et al. Magnesium isotopic composition of altered oceanic crust and the global Mg cycle[J]. Geochimica et Cosmochimica Acta, 2018, 238: 357-373.
DOI URL |
[17] |
GRAY C M, COMPSTON W. Excess 26Mg in the Allende meteorite[J]. Nature, 1974, 251(5475): 495-497.
DOI |
[18] |
LEE T, PAPANASTASSIOU D A. Mg isotopic anomalies in the Allende meteorite and correlation with O and Sr effects[J]. Geophysical Research Letters, 1974, 1(6): 225-228.
DOI URL |
[19] | 唐波, 王景腾, 付勇. 不同地质储库中的镁同位素组成及碳酸盐矿物形成过程中的镁同位素分馏控制因素[J]. 岩矿测试, 2020, 39(2): 162-173. |
[20] |
GALY A, BELSHAW N S, HALICZ L, et al. High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry[J]. International Journal of Mass Spectrometry, 2001, 208(1/2/3): 89-98.
DOI URL |
[21] |
GOTHMANNA M, STOLARSKI J, ADKINS J F, et al. A Cenozoic record of seawater Mg isotopes in well-preserved fossil corals[J]. Geology, 2017, 45(11): 1039-1042.
DOI URL |
[22] |
RIECHELMANN S, MAVROMATIS V, BUHL D, et al. Impact of diagenetic alteration on brachiopod shell magnesium isotope (δ26Mg) signatures: experimental versus field data[J]. Chemical Geology, 2016, 440: 191-206.
DOI URL |
[23] |
YOUNG E D, ASH R D, GALY A, et al. Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O isotopes[J]. Geochimica et Cosmochimica Acta, 2002, 66(4): 683-698.
DOI URL |
[24] |
YOUNG E D, GALY A. The isotope geochemistry and cosmochemistry of magnesium[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 197-230.
DOI URL |
[25] | SCHILLER M, DALLAS J A, CREECH J, et al. Tracking the formation of magma oceans in the Solar System using stable magnesium isotopes[J]. Geochemical Perspectives Letters, 2017, 3(1): 22-31. |
[26] |
YANG W, TENG F Z, ZHANG H F, et al. Magnesium isotopic systematics of continental basalts from the North China Craton: implications for tracing subducted carbonate in the mantle[J]. Chemical Geology, 2012, 328: 185-194.
DOI URL |
[27] |
SU B X, TENG F Z, HU Y, et al. Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: perspectives from ophiolites[J]. Earth and Planetary Science Letters, 2015, 430: 523-532.
DOI URL |
[28] |
WANG S J, TENG F Z, SCOTT J M. Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics[J]. Geochimica et Cosmochimica Acta, 2016, 185: 78-87.
DOI URL |
[29] |
LIU F, LI X, WANG G Q, et al. Marine carbonate component in the mantle beneath the southeastern Tibetan Plateau: evidence from magnesium and calcium isotopes[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 9729-9744.
DOI URL |
[30] |
CHEN Y, HUANG F, SHI G H, et al. Magnesium isotope composition of subduction zone fluids as constrained by jadeitites from Myanmar[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7566-7585.
DOI URL |
[31] |
LING M X, LIU Y L, WILLIAMS I S, et al. Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids[J]. Scientific Reports, 2013, 3: 1776.
DOI |
[32] |
DONG A G, ZHU X K, LI S Z, et al. Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: constraints from Mg isotopes[J]. Precambrian Research, 2016, 281: 673-683.
DOI URL |
[33] |
TANG Q Y, BAO J, DANG Y X, et al. Mg-Sr-Nd isotopic constraints on the genesis of the giant Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China[J]. Earth and Planetary Science Letters, 2018, 502: 221-230.
DOI URL |
[34] |
MENG J, LI H M, LI Y H, et al. Stable isotope (S, Mg, B) constraints on the origin of the early Precambrian Zhaoanzhuang serpentine-magnetite deposit, southern North China Craton[J]. Minerals, 2019, 9(6): 377.
DOI URL |
[35] |
LI W Q, ZHAO S G, WANG X M, et al. Fingerprinting hydrothermal fluids in porphyry Cu deposits using K and Mg isotopes[J]. Science China Earth Sciences, 2020, 63(1): 108-120.
DOI |
[36] |
TENG F Z, LI W Y, KE S, et al. Magnesium isotopic composition of the earth and chondrites[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 4150-4166.
DOI URL |
[37] |
ZHONG Y, ZHANG G L, JIN Q Z, et al. Sub-basin scale inhomogeneity of mantle in the South China Sea revealed by magnesium isotopes[J]. Science Bulletin, 2021, 66(7): 740-748.
DOI PMID |
[38] | YU S Y, XU Y G, HUANG K J, et al. Magnesium isotope constraints on contributions of recycled oceanic crust and lithospheric mantle to generation of intraplate basalts in a big mantle wedge[J]. Lithos, 2021, 398: 106327. |
[39] |
SUN Y, TENG F Z, PANG K N, et al. Multistage mantle metasomatism deciphered by Mg-Sr-Nd-Pb isotopes in the leucite hills lamproites[J]. Contributions to Mineralogy and Petrology, 2021, 176(6): 1-12.
DOI |
[40] |
WANG Z X, LIU S A, LI S G, et al. Linking deep CO2 outgassing to cratonic destruction[J]. National Science Review, 2022, 9(6): nwac001.
