地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 137-155.DOI: 10.13745/j.esf.sf.2025.3.2
• 全球变化、圈层相互作用研究与地球系统科学 • 上一篇 下一篇
陈玖斌(), 郑旺, 刘羿, 孙若愚, 袁玮, 孟梅, 蔡虹明, 刘丛强*(
)
收稿日期:
2025-02-09
修回日期:
2025-02-26
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*刘丛强(1955—),男,博士,教授,博士生导师,中国科学院院士,主要从事地表地球化学和表层地球系统科学研究。E-mail:作者简介:
陈玖斌(1971—),男,教授,博士生导师,主要从事同位素地球化学研究。E-mail:jbchen@tju.edu.cn
基金资助:
CHEN Jiubin(), ZHENG Wang, LIU Yi, SUN Ruoyu, YUAN Wei, MENG Mei, CAI Hongming, Liu Cong-Qiang*(
)
Received:
2025-02-09
Revised:
2025-02-26
Online:
2025-03-25
Published:
2025-04-20
摘要:
地球系统是由地质圈、生物圈和人类圈构成的一个有机整体,研究这一复杂系统各圈层内部和圈层之间的物质能量交换及其动力学机制是地球系统科学研究的核心内容。圈层之间的物质能量交换主要受控于水和主微量元素生物地球化学循环。因此,元素的生物地球化学循环是联系地球系统各圈层的物质基础和制约或影响全球变化的关键机制。此外,在社会经济高速发展背景下,人类活动正深刻改变着元素生物地球化学循环,使地球系统发生前所未有的变化。如何精准刻画元素生物地球化学循环、揭示其动力学机制、预测其未来演变趋势及其对生态系统的影响,已成为地球系统科学前沿研究任务和面临的根本挑战。而同位素可有效追踪物质的跨圈层迁移转化和生物地球化学循环,在圈层相互作用和全球变化研究中发挥着不可替代的作用。本文回顾了近年来传统和非传统稳定同位素在示踪圈层相互作用和全球变化方面的研究现状,总结了地球系统各圈层典型同位素组成分布,阐述了圈层界面过程同位素分馏机制,追踪了人类活动对地球环境-生态系统的影响,梳理了地球系统科学框架下同位素地球化学研究面临的挑战和前沿科学问题。未来,应该在进一步完善同位素地球化学方法和理论基础上,在地球系统框架下开展同位素与地理学、生态学、分子生物学、地球系统模拟、人工智能和大数据等前沿领域交叉融合研究,完善示踪复杂地球系统多圈层、多过程、多要素耦合条件下元素生物地球化学循环的同位素分馏理论框架,突破原有应用范式,获得对圈层相互作用、人类活动与全球变化、环境与生命协同演化等领域前沿科学问题的创新认知。
中图分类号:
陈玖斌, 郑旺, 刘羿, 孙若愚, 袁玮, 孟梅, 蔡虹明, 刘丛强. 同位素地球化学与地球系统圈层相互作用和全球变化研究[J]. 地学前缘, 2025, 32(3): 137-155.
CHEN Jiubin, ZHENG Wang, LIU Yi, SUN Ruoyu, YUAN Wei, MENG Mei, CAI Hongming, Liu Cong-Qiang. Isotope geochemistry and its application in Earth system sphere interactions and global change[J]. Earth Science Frontiers, 2025, 32(3): 137-155.
图1 金属在储库间磷转化中的作用(据文献[12]修改) 黑色箭头表示磷的来源、汇和转化过程,灰色箭头表示金属的主要来源,白色方框表示磷的储量(Pi—磷酸盐;PP—颗粒态磷;DOP—溶解性有机磷)。带有虚线的方框表示碱性磷酸酶(APs)的分布。
Fig.1 The role of metals in transforming phosphorus (P) in/between different pools. Modified after [12].
