地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 263-273.DOI: 10.13745/j.esf.sf.2025.3.20
收稿日期:
2025-02-04
修回日期:
2025-02-22
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*赵 曦(1990—),女,教授,博士生导师,主要从事大气气溶胶-云-辐射相互作用研究。E-mail: 作者简介:
孙亦旸(2000—),男,硕士研究生,主要从事海洋气溶胶气候效应研究。E-mail: sunyiyang@tju.edu.cn
基金资助:
SUN Yiyang(), ZHANG Bei, ZHAO Xi*(
), ZHU Jialei
Received:
2025-02-04
Revised:
2025-02-22
Online:
2025-03-25
Published:
2025-04-20
摘要: 船舶排放SO2在海洋大气中形成的硫酸盐气溶胶(PSO4)可通过气溶胶辐射效应对气候产生显著影响,主要通过直接辐射效应(DRE)和间接辐射效应(IRE)对地球系统产生净冷却效应。本文利用地球系统模式和全球船舶排放清单,研究了在现行的全球0.5%燃料含硫量法规(0.5% S)控制下,以及将部分管控区的0.1%含硫量规定推行至全球的情景下(0.1% S),船舶源PSO4及其辐射效应的变化。结果表明:0.5% S控制下船舶源PSO4浓度全球均值为(58.2±6.5) μg·m-2,产生(-10.4±1.6) mW·m-2的DRE。IRE是船舶源PSO4辐射效应的主要部分,0.5% S控制下船舶源PSO4的IRE约为(-64.7±40.5) mW·m-2。航线上的船舶源PSO4浓度平均约为200 μg·m-2,辐射效应可达-600 mW·m-2。相比于现行0.5% S法规,在0.1% S情景下,船舶源PSO4浓度减小了约80%。而从辐射效应来看,全球平均DRE下降至(-2.1±0.4) mW·m-2,IRE则下降至(-15.2±11.2) mW·m-2,总辐射效应减弱77%。船舶源PSO4的辐射效应时空分布很不均匀。在全球范围内,总辐射效应在北半球,尤其是船舶航线密集的北大西洋、北太平洋以及北印度洋的沿岸最大,可达约-350 mW·m-2。南北半球辐射效应最强的季节均为各自半球的夏季。全球平均水平表明,北半球夏季时船舶源PSO4的总辐射效应最强(-34.9 mW·m-2),部分区域可接近-1 200 mW·m-2;北半球冬季最弱,仅为夏季的不到四分之一。在全球使用更清洁的船舶燃料在减少大气污染的同时也将大幅减弱船舶源PSO4的制冷辐射效应。
中图分类号:
孙亦旸, 张蓓, 赵曦, 朱佳雷. 清洁燃料应用对船舶源硫酸盐气溶胶辐射效应的影响研究[J]. 地学前缘, 2025, 32(3): 263-273.
SUN Yiyang, ZHANG Bei, ZHAO Xi, ZHU Jialei. A study on the impact of clean fuel application on the radiative effects of shipping sulfate aerosols[J]. Earth Science Frontiers, 2025, 32(3): 263-273.
试验编号 | 试验描述 |
---|---|
Exp.1 | 不包含船舶SO2及一次PSO4排放(控制实验) |
Exp.2 | 船舶源SO2及一次PSO4排放量设置为原排放清单排放量的28.7%(0.5% S) |
Exp.3 | 船舶源SO2及一次PSO4排放量设置为原排放清单排放量的5.7%(0.1% S) |
表1 本研究试验设置
Table 1 Experimental setup of this study
试验编号 | 试验描述 |
---|---|
Exp.1 | 不包含船舶SO2及一次PSO4排放(控制实验) |
Exp.2 | 船舶源SO2及一次PSO4排放量设置为原排放清单排放量的28.7%(0.5% S) |
Exp.3 | 船舶源SO2及一次PSO4排放量设置为原排放清单排放量的5.7%(0.1% S) |
图1 全球0.5% S法规下船舶源PSO4的表面浓度(a)和柱浓度(b),全球均值及标准差标于左上角
Fig.1 Surface concentration (a) and column concentration (b) of shipping PSO4 under the global 0.5% S regulation, with global mean and standard deviation marked in the upper left corner
图2 全球0.5% S法规下冬季(DJF, a)、春季(MAM, b)、夏季(JJA, c)和秋季(SON, d)的船舶源PSO4柱浓度
Fig.2 Column concentrations of shipping PSO4 under the global 0.5% S regulation for winter (DJF, a), spring (MAM, b), summer (JJA, c), and autumn (SON, d)
图4 全球0.5% S法规下船舶源PSO4核模态(a)、爱根模态(b)和积聚模态数浓度(c)
Fig.4 Number concentrations of the nucleation mode (a), Aitken mode (b), and accumulation mode (c) of shipping PSO4 under the global 0.5% S regulation