DOI URL |
[41] |
LIU S G, QU Y R, WANG Z Z, et al. The fate of subducting carbon tracked by Mg and Zn isotopes: a review and new perspectives[J]. Earth-Science Reviews, 2022, 228: 104010.
DOI URL |
[42] |
CATANZARO E J, MURPHY T J, GARNER E L, et al. Absolute isotopic abundance ratios and atomic weight of magnesium[J]. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 1966, 70A(6): 453-458.
DOI URL |
[43] |
GALY A, YOFFE O, JANNEY P E, et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(11): 1352.
DOI URL |
[44] |
GONZÁLEZ DE VEGA C, CHERNONOZHKIN S M, GRIGORYAN R, et al. Characterization of the new isotopic reference materials IRMM-524A and ERM-AE143 for Fe and Mg isotopic analysis of geological and biological samples[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(11): 2517-2529.
DOI URL |
[45] |
AN Y J, WU F, XIANG Y X, et al. High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS[J]. Chemical Geology, 2014, 390: 9-21.
DOI URL |
[46] |
COATH C D, ELLIOTT T, HIN R C. Double-spike inversion for three-isotope systems[J]. Chemical Geology, 2017, 451: 78-89.
DOI URL |
[47] | 葛璐, 蒋少涌. 镁同位素地球化学研究进展[J]. 岩石矿物学杂志, 2008, 27(4): 367-374. |
[48] |
CHAUSSIDON M, DENG Z B, VILLENEUVE J, et al. In situ analysis of non-traditional isotopes by SIMS and LA-MC-ICP-MS: key aspects and the example of Mg isotopes in olivines and silicate glasses[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 127-163.
DOI URL |
[49] |
FUKUDA K, BEARD B L, DUNLAP D R, et al. Magnesium isotope analysis of olivine and pyroxene by SIMS: evaluation of matrix effects[J]. Chemical Geology, 2020, 540: 119482.
DOI URL |
[50] |
HE Y S, SUN A Y, ZHANG Y C, et al. High-precision and high-accuracy magnesium isotope analysis on multiple-collector inductively coupled plasma mass spectrometry using a critical mixture double spike technique[J]. Solid Earth Sciences, 2022, 7(3): 188-199.
DOI URL |
[51] |
OESER M, WEYER S, HORN I, et al. High-precision Fe and Mg isotope ratios of silicate reference glasses determined in situ by femtosecond LA-MC-ICP-MS and by solution nebulisation MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2014, 38(3): 311-328.
DOI URL |
[52] |
LU J, CHEN W, SUN J, et al. High-precision magnesium isotope analysis of carbonates by laser ablation MC-ICP-MS using wet and dry conditions[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(8): 1665-1674.
DOI URL |
[53] |
WOMBACHER F, EISENHAUER A, HEUSER A, et al. Separation of Mg, Ca and Fe from geological reference materials for stable isotope ratio analyses by MC-ICP-MS and double-spike TIMS[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(5): 627-636.
DOI URL |
[54] | HOANG T H A, CHOI S H, YU Y, et al. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam[J]. Lithos, 2018, 296/297/298/299: 382-395. |
[55] |
李献华, 刘宇, 汤艳杰, 等. 离子探针Li同位素微区原位分析技术与应用[J]. 地学前缘, 2015, 22(5): 160-170.
DOI |
[56] | 向蜜, 龚迎莉, 刘涛, 等. 钙同位素地球化学研究新进展及其在碳酸岩-共生硅酸盐研究中的应用[J]. 地质学报, 2021, 95(12): 3937-3960. |
[57] |
张洪铭, 黄士春, 李曙光. 高温Ca同位素地球化学研究进展与双稀释剂校正[J]. 地学前缘, 2017, 24(5): 402-415.
DOI |
[58] |
白江昊, 刘芳, 张兆峰, 等. 非传统稳定同位素分析技术要点[J]. 地学前缘, 2020, 27(3): 1-13.
DOI |
[59] |
赵新苗, 唐索寒, 李津, 等. 钛同位素地球化学综述[J]. 地学前缘, 2020, 27(3): 68-77.
DOI |
[60] | 赵严, 温汉捷, 周正兵, 等. 同位素双稀释剂计算软件(DSCAL)的开发及其地球化学应用[J]. 地质学报, 2021, 95(5): 1644-1653. |
[61] | 何学贤, 朱祥坤, 杨淳, 等. 多接收等离子质谱(MC-ICP-MS)测定Mg同位素初步研究[J]. 地球学报, 2005, 26(B09): 15-18. |
[62] |
HANDLER M R, BAKER J A, SCHILLER M, et al. Magnesium stable isotope composition of Earth’s upper mantle[J]. Earth and Planetary Science Letters, 2009, 282(1/2/3/4): 306-313.
DOI URL |
[63] |
HUANG F, GLESSNER J, IANNO A, et al. Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS[J]. Chemical Geology, 2009, 268(1/2): 15-23.
DOI URL |
[64] |
YANG W, TENG F Z, ZHANG H F. Chondritic magnesium isotopic composition of the terrestrial mantle: a case study of peridotite xenoliths from the North China Craton[J]. Earth and Planetary Science Letters, 2009, 288(3/4): 475-482.
DOI URL |
[65] |
BOURDON B, TIPPER E T, FITOUSSI C, et al. Chondritic Mg isotope composition of the Earth[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5069-5083.