图2 水-岩作用过程锌稳定同位素分馏 箭头方向代表同位素分馏方向。各种作用及其数据来源:有机络合[31-32];无机吸附(高岭石[33],方解石[34],石英和无定型二氧化硅[35],Al氧化物[36-37],Mn氧化物[36,38],Fe氧化物[36,39⇓⇓⇓-43]);有机吸附(生物膜[44],藻类[45-46],细菌[47]);沉淀[48-49];溶解[50];微生物吸收[45-46,51-52];高等植物吸收[39,48,53⇓⇓⇓⇓⇓⇓⇓-61]。
Fig.2 Zinc stable isotope fractionation during water-rock interaction
图4 用于人为和自然环境示踪的主要金属同位素体系示意图(据文献[136]修改)
Fig.4 Schematic representation of the main metal isotope systems used for natural and anthropogenic tracing. Modified after [136].
[1] | ARMAROLI E, LUGLI F, CIPRIANI A, et al. Spatial ecology of moose in Sweden: combined Sr-O-C isotope analyses of bone and antler[J]. Plos One, 2024, 19(4): e0300867. |
[2] | GKINIS V, VINTHER B M, POPP T J, et al. A 120000-year long climate record from a NW-Greenland deep ice core at ultra-high resolution[J]. Scientific Data, 2021, 8(1): 141. |
[3] | BIGELEISEN J, MAYER M G. Calculation of equilibrium constants for isotopic exchange reactions[J]. The Journal of Chemical Physics, 1947, 15(5): 261-267. |
[4] | UREY H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society, 1947, 22: 562-581. |
[5] | HENDY C H. The isotopic geochemistry of speleothems: I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta, 1971, 35(8): 801-824. |
[6] | 刘东生, 谭明, 秦小光, 等. 洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义[J]. 第四纪研究, 1997(1): 41-51. |
[7] | FAKHRAEE M, CROCKFORD P W, BAUER K W, et al. The history of Earth’s sulfur cycle[J]. Nature Reviews Earth & Environment, 2025, 6(2): 106-125. |
[8] | FANG Z, HE X, ZHANG G, et al. Ocean redox changes from the latest Permian to Early Triassic recorded by chromium isotopes[J]. Earth and Planetary Science Letters, 2021, 570: 117050. |
[9] | FREI R, GAUCHER C, POULTON S W, et al. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes[J]. Nature, 2009, 461(7261): 250-253. |
[10] | FUJII T, MOYNIER F, PONS M L, et al. The origin of Zn isotope fractionation in sulfides[J]. Geochimica et Cosmochimica Acta, 2011, 75(23): 7632-7643. |
[11] | MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013, 6(9): 701-710. |
[12] | DUHAMEL S, DIAZ J M, ADAMS J C, et al. Phosphorus as an integral component of global marine biogeochemistry[J]. Nature Geoscience, 2021, 14(6): 359-368. |
[13] | 韦刚健, 黄方, 马金龙, 等. 近十年我国非传统稳定同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2022, 41(1): 1-44. |
[14] | HOEFS J, HARMON R. The Earth’s atmosphere: a stable isotope perspective and review[J]. Applied Geochemistry, 2022, 143: 105355. |
[15] | MÜLLER R D, MATHER B, DUTKIEWICZ A, et al. Evolution of Earth’s tectonic carbon conveyor belt[J]. Nature, 2022, 605(7911): 629-639. |
[16] | 刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63(30): 3070-3088. |
[17] |
刘丛强, 李思亮, 刘学炎, 等. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466.
DOI |
[18] | LYONS T W, TINO C J, FOURNIER G P, et al. Co-evolution of early Earth environments and microbial life[J]. Nature Reviews Microbiology, 2024, 22(9): 572-586. |
[19] | TIAN H, XU R, CANADELL J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586(7828): 248-256. |
[20] | WATARI T, NANSAI K, NAKAJIMA K. Major metals demand, supply, and environmental impacts to 2100: a critical review[J]. Resources, Conservation and Recycling, 2021, 164: 105107. |
[21] | 陈伟强, 汪鹏, 钟维琼. 支撑“双碳”目标的关键金属供应挑战与保障对策[J]. 中国科学院院刊, 2022, 37(11): 1577-1585. |
[22] | BROVKIN V, BROOK E, WILLIAMS J W, et al. Past abrupt changes, tipping points and cascading impacts in the Earth system[J]. Nature Geoscience, 2021, 14(8): 550-558. |
[34] | DONG S, WASYLENKI L E. Zinc isotope fractionation during adsorption to calcite at high and low ionic strength[J]. Chemical Geology, 2016, 447: 70-78. |
[35] | NELSON J, WASYLENKI L, BARGAR J R, et al. Effects of surface structural disorder and surface coverage on isotopic fractionation during Zn(II) adsorption onto quartz and amorphous silica surfaces[J]. Geochimica et Cosmochimica Acta, 2017, 215: 354-376. |
[36] |
POKROVSKY O S, VIERS J, FREYDIER R. Zinc stable isotope fractionation during its adsorption on oxides and hydroxides[J]. Journal of Colloid and Interface Science, 2005, 291(1): 192-200.
