地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 218-230.DOI: 10.13745/j.esf.sf.2025.3.17
收稿日期:
2024-12-30
修回日期:
2025-01-16
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*朱佳雷(1989—),男,博士,教授,博士生导师,主要从事大气气溶胶与气候变化相互作用的数值模拟研究。E-mail: 作者简介:
肖昀廷(1996—),男,博士研究生,主要开展区域大气环境与气候变化模拟研究工作。E-mail: xiaoyunting@tju.edu.cn
基金资助:
XIAO Yunting(), CAI Chenkang, HUANG Yixin, ZHU Jialei*(
)
Received:
2024-12-30
Revised:
2025-01-16
Online:
2025-03-25
Published:
2025-04-20
摘要:
海陆风是由于陆地和海洋热力差异导致的滨海地区一天内风向明显变化的天气现象,是滨海地区最为显著的区域大气中尺度环流过程之一。海陆风环流的强度、结构对滨海地区的大气边界层高度、大气化学过程、空气质量和辐射平衡等均有影响。作为影响海陆风环流的直接热力条件,海洋表面温度的日变化受太阳辐射、海洋热容量、风速、云量等多种因素综合影响,其对滨海地区海陆风发生发展的影响仍不明确。本研究利用高分辨率海表温度模拟数据结合中尺度天气研究与预报模型(WRF),分析了中国近海典型海域海表温度日变化的特征及其对海陆风的影响机制。研究结果表明:我国近海地区平均海表温度呈现出从南向北递减的趋势,渤海海域年均海温最低,为10.78 ℃,东海海域年均海表温度较渤海海域高94.6%,南海海域的年均海温最高,为25.19 ℃。渤海海域海温日变化的年内波动最大,可达0.55 ℃,最低仅为0.03 ℃,均值为0.25 ℃。东海海域海温日变化波动幅度适中,年均日温差为0.20 ℃,研究期间涉及的最高海温日变化幅度为0.45 ℃,约为渤海海域极值的82.0%,高出南海海域33%以上。通过考虑海温日变化的情景与以往模式海温恒定不变的假设情景对比发现,海温日变化可导致我国近海典型海域海陆风日数量增加,南海滨海地区年海陆风日数量增加了14天,涨幅为56.0%;渤海北部滨海地区年海陆风日数量增长了7天,涨幅为20.0%。从季节来看,海温日变化增加可导致冬季海陆风日数量增多,夏季海陆风日数量减少,对春秋两季的影响不大,从而导致我国沿海地区海陆风日季节差异减小。
中图分类号:
肖昀廷, 蔡晨康, 黄亦心, 朱佳雷. 海表温度日变化特征对海陆风模拟的影响研究[J]. 地学前缘, 2025, 32(3): 218-230.
XIAO Yunting, CAI Chenkang, HUANG Yixin, ZHU Jialei. Study on the impact of daily sea surface temperature variation characteristics on the simulation of sea land breeze[J]. Earth Science Frontiers, 2025, 32(3): 218-230.
物理过程 | 参数化方案 |
---|---|
微物理过程 | WSM方案[ |
短波辐射 | Goddard短波方案[ |
近地面层 | MYJ Monin-Obukhov方案[ |
陆面过程 | Noah陆面过程方案[ |
边界层 | Eta Mellor-Yamada-Janjic TKE方案[ |
积云参数化 | Kain-Fritsch方案[ |
表1 模拟使用的参数化方案
Table 1 Parameterizations schemes used for simulation
物理过程 | 参数化方案 |
---|---|
微物理过程 | WSM方案[ |
短波辐射 | Goddard短波方案[ |
近地面层 | MYJ Monin-Obukhov方案[ |
陆面过程 | Noah陆面过程方案[ |
边界层 | Eta Mellor-Yamada-Janjic TKE方案[ |
积云参数化 | Kain-Fritsch方案[ |
图1 研究区域示意(引自国家地理信息公共服务平台标准地图服务中国地图1∶3 200万 32开 线划一)
Fig.1 Schematic of the simulation area. Quoted from the National Platform for Common Geospatial Information Services China map 1∶32 million 32 cuttings version with line delineation 1
图2 海洋表面日温差年际变化趋势 圆点表示年均海温日变化,误差线上端为年内海表温度日变化极大值,下端为年内海表温度日变化极小值。
Fig.2 Inter-annual trends in diurnal sea surface temperature (DSST) differences. with dots indicating daily changes in mean DSST, and the upper end of the error line showing the maximum daily change in DSST during the year, and the lower end showing the minimum daily change in DSST during that year.