DOI URL |
[66] | TENG F Z, HUANG K J, LI W Y, et al. Magnesium isotope fractionation during continental weathering[C]// AGU Fall Meeting Abstracts. San Francisco: American Geophysical Union, 2014: 1041. |
[67] |
TENG F Z, YIN Q Z, ULLMANN C V, et al. Interlaboratory comparison of magnesium isotopic compositions of 12 felsic to ultramafic igneous rock standards analyzed by MC-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3197-3209.
DOI URL |
[68] | 张群, 秦礼萍. 双稀释剂计算及校正方法[J]. 地球化学, 2017, 46(1): 15-21. |
[69] |
HIN R C, COATH C D, CARTER P J, et al. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions[J]. Nature, 2017, 549(7673): 511-515.
DOI URL |
[70] |
NORMAN M D, YAXLEY G M, BENNETT V C, et al. Magnesium isotopic composition of olivine from the Earth, Mars, Moon, and pallasite parent body[J]. Geophysical Research Letters, 2006, 33(15): L15202.
DOI URL |
[71] |
JANNEY P E, RICHTER F M, MENDYBAEV R A, et al. Matrix effects in the analysis of Mg and Si isotope ratios in natural and synthetic glasses by laser ablation-multicollector ICPMS: a comparison of single- and double-focusing mass spectrometers[J]. Chemical Geology, 2011, 281(1/2): 26-40.
DOI URL |
[72] |
XIE L W, YIN Q Z, YANG J H, et al. High precision analysis of Mg isotopic composition in olivine by laser ablation MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(9): 1773-1780.
DOI URL |
[73] |
OESER M, DOHMEN R, HORN I, et al. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines[J]. Geochimica et Cosmochimica Acta, 2015, 154: 130-150.
DOI URL |
[74] |
ZHANG W, HU Z C. A critical review of isotopic fractionation and interference correction methods for isotope ratio measurements by laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 171: 105929.
DOI URL |
[75] |
PEARSON N J, GRIFFIN W L, ALARD O, et al. The isotopic composition of magnesium in mantle olivine: records of depletion and metasomatism[J]. Chemical Geology, 2006, 226(3/4): 115-133.
DOI URL |
[76] |
DAI M N, BAO Z A, CHEN K Y, et al. In situ analysis of Mg isotopic compositions of basalt glasses by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(2): 173-178.
DOI URL |
[77] |
LIN J, LIU Y S, YANG A, et al. Non-matrix-matched calibration of Mg isotopic ratios in silicate samples by fs-LA-MC-ICP-MS with low mass resolution under wet plasma conditions[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(3): 592-602.
DOI URL |
[78] | XIE Y L, HOU Z Q, GOLDFARB R J, et al. Rare earth element deposits in China[M]// Rare earth and critical elements in ore deposits. New York: Society of Economic Geologists, 2016: 115-136. |
[79] |
邓淼, 韦春婉, 许成, 等. 白云鄂博超大型稀土矿床成因评述[J]. 地学前缘, 2022, 29(1): 14-28.
DOI |
[80] |
SUN J, ZHU X K, CHEN Y L, et al. Is the Bayan Obo ore deposit a micrite mound? A comparison with the Sailinhudong micrite mound[J]. International Geology Review, 2014, 56(14): 1720-1731.
DOI URL |
[81] | 孙剑, 房楠, 李世珍, 等. 白云鄂博矿床成因的Mg同位素制约[J]. 岩石学报, 2012, 28(9): 2890-2902. |
[82] |
FAN H R, YANG K F, HU F F, et al. The giant Bayan Obo REE-Nb-Fe deposit, China: controversy and ore genesis[J]. Geoscience Frontiers, 2016, 7(3): 335-344.
DOI URL |
[83] |
GALY A, BAR-MATTHEWS M, HALICZ L, et al. Mg isotopic composition of carbonate: insight from speleothem formation[J]. Earth and Planetary Science Letters, 2002, 201(1): 105-115.
DOI URL |
[84] |
TIPPER E T, GALY A, BICKLE M J. Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: implications for the oceanic Ca cycle[J]. Earth and Planetary Science Letters, 2006, 247(3/4): 267-279.
DOI URL |
[85] |
TIPPER E T, GALY A, GAILLARDET J, et al. The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 241-253.
DOI URL |
[86] |
YANG X Y, SUN W D, ZHANG Y X, et al. Geochemical constraints on the genesis of the Bayan Obo Fe-Nb-REE deposit in Inner Mongolia, China[J]. Geochimica et Cosmochimica Acta, 2009, 73(5): 1417-1435.
DOI URL |
[87] | 刘铁庚. 白云鄂博白云岩氧、碳同位素组成及其成因讨论[J]. 地质论评, 1986, 32(2): 150-159. |
[88] | 曹荣龙, 朱寿华, 王俊文. 白云鄂博铁-稀土矿床的物质来源和成因理论问题[J]. 中国科学 (B辑), 1994, 24(12): 1298-1307. |
[89] | 丁悌平, 蒋少涌, 田世洪, 等. 白云鄂博矿区赋矿“白云质大理岩”成因的稳定同位素证据[J]. 地球学报, 2003, 24(6): 535-542. |
[90] | 张宗清, 袁忠信, 唐索寒, 等. 白云鄂博矿床年龄和地球化学[M]. 北京: 地质出版社, 2003: 1-222. |
[91] |
LING M X, SEDAGHATPOUR F, TENG F Z, et al. Homogeneous magnesium isotopic composition of seawater: an excellent geostandard for Mg isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2011, 25(19): 2828-2836.
DOI URL |
[92] | 孟洁. 华北克拉通南缘早前寒武纪赵案庄铁矿床的成因研究[D]. 北京: 中国地质大学(北京), 2018. |
[93] |
ZHAO G C, ZHAI M G. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications[J]. Gondwana Research, 2013, 23(4): 1207-1240.
DOI URL |
[94] | 兰彩云, 赵太平, 罗正传, 等. 河南舞阳赵案庄铁矿床成因: 来自磁铁矿和磷灰石的矿物学证据[J]. 岩石学报, 2015, 31(6): 1653-1670. |
[95] | 张阔, 沈保丰, 孙丰月, 等. 河南舞阳地区赵案庄铁矿床成矿时代及地质意义: 中国最古老的岩浆型铁矿床[J]. 矿床地质, 2016, 35(5): 889-901. |
[96] |
MENG J, LI H M, LI L X, et al. Petrological and geochemical constraints on the protoliths of serpentine-magnetite ores in the Zhaoanzhuang iron deposit, southern North China Craton[J]. Acta Geologica Sinica-English Edition, 2018, 92(2): 627-665.
DOI URL |
[97] |
GESKE A, GOLDSTEIN R H, MAVROMATIS V, et al. The magnesium isotope (δ26Mg) signature of dolomites[J]. Geochimica et Cosmochimica Acta, 2015, 149: 131-151.
DOI URL |
[98] |
HUANG K J, SHEN B, LANG X G, et al. Magnesium isotopic compositions of the Mesoproterozoic dolostones: implications for Mg isotopic systematics of marine carbonates[J]. Geochimica et Cosmochimica Acta, 2015, 164: 333-351.
DOI URL |
[99] |
LI F B, TENG F Z, CHEN J T, et al. Constraining ribbon rock dolomitization by Mg isotopes: implications for the ‘dolomite problem’[J]. Chemical Geology, 2016, 445: 208-220.
DOI URL |
[100] |
POHL W. Genesis of magnesite deposits: models and trends[J]. Geologische Rundschau, 1990, 79(2): 291-299.
DOI URL |
[101] |
AHARON P. A stable-isotope study of magnesites from the Rum Jungle Uranium Field, Australia: implications for the origin of strata-bound massive magnesites[J]. Chemical Geology, 1988, 69(1/2): 127-145.
DOI URL |
[102] |
HENJES-KUNST F, PROCHASKA W, NIEDERMAYR A, et al. Sm-Nd dating of hydrothermal carbonate formation: an example from the Breitenau magnesite deposit (Styria, Austria)[J]. Chemical Geology, 2014, 387: 184-201.
DOI URL |
[103] | 蒋少涌, 陈从喜, 陈永权, 等. 中国辽东地区超大型菱镁矿矿床的地球化学特征和成因模式[J]. 岩石学报, 2004, 20(4): 765-772. |
[104] | 鲍坚. Mg-Sr-Nd同位素组成对金川Cu-Ni-(PGE)硫化物矿床成因的制约[D]. 兰州: 兰州大学, 2019. |
[105] | NALDRETT A J. Fundamentals of magmatic sulfide deposits[J]. Littleton Reviews in Economic Geology, 2011, 17: 1-50. |
[106] |
RIPLEY E M, LI C S. Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis?[J]. Economic Geology, 2013, 108(1): 45-58.
DOI URL |
[107] | 段俊. 金川Cu-Ni(PGE)岩浆硫化物矿床成因与成矿模式研究[D]. 西安: 长安大学, 2015. |
[108] | 杨胜洪, 陈江峰, 屈文俊, 等. 金川铜镍硫化物矿床的Re-Os“年龄”及其意义[J]. 地球化学, 2007, 36(1): 27-36. |
[109] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
DOI URL |
[110] | RUDNICK R L, GAO S. Composition of the continental crust[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014: 1-51. |
[111] |
SONG X Y, ZHOU M F, WANG C Y, et al. Role of crustal contamination in formation of the Jinchuan intrusion and its world-class Ni-Cu-(PGE) sulfide deposit, Northwest China[J]. International Geology Review, 2006, 48(12): 1113-1132.
DOI URL |
[112] |
WANG C Y, WEI B, ZHOU M F, et al. A synthesis of magmatic Ni-Cu-(PGE) sulfide deposits in the 260 Ma Emeishan large igneous province, SW China and northern Vietnam[J]. Journal of Asian Earth Sciences, 2018, 154: 162-186.
DOI URL |
[113] |
LU Y J, CAMPBELL MCCUAIG T, LI Z X, et al. Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton: mantle source and tectonic implications[J]. Lithos, 2015, 233: 139-161.
DOI URL |
[114] | 孙悦, 李巨初, 丁俊, 等. 冕西煌斑岩脉型铀矿化特征及成因[J]. 四川地质学报, 2017, 37(2): 209-213. |
[115] | 严清高, 郭忠林, 李超, 等. 滇中姚安干沟金矿床煌斑岩锆石LA-ICP-MS U-Pb年代学及Hf同位素特征[J]. 矿床地质, 2019, 38(3): 526-540. |
[116] |
YU H Z, DENG J, WANG Q F, et al. Petrogenesis of Paleogene lamprophyres in the Ailaoshan tectonic belt, western Yangtze Craton: implications for the mantle source of orogenic gold deposits[J]. Ore Geology Reviews, 2020, 122: 103507.
