地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 288-310.DOI: 10.13745/j.esf.sf.2025.3.26

• 地球系统过程与全球变化 • 上一篇    下一篇

全球变化背景下天然源痕量活性有机气体研究进展与展望

张艳利1,2(), 冉浩汎1,2, 曾建强1,2, 鲁钰婷1,2, 庞伟华1,2, 郭昊1,2, 王新明1,2,*()   

  1. 1.中国科学院广州地球化学研究所 先进环境装备与污染防治技术全国重点实验室, 广东 广州 510640
    2.中国科学院大学, 北京 100049
  • 收稿日期:2025-02-07 修回日期:2025-02-20 出版日期:2025-03-25 发布日期:2025-04-20
  • 通信作者: *王新明(1969—),男,研究员,博士生导师,主要从事大气痕量成分(特别是大气挥发有机物)的表征、演化与效应、地气交换过程与生物地球化学循环研究。E-mail: wangxm@gig.ac.cn
  • 作者简介:张艳利(1984—),女,研究员,博士生导师,主要从事表层地球系统痕量活性气体地球化学研究。E-mail: zhang_yl86@gig.ac.cn
  • 基金资助:
    广东省基础与应用基础研究重大项目(2023B0303000007)

Advances and perspectives of biogenic reactive trace volatile organic compounds in the context of global change

ZHANG Yanli1,2(), RAN Haofan1,2, ZENG Jianqiang1,2, LU Yuting1,2, PANG Weihua1,2, GUO Hao1,2, WANG Xinming1,2,*()   

  1. 1. State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-02-07 Revised:2025-02-20 Online:2025-03-25 Published:2025-04-20

摘要:

天然源痕量活性有机气体,也叫生物源挥发性有机化合物(BVOCs),是地球系统中重要的痕量活性有机气体,对全球碳循环、大气化学和气候调控具有重要作用。BVOCs在大气中通过与氧化剂(如羟基自由基OH、臭氧O3和NO3自由基)快速反应,驱动二次有机气溶胶(SOA)的生成,调节大气辐射强迫,影响区域和全球气候。同时,BVOCs通过对流层与平流层臭氧的交互作用影响大气中羟基自由基(OH)的浓度,间接参与温室气体的生命周期调控。全球BVOCs排放量估计为每年1 000 Tg碳以上,主要来自森林生态系统,其中异戊二烯和单萜占主导地位。近年来,BVOCs排放的观测技术取得了显著进展,从传统的离线采样与气相色谱-质谱(GC-MS)分析到高时间分辨率的在线技术(如质子转移反应质谱PTR-MS和飞行时间质谱PTR-ToF-MS),极大提高了BVOCs排放数据的时间分辨率与化学精度。此外,基于无人机、卫星遥感与地基通量塔的多尺度监测技术,也为区域BVOCs排放的时空动态研究提供了新工具。结合动态箱法、涡度相关法和建模模拟,研究人员逐步构建了更精确的BVOCs排放清单,为理解其与气候变化的复杂反馈机制奠定了基础。环境因子对BVOCs排放的影响研究日益深入。光照和温度是控制BVOCs排放的关键因子,光照强度变化直接影响光合作用及异戊二烯的排放,而温度升高则加速BVOCs的生物合成和挥发。二氧化碳(CO2)浓度的升高可能通过光合作用调节BVOCs的排放强度,同时降低气孔导度减少BVOCs的释放速率,但其长期效应可能因植物种类和适应机制的差异而有所变化。臭氧(O3)浓度升高对BVOCs的作用具有双重效应:一方面通过胁迫反应诱导BVOCs的防御性释放,另一方面可能损伤叶片并抑制排放。气溶胶浓度和BVOCs之间存在重要的正反馈机制,高BVOCs排放可促进SOA生成,而SOA形成反过来通过散射光效应影响光合作用与BVOCs排放。氮循环改变对BVOCs排放的影响较为复杂,高氮输入可能通过改变植物养分分配与代谢路径,增加某些BVOCs的排放或抑制其他种类BVOCs的合成。未来全球变化情景下,气候变暖、极端天气频发和CO2浓度持续升高可能显著改变BVOCs的排放模式及其与大气化学和气候系统的耦合机制。综合利用观测和建模技术,加强对多因子交互作用及长时间尺度下BVOCs排放的定量研究,将为揭示BVOCs的多圈层耦合作用机制提供重要支撑,并为气候变化和大气化学研究提供新的科学视角。

关键词: 天然源痕量活性有机气体(ROG), 生物源挥发性有机化合物(BVOCs), 排放测量, 光照, 温度, 二氧化碳浓度, 氮循环, 气溶胶, 臭氧

Abstract:

Biogenic volatile organic compounds (BVOCs) are critical trace reactive organic gases in the Earth system, playing vital roles in global carbon cycling, atmospheric chemistry, and climate regulation. BVOCs react rapidly with atmospheric oxidants (e.g., OH, O3, and NO3), driving the formation of secondary organic aerosols (SOA), which modulate radiative forcing and influence regional and global climates. Furthermore, BVOCs interact with tropospheric and stratospheric ozone and alter hydroxyl radical (OH) concentrations, indirectly affecting the lifecycles of greenhouse gases. Global BVOC emissions are estimated to exceed 1000 TgC annually, with forests being the primary source and isoprene and monoterpenes dominating the emissions. Recent advancements in BVOC emission monitoring technologies have significantly improved the resolution and accuracy of emission measurements. Traditional offline sampling and gas chromatography-mass spectrometry (GC-MS) have been complemented by high-temporal-resolution online techniques such as proton-transfer-reaction mass spectrometry (PTR-MS) and time-of-flight mass spectrometry (PTR-ToF-MS). Additionally, multi-scale monitoring tools, including drones, satellite remote sensing, and ground-based flux towers, provide unprecedented capabilities for studying the spatial and temporal dynamics of BVOC emissions. By integrating dynamic chamber methods, eddy covariance techniques, and modeling approaches, researchers are progressively refining BVOC emission inventories, paving the way for deeper insights into the complex feedback mechanisms between BVOCs and climate change.

Environmental factors regulating BVOC emissions have been extensively studied. Light and temperature are key drivers, with light intensity directly influencing photosynthesis and isoprene emissions, while rising temperatures accelerate BVOC biosynthesis and volatilization. Elevated CO2 concentrations may modulate BVOC emissions through photosynthetic regulation and reduced stomatal conductance, although long-term effects vary by plant species and adaptive strategies. Increased ozone (O3) concentrations exert dual effects on BVOCs, inducing stress-related defensive emissions while potentially damaging foliage and suppressing emissions. Aerosol concentrations exhibit critical positive feedback mechanisms with BVOCs—high BVOC emissions promote SOA formation, and SOA, in turn, modifies photosynthesis and BVOC emissions via light scattering effects. Changes in the nitrogen cycle also impact BVOC emissions, with elevated nitrogen inputs altering nutrient allocation and metabolic pathways, thereby enhancing or suppressing BVOC synthesis depending on the compound type.

Under future global change scenarios, climate warming, frequent extreme weather events, and rising CO2 concentrations may significantly alter BVOC emission patterns and their coupling with atmospheric chemistry and climate systems. Advancing observation and modeling approaches to study multi-factor interactions and long-term trends in BVOC emissions is essential for elucidating the cross-sphere coupling mechanisms of BVOCs. Such research will provide critical insights into the interactions between climate change and atmospheric chemistry.

Key words: trace reactive organic gases (ROG), biogenic volatile organic compounds (BVOCs), emission measurement, light, temperature, carbon dioxide concentration, nitrogen cycle, aerosol, ozone

中图分类号: