地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 288-310.DOI: 10.13745/j.esf.sf.2025.3.26
张艳利1,2(), 冉浩汎1,2, 曾建强1,2, 鲁钰婷1,2, 庞伟华1,2, 郭昊1,2, 王新明1,2,*(
)
收稿日期:
2025-02-07
修回日期:
2025-02-20
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*王新明(1969—),男,研究员,博士生导师,主要从事大气痕量成分(特别是大气挥发有机物)的表征、演化与效应、地气交换过程与生物地球化学循环研究。E-mail: 作者简介:
张艳利(1984—),女,研究员,博士生导师,主要从事表层地球系统痕量活性气体地球化学研究。E-mail: zhang_yl86@gig.ac.cn
基金资助:
ZHANG Yanli1,2(), RAN Haofan1,2, ZENG Jianqiang1,2, LU Yuting1,2, PANG Weihua1,2, GUO Hao1,2, WANG Xinming1,2,*(
)
Received:
2025-02-07
Revised:
2025-02-20
Online:
2025-03-25
Published:
2025-04-20
摘要:
天然源痕量活性有机气体,也叫生物源挥发性有机化合物(BVOCs),是地球系统中重要的痕量活性有机气体,对全球碳循环、大气化学和气候调控具有重要作用。BVOCs在大气中通过与氧化剂(如羟基自由基OH、臭氧O3和NO3自由基)快速反应,驱动二次有机气溶胶(SOA)的生成,调节大气辐射强迫,影响区域和全球气候。同时,BVOCs通过对流层与平流层臭氧的交互作用影响大气中羟基自由基(OH)的浓度,间接参与温室气体的生命周期调控。全球BVOCs排放量估计为每年1 000 Tg碳以上,主要来自森林生态系统,其中异戊二烯和单萜占主导地位。近年来,BVOCs排放的观测技术取得了显著进展,从传统的离线采样与气相色谱-质谱(GC-MS)分析到高时间分辨率的在线技术(如质子转移反应质谱PTR-MS和飞行时间质谱PTR-ToF-MS),极大提高了BVOCs排放数据的时间分辨率与化学精度。此外,基于无人机、卫星遥感与地基通量塔的多尺度监测技术,也为区域BVOCs排放的时空动态研究提供了新工具。结合动态箱法、涡度相关法和建模模拟,研究人员逐步构建了更精确的BVOCs排放清单,为理解其与气候变化的复杂反馈机制奠定了基础。环境因子对BVOCs排放的影响研究日益深入。光照和温度是控制BVOCs排放的关键因子,光照强度变化直接影响光合作用及异戊二烯的排放,而温度升高则加速BVOCs的生物合成和挥发。二氧化碳(CO2)浓度的升高可能通过光合作用调节BVOCs的排放强度,同时降低气孔导度减少BVOCs的释放速率,但其长期效应可能因植物种类和适应机制的差异而有所变化。臭氧(O3)浓度升高对BVOCs的作用具有双重效应:一方面通过胁迫反应诱导BVOCs的防御性释放,另一方面可能损伤叶片并抑制排放。气溶胶浓度和BVOCs之间存在重要的正反馈机制,高BVOCs排放可促进SOA生成,而SOA形成反过来通过散射光效应影响光合作用与BVOCs排放。氮循环改变对BVOCs排放的影响较为复杂,高氮输入可能通过改变植物养分分配与代谢路径,增加某些BVOCs的排放或抑制其他种类BVOCs的合成。未来全球变化情景下,气候变暖、极端天气频发和CO2浓度持续升高可能显著改变BVOCs的排放模式及其与大气化学和气候系统的耦合机制。综合利用观测和建模技术,加强对多因子交互作用及长时间尺度下BVOCs排放的定量研究,将为揭示BVOCs的多圈层耦合作用机制提供重要支撑,并为气候变化和大气化学研究提供新的科学视角。
中图分类号:
张艳利, 冉浩汎, 曾建强, 鲁钰婷, 庞伟华, 郭昊, 王新明. 全球变化背景下天然源痕量活性有机气体研究进展与展望[J]. 地学前缘, 2025, 32(3): 288-310.
ZHANG Yanli, RAN Haofan, ZENG Jianqiang, LU Yuting, PANG Weihua, GUO Hao, WANG Xinming. Advances and perspectives of biogenic reactive trace volatile organic compounds in the context of global change[J]. Earth Science Frontiers, 2025, 32(3): 288-310.
图1 不同尺度的BVOCs排放测量技术(a引自文献[51];b引自文献[52];c引自文献[18];d引自文献[53];e引自文献[54];f引自文献[55];g引自文献[56];h引自文献[57];i引自文献[58]) a—静态特氟龙气袋;b—自制动态叶室;c—商用便携式光合仪;d—用于野外实验的动态箱;e—用于实验室的动态玻璃箱;f—用于实验室的动态特氟龙气袋;g—无人机;h—塔基涡度法;i—机载涡度法。
Fig.1 BVOC emission measurement techniques at different scales (a cited from [51]; b cited from [52]; c cited from [18]; d cited from [53]; e cited from [54]; f cited from [55]; g cited from [56]; h cited from [57]; i cited form [58])
方法 | 适用尺度 | 优势 | 局限性 |
---|---|---|---|
静态法[ | 叶片、枝条、小植株 | 装置简易便携,适用于未知植物排放谱的检测,测量地形受限性较低 | 测装置内-外内外环境条件差异大,生理扰动严重,低挥发性MT/SQT等损失严重,且无法直接测量冠层排放,不适合排放速率的准确测量 |
动态叶室法[ | 叶片 | 能够控制环境变量,开展单一变量的控制实验,测量地形受限性较低 | 低排放树种测量难度较大,低挥发性BVOCs特别是SQT损失严重,且无法直接测量冠层排放 |
动态箱法[ | 叶片、枝条、小植株 | 开展短-长期真实排放测量,在活性MT/SQT测量方面具有优势 | 设备架设难度较高,测量地形受限性较高,无法直接测量冠层排放 |
塔基驰豫涡旋 积累法[ | 冠层 | 能够反映几百至几千米范围下垫面的综合排放特征;结合离线吸附管采样手段,能够区分到单个BVOCs化合物 | 测量地形受限性较高,只能借助生态通量塔开展研究,离线采样较麻烦,操作难度大,高活性MT/SQT测量不确定性大 |
塔基涡度协 方差法[ | 冠层 | 能够反映几百至几千米范围下垫面的综合排放特征;结合高频在线分析手段,能够进行长期排放测量 | 受测量地形影响大,需高频分析仪器(>10 Hz),目前常用的PTR-ToF-MS不能区分同分异构体;高活性MT/SQT测量不确定性大 |
机载涡度协 方差法[ | 区域 | 能够反映区域尺度下垫面的综合排放特征;测量不受地形限制 | 测量设备较昂贵;常用的PTR-ToF-MS不能区分同分异构体;活性MT/SQT测量不确定性大 |
无人机[ | 冠层/区域 | 能够反映冠层/区域尺度下垫面的综合排放特征;测量不受地形限制;结合离线吸附管采样能够区分到单个BVOCs化合物 | 测量过程中局部湍流扰动较大,无法长时间测量,无法高精度检测高反应活性的MT/SQT |
表1 不同BVOCs排放测量方法比较
Table 1 Comparison of different measurement methods of BVOCs emissions
方法 | 适用尺度 | 优势 | 局限性 |
---|---|---|---|
静态法[ | 叶片、枝条、小植株 | 装置简易便携,适用于未知植物排放谱的检测,测量地形受限性较低 | 测装置内-外内外环境条件差异大,生理扰动严重,低挥发性MT/SQT等损失严重,且无法直接测量冠层排放,不适合排放速率的准确测量 |
动态叶室法[ | 叶片 | 能够控制环境变量,开展单一变量的控制实验,测量地形受限性较低 | 低排放树种测量难度较大,低挥发性BVOCs特别是SQT损失严重,且无法直接测量冠层排放 |
动态箱法[ | 叶片、枝条、小植株 | 开展短-长期真实排放测量,在活性MT/SQT测量方面具有优势 | 设备架设难度较高,测量地形受限性较高,无法直接测量冠层排放 |
塔基驰豫涡旋 积累法[ | 冠层 | 能够反映几百至几千米范围下垫面的综合排放特征;结合离线吸附管采样手段,能够区分到单个BVOCs化合物 | 测量地形受限性较高,只能借助生态通量塔开展研究,离线采样较麻烦,操作难度大,高活性MT/SQT测量不确定性大 |
塔基涡度协 方差法[ | 冠层 | 能够反映几百至几千米范围下垫面的综合排放特征;结合高频在线分析手段,能够进行长期排放测量 | 受测量地形影响大,需高频分析仪器(>10 Hz),目前常用的PTR-ToF-MS不能区分同分异构体;高活性MT/SQT测量不确定性大 |