图5 全球0.5% S法规下船舶源PSO4引起的液态水云顶部的云凝结核(CCN)数浓度(a)、云滴数浓度(CDNC)(b)以及云滴半径(c)的变化
Fig.5 Changes in CCN number concentration (a), CDNC (b), and cloud droplet radius (c) caused by shipping PSO4 under the global 0.5% S regulation
图7 全球0.1% S法规下船舶源PSO4的近地面浓度(a)、柱浓度(b)及数浓度(c)
Fig.7 Near-surface concentration (a), column concentration (b), and number concentration (c) of shipping PSO4 under the global 0.1% S regulation
图9 冬季(DJF,a)和夏季(JJA,b)全球0.1% S法规下船舶源PSO4的总辐射效应
Fig.9 Total Radiative Effect of shipping PSO4 during winter (DJF, a) and summer (JJA, b) under the global 0.1% S regulation
[1] | U.S. Department of Transportation. United nations conference on trade and development, review of maritime transport 2020[R]. Washington, D.C.: Geneva: U.S. Department of Transportation; UNCTAD 2020. |
[2] | U.S. Environmental Protection Agency. Radiative forcing caused by human activities since 1750[R]. Washington, D.C.: U.S. Environmental Protection Agency, 2014. |
[3] | EYRING V, KöHLER H W, LAUER A, et al. Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D17): 1-18. |
[4] | BALKANSKI Y, MYHRE G, GAUSS M, et al. Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation[J]. Atmospheric Chemistry and Physics, 2010, 10(10): 4477-4489. |
[5] | FUGLESTVEDT J, BERNTSEN T, MYHRE G, et al. Climate forcing from the transport sectors[J]. Proceedings of the National Academy of Sciences, 2008, 105(2): 454-458. |
[6] | CORBETT J J, FISCHBECK P. Emissions from ships[J]. Science, 1997, 278(5339): 823-824. |
[7] | CORBETT J J, KOEHLER H W. Updated emissions from ocean shipping[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D20): 1-13. |
[8] | EYRING V, ISAKSEN I S A, BERNTSEN T, et al. Transport impacts on atmosphere and climate: shipping[J]. Atmospheric Environment, 2010, 44(37): 4735-4771. |
[9] | ENDRESEN Ø, SøRGåRD E, SUNDET J K, et al. Emission from international sea transportation and environmental impact[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D17): 1-22. |
[10] | CORBETT J J, FISCHBECK P S, PANDIS S N. Global nitrogen and sulfur inventories for oceangoing ships[J]. Journal of Geophysical Research, 1999, 104(D3): 3457-3470. |
[11] | MOLDANOVá J, FRIDELL E, POPOVICHEVA O, et al. Characterisation of particulate matter and gaseous emissions from a large ship diesel engine[J]. Atmospheric Environment, 2009, 43(16): 2632-2641. |
[12] |
SOFIEV M, WINEBRAKE J J, JOHANSSON L, et al. Cleaner fuels for ships provide public health benefits with climate tradeoffs[J]. Nature Communications, 2018, 9(1): 406.
DOI PMID |
[13] | AAKKO-SAKSA P T, LEHTORANTA K, KUITTINEN N, et al. Reduction in greenhouse gas and other emissions from ship engines: current trends and future options[J]. Progress in Energy and Combustion Science, 2023, 94: 101055. |
[14] | CHUNG C, LEE K, MüLLER D. Effect of internal mixture on black carbon radiative forcing[J]. Tellus B: Chemical and Physical Meteorology, 2012, 64(1): 10925. |
[15] | LAUER A, EYRING V, CORBETT J J, et al. Assessment of near-future policy instruments for oceangoing shipping: impact on atmospheric aerosol burdens and the Earth’s radiation budget[J]. Environmental Science and Technology, 2009, 43(15): 5592-5598. |
[16] | LAUER A, EYRING V, HENDRICKS J, et al. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget[J]. Atmospheric Chemistry and Physics, 2007, 7(19): 5061-5079. |
[17] | RIGHI M, HENDRICKS J, SAUSEN R. The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions[J]. Atmospheric Chemistry and Physics, 2013, 13(19): 9939-9970. |
[18] | ÅNGSTRöM A. Atmospheric turbidity, global illumination and planetary albedo of the earth[J]. Tellus, 1962, 14(4): 435-450. |
[19] | TWOMEY S, HOWELL H B, WOJCIECHOWSKI T A. Comments on “Anomalous Cloud Lines”[J]. Journal of Atmospheric Sciences, 1968, 25(2): 333-334. |
[20] | LOHMANN U, FEICHTER J. Global indirect aerosol effects: a review[J]. Atmospheric Chemistry and Physics, 2005, 5(3): 715-737. |
[21] | SAUSEN R, GIERENS K, EYRING V, et al. Climate impact of transport[M]//SCHUMANN U. Atmospheric physics: Background-Methods-Trends. Berlin, Heidelberg: Springer Berlin Heidelberg. 2012: 711-725. |
[22] | UNGER N, BOND T C, WANG J S, et al. Attribution of climate forcing to economic sectors[J]. Proceedings of the National Academy of Sciences, 2010, 107(8): 3382-3387. |
[23] | KERRY D. Sensitivity of aerosol radiative effects to shipping emissions[D]. Halifax, Nova Scotia: Dalhousie University, 2019. |
[24] | DALSøREN S B, SAMSET B H, MYHRE G, et al. Environmental impacts of shipping in 2030 with a particular focus on the Arctic region[J]. Atmospheric Chemistry and Physics, 2013, 13(4): 1941-1955. |
[25] | GETTELMAN A, CHRISTENSEN M W, DIAMOND M S, et al. Has reducing ship emissions brought forward global warming?[J]. Geophysical Research Letters, 2024, 51(15): e2024GL109077. |
[26] |
RIGHI M, KLINGER C, EYRING V, et al. Climate impact of biofuels in shipping: global model studies of the aerosol indirect effect[J]. Environmental Science and Technology, 2011, 45(8): 3519-3525.
DOI PMID |
[27] | PETERS K, STIER P, QUAAS J, et al. Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM[J]. Atmospheric Chemistry and Physics, 2012, 12(13): 5985-6007. |
[28] | EYRING V, KöHLER H W, VAN AARDENNE J, et al. Emissions from international shipping: 1. The last 50 years[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D17): 1-12. |
[29] |
CORBETT J J, WINEBRAKE J J, GREEN E H, et al. Mortality from ship emissions: a global assessment[J]. Environmental Science and Technology, 2007, 41(24): 8512-8518.
PMID |
[30] |
WINEBRAKE J J, CORBETT J J, GREEN E H, et al. Mitigating the health impacts of pollution from oceangoing shipping: an assessment of low-sulfur fuel mandates[J]. Environmental Science and Technology, 2009, 43(13): 4776-4782.
PMID |
[31] | CAPALDO K, CORBETT J J, KASIBHATLA P, et al. Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean[J]. Nature, 1999, 400(6746): 743-746. |
[32] | CONOVER J H. Anomalous cloud lines[J]. Journal of Atmospheric Sciences, 1966, 23(6): 778-785. |
[33] | DURKEE P A, CHARTIER R E, BROWN A, et al. Composite ship track characteristics[J]. Journal of the Atmospheric Sciences, 2000, 57(16): 2542-2553. |
[34] | HOBBS P V, GARRETT T J, FEREK R J, et al. Emissions from ships with respect to their effects on clouds[J]. Journal of the Atmospheric Sciences, 2000, 57(16): 2570-2590. |
[35] | EPA. profiles of total organic compounds and particulate matter SPECIATE 3.2[R]. Washington District of Columbia: Environmental Protection Agency, USA, 2006. |
[36] | IMO. Third IMO GHG Study 2014[R]. London, United Kingdom: International Maritime Organization, 2014. |
[37] | IMO. IMO 2020: Consistent implementation of MARPOL Annex VI[R]. London, United Kingdom: International Maritime Organization, 2020. |
[38] |
GRYSPEERDT E, SMITH T W P, O’KEEFFE E, et al. The impact of ship emission controls recorded by cloud properties[J]. Geophysical Research Letters, 2019, 46(21): 12547-12555.
DOI |
[39] | WATSON-PARRIS D, CHRISTENSEN M W, LAURENSON A, et al. Shipping regulations lead to large reduction in cloud perturbations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(41): e2206885119. |
[40] | YUAN T, SONG H, WOOD R, et al. Global reduction in ship-tracks from sulfur regulations for shipping fuel[J]. Science Advances, 2022, 8(29): eabn7988. |
[41] | ZHU J, PENNER J E. Global modeling of secondary organic aerosol with organic nucleation[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(14): 8260-8286. |
[42] | ZHU J, PENNER J E. Indirect effects of secondary organic aerosol on cirrus clouds[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(7): e2019JD032233. |
[43] |
ZHU J, PENNER J E, YU F, et al. Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change[J]. Nature Communications, 2019, 10(1): 423.
DOI PMID |
[44] | LIN G, PENNER J E, FLANNER M G, et al. Radiative forcing of organic aerosol in the atmosphere and on snow: effects of SOA and brown carbon[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7453-7476. |
[45] | LIU X, PENNER J E, HERZOG M. Global modeling of aerosol dynamics: model description, evaluation, and interactions between sulfate and nonsulfate aerosols[J]. Journal of Geophysical Research, 2005, 110(D18): 1-37. |
[46] | WANG M, PENNER J E, LIU X. Coupled IMPACT aerosol and NCAR CAM3 model: evaluation of predicted aerosol number and size distribution[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D6): 1-30. |
[47] |
WANG C F, CORBETT J J, FIRESTONE J. Improving spatial representation of global ship emissions inventories[J]. Environmental Science and Technology, 2008, 42(1): 193-199.
PMID |
[48] | JALKANEN J P, JOHANSSON L, KUKKONEN J, et al. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide[J]. Atmospheric Chemistry and Physics, 2012, 12(5): 2641-2659. |
[49] | JOHANSSON L, JALKANEN J P, KALLI J, et al. The evolution of shipping emissions and the costs of regulation changes in the northern EU area[J]. Atmospheric Chemistry and Physics, 2013, 13(22): 11375-11389. |
[50] | JALKANEN J P, JOHANSSON L, KUKKONEN J. A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011[J]. Atmospheric Chemistry and Physics, 2016, 16(1): 71-84. |
[51] | JALKANEN J-P, JOHANSSON L, KUKKONEN J. A comprehensive inventory of the ship traffic exhaust emissions in the Baltic Sea from 2006 to 2009[J]. AMBIO, 2014, 43(3): 311-324. |
[52] | COLLINS W D, RASCH P J, BOVILLE B A, et al. The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3)[J]. Journal of Climate, 2006, 19(11): 2144-2161. |
[53] | WANG M, PENNER J E. Aerosol indirect forcing in a global model with particle nucleation[J]. Atmospheric Chemistry and Physics, 2009, 9(1): 239-260. |
[54] | PENNER J E, XU L, WANG M. Satellite methods underestimate indirect climate forcing by aerosols[J]. Proceedings of the National Academy of Sciences, 2011, 108(33): 13404-13408. |
[55] | LIU X, PENNER J E, GHAN S J, et al. Inclusion of ice microphysics in the NCAR community atmospheric model version 3 (CAM3)[J]. Journal of Climate, 2007, 20(18): 4526-4547. |
[56] | LAWRENCE M G, CRUTZEN P J. Influence of NOx emissions from ships on tropospheric photochemistry and climate[J]. Nature, 1999, 402(6758): 167-170. |
[57] | EYRING V, STEVENSON D S, LAUER A, et al. Multi-model simulations of the impact of international shipping on atmospheric chemistry and climate in 2000 and 2030[J]. Atmospheric Chemistry and Physics, 2007, 7(3): 757-780. |
[58] | HOU W, LIU Z, YU G, et al. On-board measurements of OC/EC ratio, mixing state, and light absorption of ship-emitted particles[J]. Science of The Total Environment, 2023, 904: 166692. |
[59] |
YANG F, ZHANG F, LIU Z, et al. Emission and optical characteristics of brown carbon in size-segregated particles from three types of Chinese ships[J]. Journal of Environmental Sciences, 2024, 142: 248-258.
DOI PMID |
[1] | 傅平青, 胡伟, 赵曦, 徐占杰, 丁士元, 吴礼彬, 邓君俊, 姜哲, 李晓东, 朱佳雷, 刘丛强. 地-气界面科学与全球变化研究[J]. 地学前缘, 2025, 32(3): 92-104. |
[2] | 朱佳雷, 董建志, 张永根, 孙少波, 姜哲, 周浩然, 赵曦, 李攀, 陈伟, 王礼春, 李新, 刘丛强. 地球系统数值模拟研究进展与科学前沿[J]. 地学前缘, 2025, 32(3): 118-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||