PMID |
[37] | GOU W, LI W, JI J, et al. Zinc isotope fractionation during sorption onto al oxides: atomic level understanding from EXAFS[J]. Environmental Science & Technology, 2018, 52(16): 9087-9096. |
[38] | BRYAN A L, DONG S, WILKES E B, et al. Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength[J]. Geochimica et Cosmochimica Acta, 2015, 157: 182-197. |
[39] |
WEISS D J, MASON T F D, ZHAO F J, et al. Isotopic discrimination of zinc in higher plants[J]. New Phytologist, 2005, 165(3): 703-710.
DOI PMID |
[40] | BALISTRIERI L S, BORROK D M, WANTY R B, et al. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 311-328. |
[41] | JUILLOT F, MARÉCHAL C, PONTHIEU M, et al. Zn isotopic fractionation caused by sorption on goethite and 2-lines ferrihydrite[J]. Geochimica et Cosmochimica Acta, 2008, 72(19): 4886-4900. |
[42] | YAN X, LI W, ZHU C, et al. Zinc stable isotope fractionation mechanisms during adsorption on and substitution in iron (hydr) oxides[J]. Environmental Science & Technology, 2023, 57(16): 6636-6646. |
[43] | LIU Y, LIU C, WU F, et al. Zinc isotope fractionation during coprecipitation with amorphous iron (hydr)oxides[J]. Geochimica et Cosmochimica Acta, 2024, 379: 158-171. |
[44] | COUTAUD A, MEHEUT M, VIERS J, et al. Zn isotope fractionation during interaction with phototrophic biofilm[J]. Chemical Geology, 2014, 390: 46-60. |
[23] | BIANCHI T S, MAYER L M, AMARAL J H F, et al. Anthropogenic impacts on mud and organic carbon cycling[J]. Nature Geoscience, 2024, 17(4): 287-297. |
[24] | ROCKSTRÖM J, DONGES J F, FETZER I, et al. Planetary boundaries guide humanity’s future on Earth[J]. Nature Reviews Earth & Environment, 2024, 5(11): 773-788. |
[25] |
SUAREZ C A, EDMONDS M, JONES A P. Earth catastrophes and their impact on the carbon cycle[J]. Elements, 2019, 15(5): 301-306.