图3 海洋表面季节平均日温差年际变化趋势 其中(a)为春季,(b)为夏季,(c)为秋季,(d)为冬季。
Fig.3 Interannual variation trends of seasonal average DSST. Panels (a) to (d) represent the spring, summer, fall, and winter seasons, respectively.
图4 区域年均海温年际变化特征 点线图为研究区域相应年份的平均海温,阴影部分为该年份海温最高值和最低值的分布区间。
Fig.4 Interannual variation characteristics of regional annual mean SST. The line graph represents the average SST for each corresponding year in the study region, while the shaded area indicates the range between the maximum and minimum SST values for that year.
图6 南海区域4小时平均风玫瑰图 其中红色扇形表示陆风风向区间,蓝色扇形表示海风风向区间。(a)为当地时间0:00-3:00;(b)为当地时间4:00-7:00;(c)为当地时间8:00-11:00;(d)为当地时间12:00-15:00;(e)为当地时间16:00-19:00;(f)为当地时间20:00-23:00。
Fig.6 Four-hourly average wind rose for part of the South China Sea. The red sectors represent the land breeze wind direction range, while the blue sectors represent the sea breeze wind direction range. Panels (a) to (f) correspond to the local times of 00:00-03:00, 04:00-07:00, 08:00-11:00, 12:00-15:00, 16:00-19:00, and 20:00-23:00, respectively.
图7 渤海区域4小时平均风玫瑰图 其中红色扇形表示陆风风向区间,蓝色扇形表示海风风向区间。其中(a)为当地时间0:00-3:00;(b)为当地时间4:00-7:00;(c)为当地时间8:00-11:00;(d)为当地时间12:00-15:00;(e)为当地时间16:00-19:00;(f)为当地时间20:00-23:00。
Fig.7 Four-hourly average wind rose for the Bohai Sea. The red sectors represent the land breeze wind direction range, while the blue sectors represent the sea breeze wind direction range. Panels (a) to (f) correspond to the local times of 00:00-03:00, 04:00-07:00, 08:00-11:00, 12:00-15:00, 16:00-19:00, and 20:00-23:00, respectively.
图8 海陆风日风向频率分布图 其中(a)为南海海域;(b)为渤海海域。
Fig.8 Frequency distribution of wind direction on sea and land wind days, where (a) is the South China Sea area and (b) is the Bohai Sea area.
图9 海陆风日风速频率分布 其中(a)为南海海域;(b)为渤海海域。
Fig.9 Frequency distribution of daily wind speeds for land and sea winds, where (a) is the South China Sea area and (b) is the Bohai Sea area.
[1] | MILLER S T K, KEIM B D, TALBOT R W, et al. Sea breeze: structure, forecasting, and impacts[J]. Reviews of Geophysics, 2003, 41(3): 1011. |
[2] | 沈傲, 田春艳, 刘一鸣, 等. 海陆风环流中海盐气溶胶对大气影响的模拟[J]. 中国环境科学, 2019, 39: 1427-1435. |
[3] | CROSMAN E T, HOREL J D. Sea and lake breezes: a review of numerical studies[J]. Boundary-Layer Meteorology, 2010, 137(1): 1-29. |
[4] | MA Y, XIN J, ZHANG X, et al. Land-sea breeze circulation structure on the west coast of the Yellow Sea, China[J]. Atmospheric and Oceanic Science Letters, 2021, 14(1): 100003. |
[5] | XIAO Y T, YANG J B, CUI L H, et al. Weakened sea-land breeze in a coastal megacity driven by urbanization and ocean Warming[J]. Earths Future, 2023, 11(8): e2022EF003341. |
[6] | AZORIN-MOLINA C, CHEN D. A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain)[J]. Theoretical and Applied Climatology, 2009, 96(3/4): 249-260. |
[7] | DAVIS S R, FARRAR J T, WELLER R A, et al. The land-sea breeze of the Red Sea: observations, simulations, and relationships to regional moisture transport[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(24): 13803-13825. |
[8] | YAO Y, ZOU X, ZHAO Y, et al. Rapid changes in land-sea thermal contrast across China’s coastal zone in a warming climate[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(4): 2049-2467. |
[9] | DING A, WANG T, ZHAO M, et al. Simulation of sea-land breezes and a discussion of their implications on the transport of air pollution during a multi-day ozone episode in the pearl river delta of China[J]. Atmospheric Environment, 2004, 38(39): 6737-6750. |
[10] | ZHANG Q, HU W, REN H, et al. Diurnal variations in primary and secondary organic aerosols in an eastern China coastal city: the impact of land-sea breezes[J]. Environmental Pollution, 2023, 319: 121016. |
[11] | FAN J, ZHANG Y, LI Z, et al. Urbanization-induced land and aerosol impacts on sea-breeze circulation and convective precipitation[J]. Atmospheric Chemistry and Physics, 2020, 20(22): 14163-14182. |
[12] | CHEN Y P, YANG C, XU L L, et al. Variations of chemical composition of NR-PM1 under the influence of sea land breeze in a coastal city of Southeast China[J]. Atmospheric Research, 2023, 285: 106626 |
[13] | SHEN L, ZHAO C, YANG X, et al. Observed slump of sea land breeze in Brisbane under the effect of aerosols from remote transport during 2019 Australia mega fire events[J]. Atmospheric Chemistry and Physics, 2022, (20): 419-439 |
[14] | SHI J R, SANTER B D, KWON Y O, et al. The emerging human influence on the seasonal cycle of sea surface temperature[J]. Nature Climate Change, 2024, 14(4): 364-372 |
[15] | GARCIA-SOTO C, CHENG L J, CAESAR L, et al. An overview of ocean climate change indicators: sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, Arctic Sea ice extent, thickness and volume, Sea level and strength of the AMOC (Atlantic meridional overturning circulation)[J]. Frontiers in Marine Science, 2021, (8): 642372 |
[16] | JIN S S, WEI Z X, WANG D Q, et al. Simulated and projected SST of Asian marginal seas based on CMIP6 models[J]. Frontiers in Marine Science, 2023, 10: 1178974 |
[17] | CHENG L J, ABRAHAM J, TRENBERTH K E, et al. Another record: ocean warming continues through 2021 despite La Nina conditions[J]. Advances in Atmospheric Sciences, 2022, 39(3): 373-385. |
[18] | ZHANG Q B, LIU B, LI S L, et al. Understanding models’ global sea surface temperature bias in mean state: from CMIP5 to CMIP6[J]. Geophysical Research Letters, 2023, 50(4): 2022GL100888 |
[19] | 彭京备. 东印度洋海温对中国南方冬季降水的影响[J]. 气候与环境研究, 2012, 17(3): 327-338. |
[20] | 徐海明, 何金海, 董敏. 江淮入梅的年际变化及其与北大西洋涛动和海温异常的联系[J]. 气象学报, 2001, 59(6): 694-706. |
[21] |
李刚, 李崇银, 江晓华, 等. 1900—2009年全球海表温度异常的时空变化特征分析[J]. 热带海洋学报, 2015, 34(4): 12-22.
DOI |
[22] | 易香妤, 董文杰, 李劭怡, 等. 中国东海黑潮海温变化特征及成因分析[J]. 海洋预报, 2021, 38(3): 38-51. |
[23] | 周明颉, 简茂球. 热带印度洋及周边海温对ENSO响应的年代际变化[J]. 中山大学学报(自然科学版)(中英文), 2023, 62(1): 64-74. |
[24] | 蔡榕硕, 谭红建, 黄荣辉. 中国东部夏季降水年际变化与东中国海及邻近海域海温异常的关系[J]. 大气科学, 2012, 36(1): 35-45. |
[25] | 王洁, 王杰, 许佳峰, 等. 长江口邻近海域海表温度变化特征分析[J]. 海洋科学进展, 2020, 38(4): 624-634. |
[26] | BIGUINO B, ANTUNES C, LAMAS L, et al. 40 years of changes in sea surface temperature along the Western Iberian Coast[J]. Science of the Total Environment, 2023(888): 164193 |
[27] | GUAN W N, JIANG X A, REN X J, et al. Pacific Sea surface temperature anomalies as important boundary forcing in driving the interannual warm arctic-cold continent pattern over the North American Sector[J]. Journal of Climate, 2021, 34(14): 5923-5937. |
[28] | MAZON J, PINO D. The influence of an increase of the mediterranean sea surface temperature on two nocturnal offshore rainbands: a numerical experiment[J]. Atmosphere, 2017, 8(3): 58 |
[29] | 肖杭芳, 邓文峰, 韦刚健. 近2000年南海北部海表温度变化特征及其对全球变暖的启示[J]. 厦门大学学报(自然科学版), 2018, 57(6): 748-759. |
[30] | TIAN F, STORCH J-S V, HERTWIG E. Impact of SST diurnal cycle on ENSO asymmetry[J]. Climate Dynamics, 2018, 52(3/4): 2399-2411. |
[31] | SUN C, LIU Y S, WEI T, et al. Cross-hemispheric SST propagation enhances the predictability of tropical western Pacific climate[J]. NPJ climate and atmospheric science, 2022, 5(1): 38 |
[32] | ARMOUR K C, PROISTOSESCU C, DONG Y, et al. Sea-surface temperature pattern effects have slowed global warming and biased warming-based constraints on climate sensitivity[J]. Proceedings of the National Academy of Sciences, 2024, 121(12): e2312093121. |
[33] | L’HEUREUX M L, TIPPETT M K, WHEELER M C, et al. A relative sea surface temperature index for classifying ENSO events in a changing climate[J]. Journal of Climate, 2024, 37(4): 1197-1211. |
[34] | 马强, 颜京辉, 魏敏, 等. 北京气候中心CMIP6数据共享平台及应用[J]. 应用气象学报, 2022, 33(5): 617-627. |
[35] | NCAR. NCEP FNL operational model global tropospheric analyses, continuing from July 1999[M]. Boulder, CO: the National Center for Atmospheric Research, 2000. |
[36] | HAN S Q, HAO T Y, YANG X, et al. Land-sea difference of the planetary boundary layer structure and its influence on PM2.5: observation and numerical simulation[J]. Science of the Total Environment, 2023(858): 159881 |
[37] | CHEN Y P, HU R, BEDRA K B. Investigating the cooling impacts of Green Hearts in summer: a case study in the Changsha-Zhuzhou-Xiangtan urban agglomeration based on Weather Research Forecasting (WRF) simulations[J]. Urban Climate, 2024(58): 102235 |
[38] | HASSAN E M, KARIMKHANI M, SEPEHRI J. Evaluating and comparison of WRF-chem model configurations for wind field impact on the April 2022 dust episode in western Iran[J]. Atmospheric Environment, 2025(340): 120892 |
[39] | CHOU S C, CHANG H L, TOTH Z, et al. Evaluation, calibration, and application of probabilistic 100 m wind speed forecasts produced by the WRF ensemble prediction system in Taiwan[J]. Journal of Applied Meteorology and Climatology, 2025, 64(1): 3-19. |
[40] | POWERS J G, COAUTHORS. The weather research and forecasting model: overview, system efforts, and future directions[J]. Bulletin of the American Meteorological Society, 2017, 98: 1717-1737. |
[41] | HONG S-Y, LIM J-O J. The WRF single-moment 6-class microphysics scheme (WSM6)[J]. Asia-Pacific Journal of Atmospheric Sciences, 2006, 42(2): 129-151. |
[42] | MIELIKAINEN J, HUANG B, HUANG H L A, et al. GPU acceleration of the updated Goddard shortwave radiation scheme in the weather research and forecasting (WRF) Model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 555-562. |
[43] | MELLOR G L, YAMADA. Development of a turbulence closure model for geophysical fluid problems[J]. Review of Geophysics, 1982, 20(4): 851-875 |
[44] | CHEN F. The Noah land surface model in WRF: a short tutorial,[J]. Journal of Advances in Modeling Earth Systems, 2019, 11: 231-256. |
[45] | KAIN J S. The Kain-Fritsch convective parameterization: an update[J]. Journal of applied meteorology, 2004, 43(1): 170-181. |
[46] | SHEN L X, ZHAO C F, YANG X C. Climate-driven characteristics of sea-land breezes over the globe[J]. Geophysical Research Letters, 2021, 48(7): 2020GL092308 |
[47] | SHEN L X, ZHAO C F, YANG X C, et al. Observed slump of sea land breeze in Brisbane under the effect of aerosols from remote transport during 2019 Australian mega fire events[J]. Atmospheric Chemistry and Physics, 2022, 22(1): 419-439. |
[48] | SHEN L X, ZHAO C F, MA Z S, et al. Observed decrease of summer sea-land breeze in Shanghai from 1994 to 2014 and its association with urbanization[J]. Atmospheric Research, 2019(227): 198-209. |
[49] | KARAGALI I, HOYER J L. Characterizations and quantification of regional diurnal SST cycles from SEVIRI[J]. Ocean Science, 2014, 10(5): 745-758. |
[50] | KAWAI Y, WADA A. Diurnal Sea surface temperature variation and its impact on the atmosphere and ocean: A review[J]. Journal of Oceanography, 2007, 63(5): 721-744. |
[51] | EMBURY O, MERCHANT C J, GOOD S A, et al. Satellite-based time-series of sea-surface temperature since 1980 for climate applications[J]. Scientific Data, 2024, 11(1): s41597-024-03147-w |
[52] | 罗嘉琪, 李响, 张蕴斐, 等. 南海海表温度日变化特征及其影响因素研究[J]. 海洋预报, 2024, 41(1): 31-41. |
[53] | YANG C Y, NUTAKKI T U K, ALGHASSAB M A, et al. Optimized integration of solar energy and liquefied natural gas regasification for sustainable urban development: dynamic modeling, data-driven optimization, and case study[J]. Journal of Cleaner Production, 2024(447): 141405 |
[54] | ALEXANDER M A, SCOTT J D, DESER C. Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model[J]. Journal of Geophysical Research: Oceans, 2000, 105(C7): 16823-16842. |
[1] | 刘丛强. 全球变化、层圈相互作用研究与地球系统科学[J]. 地学前缘, 2025, 32(3): 1-6. |
[2] | 陈玖斌, 郑旺, 刘羿, 孙若愚, 袁玮, 孟梅, 蔡虹明, 刘丛强. 同位素地球化学与地球系统圈层相互作用和全球变化研究[J]. 地学前缘, 2025, 32(3): 137-155. |
[3] | 崔灏, 韦刚健. 青藏高原周缘始新世—渐新世气候转换期风化演变及其对全球及区域气候环境变化的响应[J]. 地学前缘, 2025, 32(3): 274-287. |
[4] | 陈喜, 董建志, 王礼春, 张永根, 王学静, 狄崇利, 高满, 刘丛强. 全球变化下生态水文学发展与展望[J]. 地学前缘, 2025, 32(3): 52-61. |
[5] | 李思亮, 王欣楚, 戚羽霖, 钟君, 丁虎, 文航, 刘学炎, 郎赟超, 易沅壁, 王宝利, 刘丛强. 流域生物地球化学循环与表层地球系统层圈相互作用[J]. 地学前缘, 2025, 32(3): 62-77. |
[6] | 王铁军, 晏智锋, 宋照亮, 周浩然, 孙新超, 陈伟, 李攀, 刘丛强. 表层地球系统科学视角下的生态系统科学研究[J]. 地学前缘, 2025, 32(3): 78-91. |
[7] | 傅平青, 胡伟, 赵曦, 徐占杰, 丁士元, 吴礼彬, 邓君俊, 姜哲, 李晓东, 朱佳雷, 刘丛强. 地-气界面科学与全球变化研究[J]. 地学前缘, 2025, 32(3): 92-104. |
[8] | 余路, 李贤, 崔国栋, 邢东辉, 陆红锋, 王烨嘉. 启动压力对南海北部水合物藏开发动态的影响[J]. 地学前缘, 2025, 32(2): 178-194. |
[9] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
[10] | 侯玉松, 胡晓农, 吴吉春. 不同胶结度的多孔介质中溶质横向弥散的孔隙尺度模拟研究[J]. 地学前缘, 2024, 31(3): 59-67. |
[11] | 谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕. 小小地质微生物演绎跨圈层的相互作用[J]. 地学前缘, 2024, 31(1): 446-454. |
[12] | 刘丛强, 李思亮, 刘学炎, 王宝利, 郎赟超, 丁虎, 郝丽萍, 张琼予. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466. |
[13] | 李玉丹, 游瑜春, 曾大乾, 石志良, 顾少华, 张睿. 底水气藏水侵规律数值模拟研究:以元坝长兴组气藏为例[J]. 地学前缘, 2023, 30(6): 341-350. |
[14] | 张允, 康志江, 马郡伟, 郑欢, 吴大卫. 深层离散裂缝油藏多尺度流固耦合数值模拟方法[J]. 地学前缘, 2023, 30(6): 365-370. |
[15] | 孙哲, 张彬, 陈大伟, 李玉涛, 王汉勋. 花岗岩裂隙岩体油水两相渗流可视化试验及数值模拟研究[J]. 地学前缘, 2023, 30(3): 465-475. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||