DOI URL |
[117] |
鲁麟, 梁婷, 任文琴, 等. 江西崇义淘锡坑钨矿区煌斑岩LA-ICP-MS锆石U-Pb同位素定年及地质意义[J]. 地学前缘, 2017, 24(5): 93-108.
DOI |
[118] | 王璐. 新疆瓦吉里塔格地区钠质煌斑岩的矿物学、地球化学特征及源区[D]. 北京: 中国地质大学(北京), 2014. |
[119] |
DENG J, LIU X F, WANG Q F, et al. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking: lithospheric extension in the North China Craton, eastern Asia[J]. GSA Bulletin, 2017, 129(11/12): 1379-1407.
DOI URL |
[120] |
GASPERINI D, BLICHERT-TOFT J, BOSCH D, et al. Evidence from Sardinian basalt geochemistry for recycling of plume heads into the Earth’s mantle[J]. Nature, 2000, 408(6813): 701-704.
DOI |
[121] |
EISELE J, SHARMA M, GALER S J G, et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot[J]. Earth and Planetary Science Letters, 2002, 196(3/4): 197-212.
DOI URL |
[122] |
WILLBOLD M, STRACKE A. Formation of enriched mantle components by recycling of upper and lower continental crust[J]. Chemical Geology, 2010, 276(3/4): 188-197.
DOI URL |
[123] |
DELAVAULT H, CHAUVEL C, THOMASSOT E, et al. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 12952-12956.
PMID |
[124] | WANG X J, CHEN L H, HOFMANN A W, et al. Recycled ancient ghost carbonate in the Pitcairn mantle plume[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(35): 8682-8687. |
[125] | 刘迪. 山东煌斑岩的镁、锌同位素研究及其地质意义[D]. 北京: 中国地质大学(北京), 2020. |
[126] |
SUN Y, YING J F, ZHOU X H, et al. Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe, NE China: implications for the role of ancient subducted sediments[J]. Lithos, 2014, 208/209: 53-66.
DOI URL |
[127] |
XIANG L, ZHENG J P, ZHAI M G, et al. Geochemical and Sr-Nd-Pb isotopic constraints on the origin and petrogenesis of Paleozoic lamproites in the southern Yangtze Block, South China[J]. Contributions to Mineralogy and Petrology, 2020, 175(4): 1-18.
DOI |
[128] |
LI H J, WANG Q F, GROVES D I, et al. Alteration of Eocene lamprophyres in the Zhenyuan orogenic gold deposit, Yunnan Province, China: composition and evolution of ore fluids[J]. Ore Geology Reviews, 2019, 107: 1068-1083.
DOI URL |
[129] |
DENG J, WANG Q F, SANTOSH M, et al. Remobilization of metasomatized mantle lithosphere: a new model for the Jiaodong gold province, eastern China[J]. Mineralium Deposita, 2020, 55(2): 257-274.
DOI |
[130] |
GROVES D I, SANTOSH M, DENG J, et al. A holistic model for the origin of orogenic gold deposits and its implications for exploration[J]. Mineralium Deposita, 2020, 55(2): 275-292.
DOI |
[131] |
WANG Q F, GROVES D I, DENG J, et al. Evolution of the Miocene Ailaoshan orogenic gold deposits, southeastern Tibet, during a complex tectonic history of lithosphere-crust interaction[J]. Mineralium Deposita, 2020, 55(6): 1085-1104.
DOI |
[132] |
LI W Y, TENG F Z, KE S, et al. Heterogeneous magnesium isotopic composition of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6867-6884.
DOI URL |
[133] |
TENG F Z, YANG W, RUDNICK R L, et al. Heterogeneous magnesium isotopic composition of the lower continental crust: a xenolith perspective[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(9): 3844-3856.
DOI URL |
[134] |
HUANG J, XIAO Y L. Mg-Sr isotopes of low-δ26Mg basalts tracing recycled carbonate species: implication for the initial melting depth of the carbonated mantle in eastern China[J]. International Geology Review, 2016, 58(11): 1350-1362.
DOI URL |
[135] |
WANG Z Z, LIU S A, KE S, et al. Magnesium isotopic heterogeneity across the cratonic lithosphere in eastern China and its origins[J]. Earth and Planetary Science Letters, 2016, 451: 77-88.
DOI URL |
[136] |
LI S G, YANG W, KE S, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China[J]. National Science Review, 2017, 4(1): 111-120.
DOI URL |
[137] |
GRIFFIN W L, BEGG G C, O’REILLY S Y. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6(11): 905-910.
DOI |
[138] |
HOU Z Q, LIU Y, TIAN S H, et al. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 2015, 5: 10231.
DOI PMID |
[139] |
李曙光. 深部碳循环的Mg同位素示踪[J]. 地学前缘, 2015, 22(5): 143-159.
DOI |
[140] | LIU S A, WANG Z Z, YANG C, et al. Mg and Zn isotope evidence for two types of mantle metasomatism and deep recycling of magnesium carbonates[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(11): 1-22. |
[141] | 贺娟, 王启宇, 闫国川. 滇西金沙江—红河构造带鲁甸始新世煌斑岩成因及动力学背景[J]. 地球科学, 2018, 43(8): 2586-2599. |
[142] | 汪在聪, 王焰, 汪翔, 等. 交代岩石圈地幔与金成矿作用[J]. 地球科学, 2021, 46(12): 4197-4229. |
[143] |
ROCK N M S. The nature and origin of lamprophyres: an overview[J]. Geological Society, London, Special Publications, 1987, 30(1): 191-226.
DOI URL |
[144] | 张宏飞, 高山. 地球化学[M]. 北京: 地质出版社, 2012: 1-410. |
[145] | UREY H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society (Resumed), 1947, 85: 562-581. |
[146] | 刘帅奇, 张贵宾. 榴辉岩部分熔融过程中的同位素分馏[J]. 岩石学报, 2021, 37(1): 95-112. |
[147] |
SCHAUBLE E A. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 844-869.
DOI URL |
[148] |
LI W Y, TENG F Z, XIAO Y L, et al. High-temperatureinter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen, China[J]. Earth and Planetary Science Letters, 2011, 304(1/2): 224-230.
DOI URL |
[149] |
WANG S J, TENG F Z, WILLIAMS H M, et al. Magnesium isotopic variations in cratonic eclogites: origins and implications[J]. Earth and Planetary Science Letters, 2012, 359/360: 219-226.
DOI URL |
[150] |
HUANG F, CHEN L J, WU Z Q, et al. First-principles calculations of equilibrium Mg isotope fractionations between garnet, clinopyroxene, orthopyroxene, and olivine: implications for Mg isotope thermometry[J]. Earth and Planetary Science Letters, 2013, 367: 61-70.
DOI URL |
[151] |
LI W Y, TENG F Z, XIAO Y L, et al. Empirical calibration of the clinopyroxene-garnet magnesium isotope geothermometer and implications[J]. Contributions to Mineralogy and Petrology, 2016, 171(7): 1-14.
DOI URL |
[152] | 黄宏炜, 杜瑾雪, 柯珊. 榴辉岩中单斜辉石-石榴子石镁同位素地质温度计评述[J]. 岩石学报, 2020, 36(6): 1705-1718. |
[153] |
YOUNG E D, TONUI E, MANNING C E, et al. Spinel-olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth[J]. Earth and Planetary Science Letters, 2009, 288(3/4): 524-533.
DOI URL |
[154] |
LIU S A, TENG F Z, YANG W, et al. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China Craton[J]. Earth and Planetary Science Letters, 2011, 308(1/2): 131-140.
DOI URL |
[155] |
MACRIS C A, YOUNG E D, MANNING C E. Experimental determination of equilibrium magnesium isotope fractionation between spinel, forsterite, and magnesite from 600 to 800 ℃[J]. Geochimica et Cosmochimica Acta, 2013, 118: 18-32.
DOI URL |
[156] | WANG S J, TENG F Z, BEA F. Magnesium isotopic systematics of metapelite in the deep crust and implications for granite petrogenesis[J]. Geochemical Perspectives Letters, 2015, 1(1): 75-83. |
[157] |
HU Z Y, HU W X, WANG X M, et al. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: outlook of Mg isotopes as geothermometer and seawater proxy[J]. Geochimica et Cosmochimica Acta, 2017, 208: 24-40.
DOI URL |
[158] |
LI W Q, BEARD B L, LI C X, et al. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications[J]. Geochimica et Cosmochimica Acta, 2015, 157: 164-181.
DOI URL |
[159] |
MAVROMATIS V, GAUTIER Q, BOSC O, et al. Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite[J]. Geochimica et Cosmochimica Acta, 2013, 114: 188-203.
DOI URL |
[160] |
STRACKE A, TIPPER E T, KLEMME S, et al. Mg isotope systematics during magmatic processes: inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths[J]. Geochimica et Cosmochimica Acta, 2018, 226: 192-205.
DOI URL |
[161] | 陈丽娟. 镁在低温地表和高温地幔下的同位素分馏行为[D]. 合肥: 中国科学技术大学, 2019. |
[162] |
RAVNA E K. Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: an empirical calibration of the garnet-hornblende Fe-Mg geothermometer[J]. Lithos, 2000, 53(3/4): 265-277.
DOI URL |
[163] |
RAVNA K. The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration[J]. Journal of Metamorphic Geology, 2000, 18(2): 211-219.
DOI URL |
[164] |
ELLIS D J, GREEN D H. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria[J]. Contributions to Mineralogy and Petrology, 1979, 71(1): 13-22.
DOI URL |
[165] |
RÅHEIM A, GREEN D H. Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and clinopyroxene[J]. Contributions to Mineralogy and Petrology, 1974, 48(3): 179-203.
DOI URL |
[166] |
PATTISON D R M, NEWTON R C. Reversed experimental calibration of the garnet-clinopyroxene Fe-Mg exchange thermometer[J]. Contributions to Mineralogy and Petrology, 1989, 101(1): 87-103.
DOI URL |
[167] |
AI Y. A revision of the garnet-clinopyroxene Fe2+-Mg exchange geothermometer[J]. Contributions to Mineralogy and Petrology, 1994, 115(4): 467-473.
DOI URL |
[168] |
TANG H L, SZUMILA I, TRAIL D, et al. Experimental determination of the effect of Cr on Mg isotope fractionation between spinel and forsterite[J]. Geochimica et Cosmochimica Acta, 2021, 296: 152-169.
DOI URL |
[169] |
O’NEILL H S C, WALL V J. The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle[J]. Journal of Petrology, 1987, 28(6): 1169-1191.
DOI URL |
[170] |
BALLHAUS C, BERRY R F, GREEN D H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle[J]. Contributions to Mineralogy and Petrology, 1991, 107(1): 27-40.
DOI URL |
[171] |
LIERMANN H P, GANGULY J. Fe2+-Mg fractionation between orthopyroxene and spinel: experimental calibration in the system FeO-MgO-Al2O3-Cr2O3-SiO2, and applications[J]. Contributions to Mineralogy and Petrology, 2003, 145(2): 217-227.
DOI URL |
[172] |
SIO C K I, DAUPHAS N, TENG F Z, et al. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg-Fe isotopic analyses[J]. Geochimica et Cosmochimica Acta, 2013, 123: 302-321.
DOI URL |
[173] |
HUANG F, ZHANG Z F, LUNDSTROM C C, et al. Iron and magnesium isotopic compositions of peridotite xenoliths from eastern China[J]. Geochimica et Cosmochimica Acta, 2011, 75(12): 3318-3334.
DOI URL |
[174] |
VON STRANDMANN P A E P, ELLIOTT T, MARSCHALL H R, et al. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths[J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5247-5268.
DOI URL |
[175] |
ROEDER P L, CAMPBELL I H, JAMIESON H E. A re-evaluation of the olivine-spinel geothermometer[J]. Contributions to Mineralogy and Petrology, 1979, 68(3): 325-334.
DOI URL |
[176] |
WAN Z H, COOGAN L A, CANIL D. Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer[J]. American Mineralogist, 2008, 93(7): 1142-1147.
DOI URL |
[177] |
DASGUPTA S, SENGUPTA P, GUHA D, et al. A refined garnet-biotite Fe-Mg exchange geothermometer and its application in amphibolites and granulites[J]. Contributions to Mineralogy and Petrology, 1991, 109(1): 130-137.
DOI URL |
[178] |
BHATTACHARYA A, MOHANTY L, MAJI A, et al. Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer[J]. Contributions to Mineralogy and Petrology, 1992, 111(1): 87-93.
DOI URL |
[179] |
WU H J, HE Y S, TENG F Z, et al. Diffusion-driven magnesium and iron isotope fractionation at a gabbro-granite boundary[J]. Geochimica et Cosmochimica Acta, 2018, 222: 671-684.
DOI URL |
[180] | INDARES A, MARTIGNOLE J. Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite[J]. American Mineralogist, 1985, 70(3/4): 272-278. |
[181] |
WANG S J, TENG F Z, LI S G, et al. Magnesium isotopic systematics of mafic rocks during continental subduction[J]. Geochimica et Cosmochimica Acta, 2014, 143: 34-48.
DOI URL |
[182] | OH K D, MORIKAWA H, IWAI S, et al. The crystal structure of magnesite[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1973, 58(11/12): 1029-1033. |
[183] | ALTHOFF P L. Structural refinements of dolomite and a magnesian calcite and implications for dolomite formation in the marine environment[J]. American Mineralogist, 1977, 62(7/8): 772-783. |
[184] |
FINCH A A, ALLISON N. Coordination of Sr and Mg in calcite and aragonite[J]. Mineralogical Magazine, 2007, 71(5): 539-552.
DOI URL |
[185] |
WANG Z R, HU P, GAETANI G, et al. Experimental calibration of Mg isotope fractionation between aragonite and seawater[J]. Geochimica et Cosmochimica Acta, 2013, 102: 113-123.
DOI URL |
[186] |
LIU D, ZHAO Z D, ZHU D C, et al. Identifying mantle carbonatite metasomatism through Os-Sr-Mg isotopes in Tibetan ultrapotassic rocks[J]. Earth and Planetary Science Letters, 2015, 430: 458-469.
DOI URL |
[187] |
LIU S A, TENG F Z, HE Y S, et al. Investigation of magnesium isotope fractionation during granite differentiation: implication for Mg isotopic composition of the continental crust[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 646-654.
DOI URL |
[188] |
LAI Y J, VON STRANDMANN P A E P, DOHMEN R, et al. The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman peridotite massif[J]. Geochimica et Cosmochimica Acta, 2015, 164: 318-332.
DOI URL |
[189] |
TENG F Z, WADHWA M, HELZ R T. Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrestrial mantle[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 84-92.
DOI URL |
[190] |
WANG Z Z, LIU S A, LIU Z C, et al. Extreme Mg and Zn isotope fractionation recorded in the Himalayan leucogranites[J]. Geochimica et Cosmochimica Acta, 2020, 278: 305-321.
DOI URL |
[191] |
ZHONG Y, CHEN L H, WANG X J, et al. Magnesium isotopic variation of oceanic island basalts generated by partial melting and crustal recycling[J]. Earth and Planetary Science Letters, 2017, 463: 127-135.
DOI URL |
[192] |
DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665.
DOI |
[193] |
ATHERTON M P, PETFORD N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-146.
DOI |
[194] |
WANG Q, WYMAN D A, XU J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2609-2636.
DOI URL |
[195] |
HUANG F, LI S G, DONG F, et al. High-Mg adakitic rocks in the Dabie orogen, central China: implications for foundering mechanism of lower continental crust[J]. Chemical Geology, 2008, 255(1/2): 1-13.
DOI URL |
[196] |
HE Y S, LI S G, HOEFS J, et al. Post-collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust[J]. Geochimica et Cosmochimica Acta, 2011, 75(13): 3815-3838.