机载涡度协 方差法[ | 区域 | 能够反映区域尺度下垫面的综合排放特征;测量不受地形限制 | 测量设备较昂贵;常用的PTR-ToF-MS不能区分同分异构体;活性MT/SQT测量不确定性大 |
无人机[ | 冠层/区域 | 能够反映冠层/区域尺度下垫面的综合排放特征;测量不受地形限制;结合离线吸附管采样能够区分到单个BVOCs化合物 | 测量过程中局部湍流扰动较大,无法长时间测量,无法高精度检测高反应活性的MT/SQT |
图3 BVOCs排放的温度响应曲线 a—异戊二烯的温度响应曲线;b—萜烯在不同LDF值条件下的温度响应曲线:光依赖萜烯(LDF=100%)与异戊二烯相似,非光依赖萜烯(LDF=0)与温度指数相关。
Fig.3 Temperature response curves of BVOC emissions
中文名 | 拉丁名 | 异戊 二烯 | MT | SQT | 参考 文献 |
---|---|---|---|---|---|
冬青栎 | Quercus ilex | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
石南花 | Calluna vulgaris | + | [ | ||
芦苇 | Phragmites sp. | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
构树 | Broussonetia papyrifera | - | [ | ||
枫香 | Liquidambar styraciflua | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
黑金合欢 | Acacia nigrescens | - | [ | ||
芦竹 | Arundo donax | - | [ | ||
冬青栎 | Quercus ilex | - | [ | ||
毛栎 | Quercu pubescens | - | [ | ||
百里香 | Thymus vulgaris | - | - | [ | |
美洲蓝桉 | Eucalyptus globulus | - | [ | ||
枫香 | Liquidambar styraciflua | + | [ | ||
美洲黑杨 | Populus deltoides | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
日本落叶松 | Larix kaempferi | - | [ | ||
杂交杨树 | Populus sp. | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
帚石南 | Calluna vulgaris | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
高山柳 | Salix sp. | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
美洲黑杨 | Populus deltoides | [ | |||
北美红栎 | Quercus rubra | [ |
表2 BVOC-CO2响应研究总结
Table 2 Summary of BVOC-CO2 response research
中文名 | 拉丁名 | 异戊 二烯 | MT | SQT | 参考 文献 |
---|---|---|---|---|---|
冬青栎 | Quercus ilex | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
石南花 | Calluna vulgaris | + | [ | ||
芦苇 | Phragmites sp. | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
构树 | Broussonetia papyrifera | - | [ | ||
枫香 | Liquidambar styraciflua | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
黑金合欢 | Acacia nigrescens | - | [ | ||
芦竹 | Arundo donax | - | [ | ||
冬青栎 | Quercus ilex | - | [ | ||
毛栎 | Quercu pubescens | - | [ | ||
百里香 | Thymus vulgaris | - | - | [ | |
美洲蓝桉 | Eucalyptus globulus | - | [ | ||
枫香 | Liquidambar styraciflua | + | [ | ||
美洲黑杨 | Populus deltoides | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
日本落叶松 | Larix kaempferi | - | [ | ||
杂交杨树 | Populus sp. | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
帚石南 | Calluna vulgaris | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
高山柳 | Salix sp. | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
美洲黑杨 | Populus deltoides | [ | |||
北美红栎 | Quercus rubra | [ |
实验方法 | OTC | FACE系统 | 便携式光合仪 |
---|---|---|---|
测量尺度 | 树种尺度 | 区域尺度 | 叶片尺度 |
CO2控制 | 不能持续控制,波动范围大 | 波动范围大,固定浓度控制 | 精准控制,误差很小 |
叶室和供气 | 底部或中部供气,顶部有开口 | 完全开放式,由自带的扩散系统供气 | 叶室完全密闭,CO2气瓶供气 |
流速 | 一般10 L·min-1以上 | 流速等于空气流速 | 0~2 L·min-1 |
BVOC采集 | 动态箱、静态箱 | 动态箱、静态箱 | 动态箱 |
适用情况 | 固定浓度长期熏蒸,并且 保持较稳定的环境状态 | 固定浓度长期熏蒸,只控制CO2浓度 | 快速CO2响应测量 |
局限性 | 受外界条件影响很大 | 无法控制除了CO2之外的环境参数 | 体积太小,一般情况下只能测量异戊二烯 |
表3 BVOCs-CO2响应研究手段
Table 3 Methods for BVOCs-CO2 response study
实验方法 | OTC | FACE系统 | 便携式光合仪 |
---|---|---|---|
测量尺度 | 树种尺度 | 区域尺度 | 叶片尺度 |
CO2控制 | 不能持续控制,波动范围大 | 波动范围大,固定浓度控制 | 精准控制,误差很小 |
叶室和供气 | 底部或中部供气,顶部有开口 | 完全开放式,由自带的扩散系统供气 | 叶室完全密闭,CO2气瓶供气 |
流速 | 一般10 L·min-1以上 | 流速等于空气流速 | 0~2 L·min-1 |
BVOC采集 | 动态箱、静态箱 | 动态箱、静态箱 | 动态箱 |
适用情况 | 固定浓度长期熏蒸,并且 保持较稳定的环境状态 | 固定浓度长期熏蒸,只控制CO2浓度 | 快速CO2响应测量 |
局限性 | 受外界条件影响很大 | 无法控制除了CO2之外的环境参数 | 体积太小,一般情况下只能测量异戊二烯 |
[1] | DANABASOGLU G, LAMARQUE J F, BACMEISTER J, et al. The community earth system model version 2 (CESM2)[J]. Journal of Advances in Modeling Earth Systems, 2020; 12(2): e2019MS001916. |
[2] | ZHAO T, WANG S, OUYANG C, et al. Artificial intelligence for geoscience: progress, challenges, and perspectives[J]. The Innovation, 2024, 5(5): 100691. |
[3] |
PARK J H, GOLDSTEIN A H, TIMKOVSKY J, et al. Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds[J]. Science, 2013, 341(6146): 643-647.
DOI PMID |
[4] | GUENTHER A B, HEWITT C N, ERICKSON D, et al. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D5): 8873-8892. |
[5] | ARNETH A, HARRISON S P, ZAEHLE S, et al. Terrestrial biogeochemical feedbacks in the climate system[J]. Nature Geoscience, 2010, 3(8): 525-532. |
[6] | PEÑUELAS J, MARINO G, LLUSIA J, et al. Photochemical reflectance index as an indirect estimator of foliar isoprenoid emissions at the ecosystem level[J]. Nature Communications, 2013, 4(1): 2604. |
[7] | RAP A, SCOTT C E, REDDINGTON C L, et al. Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization[J]. Nature Geoscience, 2018, 11(9): 640-644. |
[8] | BONAN GB, DONEY SC. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models[J]. Science, 2018, 359(6375): eaam8328. |
[9] |
JOKINEN T, BERNDT T, MAKKONEN R, et al. Production of extremely low volatile organic compounds from biogenic emissions: measured yields and atmospheric implications[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(23): 7123-7128.
DOI PMID |
[10] | GUENTHER A B, ZIMMERMAN P R, HARLEY P C, et al. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D7): 12609-12617. |
[11] | ZANNONI N, LEPPLA D, LEMBO SILVEIRA DE ASSIS P I, et al. Surprising chiral composition changes over the Amazon rainforest with height, time and season[J]. Communications Earth & Environment, 2020, 1(1): 4. |
[12] | HEALD C L, WILKINSON M J, MONSON R K, et al. Response of isoprene emission to ambient CO2 changes and implications for global budgets[J]. Global Change Biology, 2009, 15(5): 1127-1140. |
[13] | SANAEI A, HERRMANN H, ALSHAABI L, et al. Changes in biodiversity impact atmospheric chemistry and climate through plant volatiles and particles[J]. Communications Earth & Environment, 2023, 4(1): 445. |
[14] | BAMBERGER I, RUEHR N K, SCHMITT M, et al. Isoprene emission and photosynthesis during heatwaves and drought in black locust[J]. Biogeosciences, 2017, 14(15): 3649-3667. |
[15] | EDWARDS P M, AIKIN K C, DUBE W P, et al. Transition from high- to low-NOx control of night-time oxidation in the southeastern US[J]. Nature Geoscience, 2017, 10(7): 490-495. |
[16] |
SHRIVASTAVA M, ANDREAE M O, ARTAXO P, et al. Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest[J]. Nature Communications, 2019, 10(1): 1046.
DOI PMID |
[17] | WANG P, ZHANG Y, GONG H, et al. Updating biogenic volatile organic compound (BVOC) emissions with locally measured emission factors in South China and the effect on modeled ozone and secondary organic aerosol production[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(24): e2023JD039928. |
[18] | ZENG J, ZHANG Y, PANG W, et al. Optimizing in-situ measurement of representative BVOC emission factors considering intraspecific variability[J]. Geophysical Research Letters, 2024, 51(11): e2024GL108870. |
[19] | WU J, LONG J, LIU H, et al. Biogenic volatile organic compounds from 14 landscape woody species: tree species selection in the construction of urban greenspace with forest healthcare effects[J]. Journal of Environmental Management, 2021, 300: 113761. |
[20] | SHARKEY T D, MONSON R K. Isoprene research-60 years later, the biology is still enigmatic[J]. Plant, Cell & Environment, 2017, 40(9): 1671-1678. |
[21] | GUENTHER A B, MONSON R K, FALL R. Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development[J]. Journal of Geophysical Research: Atmospheres, 1991, 96(D6): 10799-10808. |
[22] | BRILLI F, HÖRTNAGL L, BAMBERGER I, et al. Qualitative and quantitative characterization of volatile organic compound emissions from cut grass[J]. Environmental Science & Technology, 2012, 46(7): 3859-3865. |
[23] | HARLEY P, ELLER A, GUENTHER A, et al. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance[J]. Oecologia, 2014, 176: 35-55. |
[24] |
LUN X, LIN Y, CHAI F, et al. Reviews of emission of biogenic volatile organic compounds (BVOCs) in Asia[J]. Journal of Environmental Sciences, 2020, 95: 266-277.
DOI PMID |
[25] | SUN Z, SHEN Y, NIINEMETS Ü. Responses of isoprene emission and photochemical efficiency to severe drought combined with prolonged hot weather in hybrid Populus[J]. Journal of Experimental Botany, 2020, 71(22): 7364-7381. |
[26] | CANAVAL E, MILLET DB, ZIMMER I, et al. Rapid conversion of isoprene photooxidation products in terrestrial plants[J]. Communications Earth & Environment, 2020, 1(1): 44. |
[27] | EDTBAUER A, PFANNERSTILL E Y, PIRES FLORENTINO A P, et al. Cryptogamic organisms are a substantial source and sink for volatile organic compounds in the Amazon region[J]. Communications Earth & Environment, 2021, 2(1): 258. |
[28] |
WANG B, SHUGART H H, LERDAU M T. Complexities between plants and the atmosphere[J]. Nature Geoscience, 2019, 12(9): 693-694.
DOI |
[29] |
DI CARLO P, BRUNE W H, MARTINEZ M, et al. Missing OH reactivity in a forest: evidence for unknown reactive biogenic VOCs[J]. Science, 2004, 304(5671): 722-725.
PMID |
[30] | DADA L, STOLZENBURG D, SIMON M, et al. Role of sesquiterpenes in biogenic new particle formation[J]. Science Advances, 2023, 9(36): eadi5297. |
[31] | TSIGARIDIS K, DASKALAKIS N, KANAKIDOU M, et al. The AeroCom evaluation and intercomparison of organic aerosol in global models[J]. Atmospheric Chemistry and Physics, 2014, 14(19): 10845-10895. |
[32] | SPORRE M K, BLICHNER S M, SCHRÖDNER R, et al. Large difference in aerosol radiative effects from BVOC-SOA treatment in three earth system models[J]. Atmospheric Chemistry and Physics, 2020, 20(14): 8953-8973. |
[33] |
CLAEYS M, GRAHAM B, VAS G, et al. Formation of secondary organic aerosols through photooxidation of isoprene[J]. Science, 2004, 303(5661): 1173-1176.
PMID |
[34] | CAO J, SITU S, HAO Y, et al. Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981-2018 in China[J]. Atmospheric Chemistry and Physics, 2022, 22( 4): 2351-2364. |
[35] |
SCOTT C E, MONKS S A, SPRACKLEN D V, et al. Impact on short-lived climate forcers increases projected warming due to deforestation[J]. Nature Communications, 2018, 9(1): 157.
DOI PMID |
[36] | FU B, GASSER T, LI B, et al. Short-lived climate forcers have long-term climate impacts via the carbon-climate feedback[J]. Nature Climate Change, 2020, 10(9): 851-855. |
[37] |
TUNVED P, HANSSON H-C, KERMINEN V-M, et al. High natural aerosol loading over boreal forests[J]. Science, 2006, 312(5771): 261-263.
PMID |
[38] | TANG J, ZHOU P, MILLER P A, et al. High-latitude vegetation changes will determine future plant volatile impacts on atmospheric organic aerosols[J]. NPJ Climate and Atmospheric Science, 2023, 6(1): 147. |
[39] | MACHADO L A T, UNFER G R, BRILL S, et al. Frequent rainfall-induced new particle formation within the canopy in the Amazon rainforest[J]. Nature Geoscience, 2024, 17: 1225-1232. |
[40] | UNGER N. Human land-use-driven reduction of forest volatiles cools global climate[J]. Nature Climate Change, 2014, 4(10): 907-910. |
[41] |
XU L, GUO H, BOYD C M, et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 37-42.
DOI PMID |
[42] |
PYE H O T, WARD-CAVINESS C K, MURPHY B N, et al. Secondary organic aerosol association with cardiorespiratory disease mortality in the United States[J]. Nature Communications, 2021, 12(1): 7215.
DOI PMID |
[43] |
ZHU J, PENNER J E, YU F, et al. Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change[J]. Nature Communications, 2019, 10(1): 423.
DOI PMID |
[44] | WANG N, HUANG X, XU J, et al. Typhoon-boosted biogenic emission aggravates cross-regional ozone pollution in China[J]. Science Advances, 2022, 8(2): eabl6166. |
[45] | WANG H, WU K, LIU Y, et al. Role of heat wave-induced biogenic VOC enhancements in persistent ozone episodes formation in Pearl River Delta[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(12): e2020JD034317. |
[46] | CAO Y, YUE X, LEI Y, et al. Identifying the drivers of modeling uncertainties in isoprene emissions: schemes versus meteorological forcings[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(18): 2020JD034242. |
[47] | GE J, HUANG X, ZAN B, et al. Local surface cooling from afforestation amplified by lower aerosol pollution[J]. Nature Geoscience, 2023, 16(9): 781-788. |
[48] | KRAMSHØJ M, VEDEL-PETERSEN I, SCHOLLERT M, et al. Large increases in Arctic biogenic volatile emissions are a direct effect of warming[J]. Nature Geoscience, 2016, 9(5): 349-352. |
[49] | JUNNINEN H, AHONEN L, BIANCHI F, et al. Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests[J]. Communications Earth & Environment, 2022, 3(1): 93. |
[50] | KRAMSHØJ M, ALBERS C N, HOLST T, et al. Biogenic volatile release from permafrost thaw is determined by the soil microbial sink[J]. Nature Communications, 2018, 9(1): 3412. |
[51] | SECO R, NAGALINGAM S, JOO E, et al. The UCI Fluxtron: a versatile dynamic chamber and software system for biosphere-atmosphere exchange research[J]. Chemosphere, 2024, 364: 143061. |
[52] | MATERIC D, BRUHN D, TURNER C, et al. Methods in plant foliar volatile organic compounds research[J]. Applications in Plant Sciences, 2015, 3(12): 1500044. |
[53] | ZENG J, ZHANG Y, ZHANG H, et al. Design and characterization of a semi-open dynamic chamber for measuring biogenic volatile organic compound (BVOC) emissions from plants[J]. Atmospheric Measurement Techniques, 2022, 15(1): 79-93. |
[54] | ACTON W J F, JUD W, GHIRARDO A, et al. The effect of ozone fumigation on the biogenic volatile organic compounds (BVOCs) emitted from Brassica napus above- and below-ground[J]. Plos One, 2018, 13(12): e0208825. |
[55] |
LUPKE M, STEINBRECHER R, LEUCHNER M, et al. The tree drought emission MONitor (Tree DEMON), an innovative system for assessing biogenic volatile organic compounds emission from plants[J]. Plant Methods, 2017, 13: 14.
DOI PMID |
[56] | MCKINNEY K A, WANG D, YE J, et al. A sampler for atmospheric volatile organic compounds by copter unmanned aerial vehicles[J]. Atmospheric Measurement Techniques, 2019, 12(6): 3123-3135. |
[57] | ARCHIBALD A T. Wake-up call for isoprene emissions[J]. Nature Geoscience, 2011, 4: 659-660. |
[58] |
PFANNERSTILL E Y, ARATA C, ZHU Q, et al. Temperature-dependent emissions dominate aerosol and ozone formation in Los Angeles[J]. Science, 2024, 384(6702): 1324-1329.
DOI PMID |
[59] |
FARMER D K, RICHES M. Measuring biosphere-atmosphere exchange of short-lived climate forcers and their precursors[J]. Accounts of Chemical Research, 2020, 53(8): 1427-1435.
DOI PMID |
[60] | THOLL D, BOLAND W, HANSEL A, et al. Practical approaches to plant volatile analysis[J]. The Plant Journal, 2006, 45(4): 540-560. |
[61] | ORTEGA J, HELMIG D. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques: part A[J]. Chemosphere, 2008, 72(3): 343-364. |
[62] | GUENTHER A B, JIANG X, HEALD C L, et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions[J]. Geoscientific Model Development, 2012, 5(6): 1471-1492. |
[63] | NIINEMETS U, KUHN U, HARLEY P C, et al. Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols[J]. Biogeosciences, 2011, 8(8): 2209-2246. |
[64] | SONG W, STAUDT M, BOURGEOIS I, et al. Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature[J]. Biogeosciences, 2014, 11(5): 1435-1447. |
[65] | RICHES M, LEE D, FARMER D K. Simultaneous leaf-level measurement of trace gas emissions and photosynthesis with a portable photosynthesis system[J]. Atmospheric Measurement Techniques, 2020, 13(8): 4123-4139. |
[66] | HELMIG D, BOCQUET F, POLLMANN J, et al. Analytical techniques for sesquiterpene emission rate studies in vegetation enclosure experiments[J]. Atmospheric Environment, 2004, 38(4): 557-572. |
[67] | ORTEGA J, HELMIG D, DALY R W, et al. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques: part B: applications[J]. Chemosphere, 2008, 72(3): 365-380. |
[68] | KOLARI P, BACK J, TAIPALE R, et al. Evaluation of accuracy in measurements of VOC emissions with dynamic chamber system[J]. Atmospheric Environment, 2012, 62: 344-351. |
[69] | DINDORF T, KUHN U, GANZEVELD L, et al. Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D16): D16305. |
[70] | SCHAUB A, BLANDE J D, GRAUS M, et al. Real-time monitoring of herbivore induced volatile emissions in the field[J]. Physiologia Plantarum, 2010, 138(2): 123-133. |
[71] | FENG Z, YUAN X, FARES S, et al. Isoprene is more affected by climate drivers than monoterpenes: a meta-analytic review on plant isoprenoid emissions[J]. Plant, Cell & Environment, 2019, 42(6): 1939-1949. |
[72] | POLLMANN J, ORTEGA J, HELMIG D. Analysis of atmospheric sesquiterpenes: sampling losses and mitigation of ozone interferences[J]. Environmental Science & Technology, 2005, 39(24): 9620-9629. |
[73] | PACIFICO F, HARRISON S P, JONES C D, et al. Isoprene emissions and climate[J]. Atmospheric Environment, 2009, 43(39): 6121-6135. |
[74] | GU D, GUENTHER A B, SHILLING J E, et al. Airborne observations reveal elevational gradient in tropical forest isoprene emissions[J]. Nature Communications, 2017, 8(1): 15541. |
[75] | GUENTHER A B, HILLS A J. Eddy covariance measurement of isoprene fluxes[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D11): 13145-13152. |
[76] | FISCHER L, BREITENLECHNER M, CANAVAL E, et al. First eddy covariance flux measurements of semi-volatile organic compounds with the PTR3-TOF-MS[J]. Atmospheric Measurement Techniques, 2021, 14(12): 8019-8039. |
[77] | POTOSNAK M J, LESTOURGEON L, PALLARDY S G, et al. Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress[J]. Atmospheric Environment, 2014, 84: 314-322. |
[78] | SECO R, HOLST T, DAVIE-MARTIN C L, et al. Strong isoprene emission response to temperature in tundra vegetation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(38): e2118014119. |
[79] | JARDINE K, SERRANO A Y, ARNETH A, et al. Within-canopy sesquiterpene ozonolysis in Amazonia[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D19): D19301. |
[80] |
BATISTA C E, YE J, RIBEIRO I O, et al. Intermediate-scale horizontal isoprene concentrations in the near-canopy forest atmosphere and implications for emission heterogeneity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19318-19323.
DOI PMID |
[81] | YE J, BATISTA C E, ZHAO T, et al. River winds and transport of forest volatiles in the Amazonian riparian ecoregion[J]. Environmental Science & Technology, 2022, 56(17): 12667-12677. |
[82] | NIINEMETS U, MONSON R K, ARNETH A, et al. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling[J]. Biogeosciences, 2010, 7(6): 1809-1832. |
[83] | GUENTHER A B, KARL T, HARLEY P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature)[J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3181-3210. |
[84] | HARLEY P, GUENTHER A, ZIMMERMAN P. Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves[J]. Tree Physiology, 1996, 16(1/2): 25-32. |
[85] | HARLEY P, VASCONCELLOS P, VIERLING L, et al. Variation in potential for isoprene emissions among Neotropical forest sites[J]. Global Change Biology, 2004, 10(5): 630-650. |
[86] | KUHN U, ROTTENBERGER S, BIESENTHAL T, et al. Isoprene and monoterpene emissions of Amazonian tree species during the wet season: direct and indirect investigations on controlling environmental functions[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D20): 8071. |
[87] | KARL T, GUENTHER A, YOKELSON R J, et al. The tropical forest and fire emissions experiment: emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D18): D18302. |
[88] | SARKAR C, GUENTHER A B, PARK J H, et al. PTR-TOF-MS eddy covariance measurements of isoprene and monoterpene fluxes from an eastern Amazonian rainforest[J]. Atmospheric Chemistry and Physics, 2020, 20(12): 7179-7191. |
[89] | ZENG J, ZHANG Y, MU Z, et al. Temperature and light dependency of isoprene and monoterpene emissions from tropical and subtropical trees: field observations in south China[J]. Applied Geochemistry, 2023, 155: 105727. |
[90] | GERON C, OWEN S, GUENTHER A, et al. Volatile organic compounds from vegetation in southern Yunnan Province, China: emission rates and some potential regional implications[J]. Atmospheric Environment, 2006, 40(10): 1759-1773. |
[91] | OKU H, FUKUTA M, IWASAKI H, et al. Modification of the isoprene emission model G93 for tropical tree Ficus virgata[J]. Atmospheric Environment, 2008, 42(38), 8747-8754, 2008. |
[92] | JARDINE A B, JARDINE K J, FUENTES J D, et al. Highly reactive light-dependent monoterpenes in the Amazon[J]. Geophysical Research Letters, 2015, 42(5): 1576-1583. |
[93] | JARDINE K J, JARDINE A B, HOLM J A, et al. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming[J]. Plant, Cell & Environment, 2017, 40(3): 441-452. |
[94] | MU Z, LLUSIÀ J, ZENG J, et al. An overview of the isoprenoid emissions from tropical plant species[J]. Frontiers in Plant Science, 2022, 13: 833030. |
[95] | BYRON J, KREUZWIESER J, PURSER G, et al. Chiral monoterpenes reveal forest emission mechanisms and drought responses[J]. Nature, 2022, 609(7926): 307-312. |
[96] |
TINGEY D T, MANNING M, GROTHAUS L C, et al. Influence of light and temperature on monoterpene emission rates from slash pine[J]. Plant Physiology, 1980, 65(5): 797-801.
DOI PMID |
[97] | ZENG J, SONG W, ZHANG Y, et al. Emissions of isoprenoids from dominant tree species in subtropical China[J]. Frontiers in Forests and Global Change, 2022, 5: 1089676. |
[98] | SAKULYANONTVITTAYA T, DUHL T, WIEDINMYER C, et al. Monoterpene and sesquiterpene emission estimates for the United States[J]. Environmental Science & Technology, 2008, 42(5): 1623-1629. |
[99] | WANG Y-F, OWEN S M, LI Q-J, et al. Monoterpene emissions from rubber trees (Hevea brasiliensis) in a changing landscape and climate: chemical speciation and environmental control[J]. Global Change Biology, 2007, 13(11): 2270-2282. |
[100] | WILSKE B, CAO K F, SCHEBESKE G, et al. Isoprenoid emissions of trees in a tropical rainforest in Xishuangbanna, SW China[J]. Atmospheric Environment, 2007, 41(18): 3748-3757. |
[101] | SCHUH G, HEIDEN A C, HOFFMANN T, et al. Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity[J]. Journal of Atmospheric Chemistry, 1997, 27(3): 291-318. |
[102] | HELMIG D, ORTEGA J, GUENTHER A, et al. Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US[J]. Atmospheric Environment, 2006, 40(22), 4150-4157. |
[103] | TARVAINEN V, HAKOLA H, HELLEN H, et al. Temperature and light dependence of the VOC emissions of Scots pine[J]. Atmospheric Chemistry and Physics, 2005, 5(4): 989-998. |
[104] | STAUDT M, BOURGEOIS I, AL HALABI R, et al. New insights into the parametrization of temperature and light responses of mono- and sesquiterpene emissions from Aleppo pine and rosemary[J]. Atmospheric Environment, 2017, 152: 212-221. |
[105] |
NIINEMETS U, LORETO F, REICHSTEIN M. Physiological and physicochemical controls on foliar volatile organic compound emissions[J]. Trends in Plant Science, 2004, 9(4): 180-186.
PMID |
[106] | OWEN S M, HARLEY P, GUENTHER A, et al. Light dependency of VOC emissions from selected Mediterranean plant species[J]. Atmospheric Environment, 2002, 36(19): 3147-3159. |
[107] | OTU-LARBI F, BOLAS C G, FERRACCI V, et al. Modelling the effect of the 2018 summer heatwave and drought on isoprene emissions in a UK woodland[J]. Global Change Biology, 2020, 26(4): 2320-2335. |
[108] | FERRACCI V, BOLAS C G, FRESHWATER R A, et al. Continuous isoprene measurements in a UK temperate forest for a whole growing season: effects of drought stress during the 2018 heatwave[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088885. |
[109] | WANG H, WELCH A, NAGALINGAM S, et al. Arctic heatwaves could significantly influence the isoprene emissions from shrubs[J]. Geophysical Research Letters, 2024, 51(2): e2023GL107599. |
[110] |
WANG H, WELCH A M, NAGALINGAM S, et al. High temperature sensitivity of Arctic isoprene emissions explained by sedges[J]. Nature Communications, 2024, 15(1): 6144.
DOI PMID |
[111] | WANG H, NAGALINGAM S, WELCH A M, et al. Heat waves may trigger unexpected surge in aerosol and ozone precursor emissions from sedges in urban landscapes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(45): e2412817121. |
[112] | KIVIMAENPAA M, GHIMIRE R P, SUTINEN S, et al. Increases in volatile organic compound emissions of Scots pine in response to elevated ozone and warming are modified by herbivory and soil nitrogen availability[J]. European Journal of Forest Research, 2016, 135: 343-360. |
[113] | PIKKARAINEN L, NISSINEN K, GHIMIRE R P, et al. Responses in growth and emissions of biogenic volatile organic compounds in Scots pine, Norway spruce and silver birch seedlings to different warming treatments in a controlled field experiment[J]. Science of the Total Environment, 2022, 821: 153277. |
[114] | TANG J, VALOLAHTI H, KIVIMAENPAA M, et al. Acclimation of biogenic volatile organic compound emission from subarctic heath under long-term moderate warming[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(1): 95-105. |
[115] | LINDWALL F, SCHOLLERT M, MICHELSEN A, et al. Fourfold higher tundra volatile emissions due to arctic summer warming[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(3): 895-902. |
[116] | WILKINSON M J, MONSON R K, TRAHAN N, et al. Leaf isoprene emission rate as a function of atmospheric CO2 concentration[J]. Global Change Biology, 2009, 15(5): 1189-1200. |
[117] |
PEñUELAS J, STAUDT M. BVOCs and global change[J]. Trends in Plant Science, 2010, 15(3): 133-144.
DOI PMID |
[118] | VUORINEN T, NERG A M, VAPAAVUORI E, et al. Emission of volatile organic compounds from two silver birch (Betula pendula Roth) clones grown under ambient and elevated CO2 and different O3 concentrations[J]. Atmospheric Environment, 2005, 39(7): 1185-1197. |
[119] | LORETO F, FISCHBACH R J, SCHNITZLER J P, et al. Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations[J]. Global Change Biology, 2001, 7(6): 709-717. |
[120] | ARNETH A, NIINEMETS Ü, PRESSLEY S, et al. Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction[J]. Atmospheric Chemistry and Physics, 2007, 7(1): 31-53. |
[121] |
PEÑUELAS J, LLUSIÀ J. BVOCs: plant defense against climate warming?[J]. Trends in Plant Science, 2003, 8(3): 105-109.
PMID |
[122] | CALFAPIETRA C, MUGNOZZA G S, KARNOSKY D F, et al. Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3[J]. New Phytologist, 2008, 179(1): 55-61. |
[123] | CALFAPIETRA C, WIBERLEY A E, FALBEL T G, et al. Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees[J]. Plant Cell and Environment, 2007, 30(5): 654-661. |
[124] |
LI T, TIIVA P, RINNAN A, et al. Long-term effects of elevated CO2, nighttime warming and drought on plant secondary metabolites in a temperate heath ecosystem[J]. Annals of Botany, 2020, 125(7): 1065-1075.
DOI PMID |
[125] | SCHOLEFIELD P A, DOICK K J, HERBERT B M J, et al. Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring[J]. Plant, Cell & Environment, 2004, 27(4): 393-401. |
[126] |
DARBAH J N, SHARKEY T D, CALFAPIETRA C, et al. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide[J]. Environmental Pollution, 2010, 158(4): 1008-1014.
DOI PMID |
[127] | MONSON R K, TRAHAN N, ROSENSTIEL T N, et al. Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations[J]. Philosophical Transactions of The Royal Society A: Mathematical Physical and Engineering Sciences, 2007, 365(1856): 1677-1695. |
[128] | POSSELL M, HEWITT C N. Isoprene emissions from plants are mediated by atmospheric CO2 concentrations[J]. Global Change Biology, 2011, 17(4): 1595-1610. |
[129] | POSSELL M, HEWITT C N, BEERLING D J. The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants[J]. Global Change Biology, 2005, 11(1): 60-69. |
[130] | RAPPARINI F, BARALDI R, MIGLIETTA F, et al. Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment[J]. Plant, Cell & Environment, 2004, 27(4): 381-391. |
[131] | VURRO E, BRUNI R, BIANCHI A, et al. Elevated atmospheric CO2 decreases oxidative stress and increases essential oil yield in leaves of Thymus vulgaris grown in a mini-FACE system[J]. Environmental and Experimental Botany, 2009, 65(1): 99-106. |
[132] | MOCHIZUKI T, WATANABE M, KOIKE T, et al. Monoterpene emissions from needles of hybrid larch F1 (Larix gmelinii var. japonica × Larix kaempferi) grown under elevated carbon dioxide and ozone[J]. Atmospheric Environment, 2017, 148: 197-202. |
[133] | GUIDOLOTTI G, CALFAPIETRA C, LORETO F. The relationship between isoprene emission, CO2 assimilation and water use efficiency across a range of poplar genotypes[J]. Physiologia Plantarum, 2011, 142(3): 297-304. |
[134] |
RASULOV B, HUEVE K, VAELBE M, et al. Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen[J]. Plant Physiology, 2009, 151(1): 448-460.
DOI PMID |
[135] | TIIVA P, TANG J, MICHELSEN A, et al. Monoterpene emissions in response to long-term night-time warming, elevated CO2 and extended summer drought in a temperate heath ecosystem[J]. Science of the Total Environment, 2017, 580: 1056-1067. |
[136] | SUN Z, NIINEMETS Ü, HÜVE K, et al. Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration[J]. Global Change Biology, 2012, 18(11): 3423-3440. |
[137] | SUN Z, NIINEMETS Ü, HUEVE K, et al. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides)[J]. New Phytologist, 2013, 198(3): 788-800. |
[138] |
AUSTEN N, WALKER H J, LAKE J A, et al. The regulation of plant secondary metabolism in response to abiotic stress: interactions between heat shock and elevated CO2[J]. Frontiers in Plant Science, 2019, 10: 1463.
DOI PMID |
[139] | POTOSNAK M J, LESTOURGEON L, NUNEZ O. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO2 concentration[J]. Science of the Total Environment, 2014, 481: 352-359. |
[140] | STAUDT M, DAUSSY J, INGABIRE J, et al. Growth and actual leaf temperature modulate CO2 responsiveness of monoterpene emissions from holm oak in opposite ways[J]. Biogeosciences, 2022, 19(20): 4945-4963. |
[141] | LANTZ A T, ALLMAN J, WERADUWAGE S M, et al. Isoprene: new insights into the control of emission and mediation of stress tolerance by gene expression[J]. Plant, Cell & Environment, 2019, 42(10): 2808-2826. |
[142] | LANTZ A T, SOLOMON C, GOG L, et al. Isoprene suppression by CO2 is not due to triose phosphate utilization (TPU) limitation[J]. Frontiers in Forests and Global Change, 2019, 2: 8. |
[143] | YANG W, CAO J, WU Y, et al. Review on plant terpenoid emissions worldwide and in China[J]. Science of the Total Environment, 2021, 787: 147454. |
[144] | ROSENSTIEL T N, POTOSNAK M J, GRIFFIN K L, et al. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem[J]. Nature, 2003, 421(6920): 256-259. |
[145] |
AFFEK H P, YAKIR D. Protection by isoprene against singlet oxygen in leaves[J]. Plant Physiology, 2002, 129(1): 269-277.
PMID |
[146] | MONSON R K, NEICE A A, TRAHAN N A, et al. Interactions between temperature and intercellular CO2 concentration in controlling leaf isoprene emission rates[J]. Plant, Cell & Environment, 2016, 39(11): 2404-2413. |
[147] | NIINEMETS Ü, RASULOV B, TALTS E. CO2-responsiveness of leaf isoprene emission: why do species differ?[J]. Plant, Cell & Environment, 2021, 44(9): 3049-3063. |
[148] | SAHU A, MOSTOFA M G, WERADUWAGE S M, et al. Hydroxymethylbutenyl diphosphate accumulation reveals MEP pathway regulation for high CO2-induced suppression of isoprene emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(41): e2309536120. |
[149] | GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70: 153-226. |
[150] | LIN Q, ZHU J, WANG Q, et al. Patterns and drivers of atmospheric nitrogen deposition retention in global forests[J]. Global Change Biology, 2024, 30(7): e17410. |
[151] |
MAO J, XING Y, MA H, et al. Research progress of nitrogen deposition effect on plant growth[J]. Chinese Agricultural Science Bulletin, 2017, 33(29): 42-48.
DOI |
[152] |
LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371-379.
PMID |
[153] |
ELSER J J, FAGAN W F, KERKHOFF A J, et al. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change[J]. New Phytologist, 2010, 186(3): 593-608.
DOI PMID |
[154] |
LAOTHAWORNKITKUL J, TAYLOR J E, PAUL N D, et al. Biogenic volatile organic compounds in the Earth system[J]. New Phytologist, 2009, 183(1): 27-51.
DOI PMID |
[155] | LITVAK M E, LORETO F, HARLEY P C, et al. The response of isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees[J]. Plant, Cell & Environment, 1996, 19(5): 549-559. |
[156] | YUAN X, FENG Z, SHANG B, et al. Ozone exposure, nitrogen addition and moderate drought dynamically interact to affect isoprene emission in poplar[J]. Science of the Total Environment, 2020, 734: 139368. |
[157] |
SHARKEY T D, WIBERLEY A E, DONOHUE A R. Isoprene emission from plants: why and how[J]. Annals of Botany, 2008, 101(1): 5-18.
DOI PMID |
[158] | LLUSIA J, BERMEJO-BERMEJO V, CALVETE-SOGO H, et al. Decreased rates of terpene emissions in Ornithopus compressus L. and Trifolium striatum L. by ozone exposure and nitrogen fertilization[J]. Environmental Pollution, 2014, 194: 69-77. |
[159] | HUANG X, LAI J, LIU Y, et al. Biogenic volatile organic compound emissions from Pinus massoniana and Schima superba seedlings: their responses to foliar and soil application of nitrogen[J]. Science of the Total Environment, 2020, 705: 135761. |
[160] | BRYANT J P, CHAPIN F S, KLEIN D R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory[J]. Oikos, 1983, 40: 357-368. |
[161] | NUNES-NESI A, FERNIE A R, STITT M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions[J]. Molecular Plant, 2010, 3(6): 973-996. |
[162] |
NAGEGOWDA D A. Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation[J]. FEBS Letters, 2010, 584(14): 2965-2973.
DOI PMID |
[163] | CAMPOS F G, VIEIRA M A R, AMARO A C E, et al. Nitrogen in the defense system of Annona emarginata (Schltdl.) H. Rainer[J]. Plos One, 2019, 14(6): e0217930. |
[164] |
NEILL S, BARROS R, BRIGHT J, et al. Nitric oxide, stomatal closure, and abiotic stress[J]. Journal of Experimental Botany, 2008, 59(2): 165-176.
DOI PMID |
[165] |
ROSALES E P, IANNONE M F, GROPPA M D, et al. Nitric oxide inhibits nitrate reductase activity in wheat leaves[J]. Plant Physiology and Biochemistry, 2011, 49(2): 124-130.
DOI PMID |
[166] | MANNINEN A M, UTRIAINEN J, HOLOPAINEN T, et al. Terpenoids in the wood of Scots pine and Norway spruce seedlings exposed to ozone at different nitrogen availability[J]. Canadian Journal of Forest Research, 2002, 32(12): 2140-2145. |
[167] | SINGH A, SINGH R, MINA U, et al. Effects of different doses of nitrogen treatments on isoprene emission from Ficus glomerata[J]. Journal of Applied and Natural Science, 2010, 2(1): 13-16. |
[168] | ODAK J A, OWUOR P O, MANG’URO L O A, et al. Influence of nitrogen fertilisation on red spider mites (Oligonychus coffeae Nietner) and overhead volatile organic compounds in tea (Camellia sinensis)[J]. International Journal of Tea Science, 2017, 13(1/2): 52-59. |
[169] | YUAN X, SHANG B, XU Y, et al. No significant interactions between nitrogen stimulation and ozone inhibition of isoprene emission in Cathay poplar[J]. Science of the Total Environment, 2017, 601: 222-229. |
[170] | 俞飞. 模拟氮沉降对雌雄美洲黑杨光合特性和异戊二烯释放的影响[J]. 林业科技通讯, 2018(5): 3-6. |
[171] | HU B, JAROSCH A-M, GAUDER M, et al. VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: a comparison of Miscanthus and Salix[J]. Environmental Pollution, 2018, 237: 205-217. |
[172] | PäIVI T, ELINA H, ANNE K. Impact of warming, moderate nitrogen addition and bark herbivory on BVOC emissions and growth of Scots pine (Pinus sylvestris L.) seedlings[J]. Tree Physiology, 2018, 38(10): 1461-1475. |
[173] | MU Z, LLUSIA J, LIU D, et al. Profile of foliar isoprenoid emissions from Mediterranean dominant shrub and tree species under experimental nitrogen deposition[J]. Atmospheric Environment, 2019, 216: 116951. |
[174] | HOSHIKA Y, BRILLI F, BARALDI R, et al. Ozone impairs the response of isoprene emission to foliar nitrogen and phosphorus in poplar[J]. Environmental Pollution, 2020, 267: 115679. |
[175] | Y.C. D, J.B. Y, H.A. G, et al. Volatile organic compound profiling of Capsicum annuum var. longum grown under different concentrations of nitrogen[J]. Hellenic Plant Protection Journal, 2021, 14: 77-88. |
[176] | MA H, WU Q, FU Y, et al. Short-term response of BVOCs emissions from several dominant tropical rainforest tree species in Hainan Island to simulated nitrogen deposition[J]. Acta Ecologica Sinica, 2023, 43(3): 1073-1089. |
[177] | YANG W, ZHANG B, WU Y, et al. Effects of soil drought and nitrogen deposition on BVOC emissions and their O3 and SOA formation for Pinus thunbergii[J]. Environmental Pollution, 2023, 316: 120693. |
[178] | LIU S, GONG D, WANG Y, et al. Responses of plant volatile emissions to increasing nitrogen deposition: a pilot study on Eucalyptus urophylla[J]. Science of the Total Environment, 2024, 952: 175887. |
[179] | SONG X, HE H, XIE X, et al. Effects of simulated nitrogen deposition on BVOCs emission dynamics and O3 and SOA production potentials in seedlings of three Ficus species[J]. Atmospheric Pollution Research, 2024, 15(9): 102202. |
[180] |
HOULE D, MARTY C, DUCHESNE L. Response of canopy nitrogen uptake to a rapid decrease in bulk nitrate deposition in two eastern Canadian boreal forests[J]. Oecologia, 2015, 177: 29-37.
DOI PMID |
[181] | GAIGE E, DAIL D B, HOLLINGER D Y, et al. Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest[J]. Ecosystems, 2007, 10: 1133-1147. |
[182] | ORMEñO E, GOLDSTEIN A, NIINEMETS Ü. Extracting and trapping biogenic volatile organic compounds stored in plant species[J]. TrAC Trends in Analytical Chemistry, 2011, 30(7): 978-989. |
[183] | BRUMME R, LEIMCKE U, MATZNER E. Interception and uptake of NH4 and NO3 from wet deposition by above-ground parts of young beech (Fagus silvatica L.) trees[J]. Plant and Soil, 1992, 142: 273-279. |
[184] | HOBBIE E A, WERNER R A. Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis[J]. New Phytologist, 2004, 161(2): 371-385. |
[185] | COUSINS A B, BLOOM A J. Oxygen consumption during leaf nitrate assimilation in a C3 and C4 plant: the role of mitochondrial respiration[J]. Plant, Cell & Environment, 2004, 27(12): 1537-1545. |
[186] | BOND W J. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence[J]. Biological Journal of the Linnean Society, 1989, 36(3): 227-249. |
[187] | CARSLAW K, BOUCHER O, SPRACKLEN D, et al. A review of natural aerosol interactions and feedbacks within the Earth system[J]. Atmospheric Chemistry and Physics, 2010, 10(4): 1701-1737. |
[188] | KOOPERMAN G J, PRITCHARD M S, GHAN S J, et al. Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the community atmosphere model 5[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D23): D23204. |
[189] |
SPORRE M K, BLICHNER S M, KARSET I H, et al. BVOC-aerosol-climate feedbacks investigated using NorESM[J]. Atmospheric Chemistry and Physics, 2019, 19(7): 4763-4782.
DOI |
[190] |
RODERICK M L, FARQUHAR G D, BERRY S L, et al. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation[J]. Oecologia, 2001, 129: 21-30.
DOI PMID |
[191] | MENTEL T F, KLEIST E, ANDRES S, et al. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks[J]. Atmospheric Chemistry and Physics, 2013, 13(17): 8755-8770. |
[192] | MAKKONEN R, ASMI A, KERMINEN V M, et al. BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2[J]. Atmospheric Chemistry and Physics, 2012, 12(21): 10077-10096. |
[193] | 冯兆忠, 袁相洋. 臭氧浓度升高对植物源挥发性有机化合物(BVOCs)影响的研究进展[J]. 环境科学, 2018, 39(11): 5257-5265. |
[194] | AGATHOKLEOUS E, FENG Z, OKSANEN E, et al. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity[J]. Science Advances, 2020, 6(33): eabc1176. |
[195] | LLUSIA J, PENUELAS J, GIMENO B. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations[J]. Atmospheric Environment, 2002, 36(24): 3931-3938. |
[196] | NIINEMETS Ü, MONSON R K. Biology, controls and models of tree volatile organic compound emissions[M]. Dordrecht: Springer, 2013. |
[197] | WITTIG V E, AINSWORTH E A, NAIDU S L, et al. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis[J]. Global Change Biology, 2009, 15(2): 396-424. |
[198] | WILKINSON S, DAVIES W J. Drought, ozone, ABA and ethylene: new insights from cell to plant to community[J]. Plant, Cell & Environment, 2010, 33(4): 510-525. |
[199] |
BEHNKE K, KLEIST E, UERLINGS R, et al. RNAi-mediated suppression of isoprene biosynthesis in hybrid poplar impacts ozone tolerance[J]. Tree Physiology, 2009, 29(5): 725-736.
DOI PMID |
[1] | 弓耀奇, 岳甫均, 刘鑫, 郭田丽, 王浩阳, 李思亮. 基于流域系统水文水环境耦合模型的氮循环研究进展[J]. 地学前缘, 2025, 32(3): 183-195. |
[2] | 吴礼彬, 白景淇, 赵青茈, 傅平青. 大气中氨基酸的研究进展与展望[J]. 地学前缘, 2025, 32(3): 196-206. |
[3] | 肖昀廷, 蔡晨康, 黄亦心, 朱佳雷. 海表温度日变化特征对海陆风模拟的影响研究[J]. 地学前缘, 2025, 32(3): 218-230. |
[4] | 孙亦旸, 张蓓, 赵曦, 朱佳雷. 清洁燃料应用对船舶源硫酸盐气溶胶辐射效应的影响研究[J]. 地学前缘, 2025, 32(3): 263-273. |
[5] | 李洁祥, 许亚东, 蔺文静. 传统水化学地热温度计的适用性分析[J]. 地学前缘, 2024, 31(6): 145-157. |
[6] | 李柯然, 杨迪, 宋金民, 李智武, 金鑫, 刘芳, 杨雄, 刘树根, 叶玥豪, 范建平, 任佳鑫, 赵玲丽, 夏舜, 陈伟. 滇东北地区下寒武统龙王庙组白云石化模式研究:来自钙同位素模拟结果[J]. 地学前缘, 2024, 31(2): 313-326. |
[7] | 李丹, 常健, 邱楠生, 熊昱杰. 塔里木盆地台盆区超深层热演化及对储层的影响[J]. 地学前缘, 2023, 30(6): 135-149. |
[8] | 张广禄, 刘海燕, 郭华明, 孙占学, 王振, 吴通航. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485-503. |
[9] | 刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3): 399-424. |
[10] | 黄柳琴, 李林鑫, 蒋宏忱. BIFs的形成及其铁氧化机制研究进展与展望[J]. 地学前缘, 2023, 30(2): 333-346. |
[11] | 谭宁, 张仲石, 郭正堂, 王会军. 上新世热带海道变化影响东亚气候的模拟研究[J]. 地学前缘, 2022, 29(5): 310-321. |
[12] | 贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201. |
[13] | 张小刚, 张芳, 李书鹏, 韦云霄, 侯德义, 李广贺. 污染场地原位热修复技术与能效分析[J]. 地学前缘, 2022, 29(3): 200-206. |
[14] | 唐勇, 覃山县, 赵景宇, 吕正航, 刘喜强, 王宏, 陈剑争, 张辉. 稀有金属矿物溶解度对花岗伟晶岩成矿作用的制约[J]. 地学前缘, 2022, 29(1): 81-92. |
[15] | 樊馥, 侯献华, 郑绵平, 孟凡巍, 杨振京, 苗青. 柴达木盆地大浪滩梁ZK02孔早—中更新世石盐纯液相流体包裹体均一温度及其对钾盐成矿的约束[J]. 地学前缘, 2021, 28(6): 105-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||