DOI URL |
[197] | 汪洋, 柯珊, 何永胜. 含石榴子石源区部分熔融过程的Mg同位素行为: 从埃达克岩的角度[C]// 2018年中国地球科学联合学术年会论文集. 北京:2018年中国地球科学联合学术年会组委会, 2018: 1728. |
[198] |
WANG Y, HE Y S, KE S. Mg isotope fractionation during partial melting of garnet-bearing sources: an adakite perspective[J]. Chemical Geology, 2020, 537: 119478.
DOI URL |
[199] |
WANG L, GAO X Y, CHEN R X, et al. Zircon and titanite behaviors during partial melting of metabasite in the post-collisional stage: constraints from garnet pyroxenite in the Dabie orogen, China[J]. Journal of Asian Earth Sciences, 2021, 205: 104615.
DOI URL |
[200] |
RONG W, ZHANG S B, ZHENG Y F. Back-reaction ofperitectic garnet as an explanation for the origin of mafic enclaves in S-type granite from the Jiuling batholith in South China[J]. Journal of Petrology, 2017, 58(3): 569-598.
DOI URL |
[201] |
PATIÑO DOUCE A E, JOHNSTON A D. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 1991, 107(2): 202-218.
DOI URL |
[202] |
SCHNETGER B. Partial melting during the evolution of the amphibolite- to granulite-facies gneisses of the Ivrea Zone, northern Italy[J]. Chemical Geology, 1994, 113(1/2): 71-101.
DOI URL |
[203] |
LUVIZOTTO G L, ZACK T. Nb and Zr behavior in rutile during high-grade metamorphism and retrogression: an example from the Ivrea-Verbano Zone[J]. Chemical Geology, 2009, 261(3/4): 303-317.
DOI URL |
[204] |
TIAN S H, HOU Z Q, CHEN X Y, et al. Magnesium isotopic behaviors between metamorphic rocks and their associated leucogranites, and implications for Himalayan orogenesis[J]. Gondwana Research, 2020, 87: 23-40.
DOI URL |
[1] | 李茜, 朱光有, 李婷婷, 艾依飞, 张岩, 王珊, 陈志勇, 田连杰. 塔里木盆地鹰山组白云岩成因与Mg同位素证据[J]. 地学前缘, 2023, 30(4): 352-375. |
[2] | 陈欣, 王辉, 毛景文, 于淼, 乔建峰, 王治安. 东昆仑夏日哈木矿区热液型铅锌矿体成因及地质意义[J]. 地学前缘, 2023, 30(2): 347-369. |
[3] | 徐林刚, 付雪瑞, 叶会寿, 郑伟, 陈勃, 方正龙. 南秦岭地区下寒武统黑色页岩赋存的千家坪大型钒矿地球化学特征及成矿环境[J]. 地学前缘, 2022, 29(1): 160-175. |
[4] | 王武名, 盛涛, 王丽娟, 董少波. 刚果(金)加丹加鲁苏西铜钴矿床S、C、O、Sr同位素特征及矿床成因[J]. 地学前缘, 2021, 28(6): 318-330. |
[5] | 洪双, 左仁广, 胡浩, 熊义辉, 王子烨. 磁铁矿元素地球化学大数据构建及其在矿床成因分类中的应用[J]. 地学前缘, 2021, 28(3): 87-96. |
[6] | 周秋石, 王瑞. 氯同位素地球化学研究进展[J]. 地学前缘, 2020, 27(3): 42-67. |
[7] | 赵新福, 曾丽平, 廖旺, 李婉婷, 胡浩, 李建威. 长江中下游成矿带玢岩铁矿研究新进展及对矿床成因的启示[J]. 地学前缘, 2020, 27(2): 197-217. |
[8] | 邓军, 王庆飞, 陈福川, 李龚健, 杨立强, 王长明, 张静, 孙祥, 舒启海, 和文言, 高雪, 高亮, 刘学飞, 郑远川, 邱昆峰, 薛胜超, 徐佳豪. 再论三江特提斯复合成矿系统[J]. 地学前缘, 2020, 27(2): 106-136. |
[9] | 刘家军, 翟德高, 王大钊, 高燊, 尹超, 柳振江, 王建平, 王银宏, 张方方. Au-(Ag)-Te-Se成矿系统与成矿作用[J]. 地学前缘, 2020, 27(2): 79-98. |
[10] | 李洪梁,李光明. 不同类型热液金矿床主成矿期黄铁矿成分标型特征[J]. 地学前缘, 2019, 26(3): 202-210. |
[11] | 朱建明, 谭德灿, 王静, 曾理. 硒同位素地球化学研究进展与应用[J]. 地学前缘, 2015, 22(5): 102-114. |
[12] | 王泽洲, 刘盛遨, 李丹丹, 吕逸文, 吴松, 赵云. 铜同位素地球化学及研究新进展[J]. 地学前缘, 2015, 22(5): 72-83. |
[13] | 章永梅, 顾雪祥, 彭义伟, 郑硌, 张岩, 高海军, 董树义. 安哥拉Bonga碳酸岩型铌矿床地质地球化学特征及成因[J]. 地学前缘, 2014, 21(5): 50-68. |
[14] | 李小虎, 初凤友, 雷吉江, 余星, 张平萍. 青海德尔尼铜(锌钴)矿床硫化物Cu同位素组成及矿床成因探讨[J]. 地学前缘, 2014, 21(1): 196-204. |
[15] | 任广利,王核,刘建平,王彪,吴玉峰,黄朝阳. 安徽繁昌地区桃冲铁矿床地球化学特征及矿床成因研究[J]. 地学前缘, 2012, 19(4): 82-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||