DOI |
[26] | ISSON T, RAUZI S. Oxygen isotope ensemble reveals Earth’s seawater, temperature, and carbon cycle history[J]. Science, 2024, 383(6683): 666-670. |
[27] | KWON E Y, DEVRIES T, GALBRAITH E D, et al. Stable carbon isotopes suggest large terrestrial carbon inputs to the global ocean[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006684. |
[28] | LI W, LIU X M. Experimental investigation of lithium isotope fractionation during kaolinite adsorption: implications for chemical weathering[J]. Geochimica et Cosmochimica Acta, 2020, 284: 156-172. |
[29] | KALDERON-ASAEL B, KATCHINOFF J A R, PLANAVSKY N J, et al. A lithium-isotope perspective on the evolution of carbon and silicon cycles[J]. Nature, 2021, 595(7867): 394-398. |
[30] | GAN T, TIAN M, WANG X K, et al. Lithium isotope evidence for a plumeworld ocean in the aftermath of the Marinoan snowball Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(46): e2407419121. |
[31] | BAN Y, AIDA M, NOMURA M, et al. Zinc isotope separation by ligand exchange chromatography using cation exchange resin[J]. Journal of Ion Exchange, 2002, 13(2): 46-52. |
[32] | JOUVIN D, LOUVAT P, JUILLOT F, et al. Zinc isotopic fractionation: why organic matters[J]. Environmental Science & Technology, 2009, 43(15): 5747-5754. |
[33] | GUINOISEAU D, GELABERT A, LOUVAT P, et al. Zn isotope fractionation during sorption onto kaolinite[J]. Abstracts of Papers of The American Chemical Society, 2016, 50(4): 1844-1852. |
[45] | GÉLABERT A, POKROVSKY O S, VIERS J, et al. Interaction between zinc and freshwater and marine diatom species: surface complexation and Zn isotope fractionation[J]. Geochimica et Cosmochimica Acta, 2006, 70(4): 839-857. |
[46] | JOHN S G, CONWAY T M. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes[J]. Earth and Planetary Science Letters, 2014, 394: 159-167. |
[47] | KAFANTARIS F C A, BORROK D M. Zinc isotope fractionation during surface adsorption and intracellular incorporation by bacteria[J]. Chemical Geology, 2014, 366: 42-51. |
[48] | VIERS J, OLIVA P, NONELL A, et al. Evidence of Zn isotopic fractionation in a soil-plant system of a pristine tropical watershed (Nsimi, Cameroon)[J]. Chemical Geology, 2007, 239(1/2): 124-137. |
[49] | JAMIESON-HANES J H, SHRIMPTON H K, VEERAMANI H, et al. Evaluating zinc isotope fractionation under sulfate reducing conditions using a flow-through cell and in situ XAS analysis[J]. Geochimica et Cosmochimica Acta, 2017, 203: 1-14. |
[50] | FERNANDEZ A, BORROK D M. Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks[J]. Chemical Geology, 2009, 264(1/2/3/4): 1-12. |
[51] | JOHN S G, GEIS R W, SAITO M A, et al. Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica[J]. Limnology and Oceanography, 2007, 52(6): 2710-2714. |
[52] | SAMANTA M, ELLWOOD M J, STRZEPEK R F. Zinc isotope fractionation by Emiliania huxleyi cultured across a range of free zinc ion concentrations[J]. Limnology and Oceanography, 2018, 63(2): 660-671. |
[53] | ARNOLD T, KIRK G J, WISSUWA M, et al. Evidence for the mechanisms of zinc uptake by rice using isotope fractionation[J]. Plant, Cell & Environment, 2010, 33(3): 370-381. |
[54] | AUCOUR A M, PICHAT S, MACNAIR M, et al. Fractionation of stable zinc isotopes in the zinc hyperaccumulator Arabidopsis halleri and nonaccumulator Arabidopsis petraea[J]. Environmental Science & Technology, 2011, 45(21): 9212-9217. |
[55] | CALDELAS C, DONG S, ARAUS J L, et al. Zinc isotopic fractionation in Phragmites australis in response to toxic levels of zinc[J]. Journal of Experimental Botany, 2011, 62(6): 2169-2178. |
[56] | SMOLDERS E, VERSIEREN L, SHUOFEI D, et al. Isotopic fractionation of Zn in tomato plants suggests the role of root exudates on Zn uptake[J]. Plant and Soil, 2013, 370(1/2): 605-613. |
[57] | HOUBEN D, SONNET P, TRICOT G, et al. Impact of root-induced mobilization of zinc on stable Zn isotope variation in the soil-plant system[J]. Environmental Science & Technology, 2014, 48(14): 7866-7873. |
[58] | ARNOLD T, MARKOVIC T, KIRK G J, et al. Iron and zinc isotope fractionation during uptake and translocation in rice (Oryza sativa) grown in oxic and anoxic soils[J]. Comptes Rendus. Géoscience, 2015, 347(7/8): 397-404. |
[59] | AUCOUR A M, BEDELL J P, QUEYRON M, et al. Dynamics of Zn in an urban wetland soil-plant system: coupling isotopic and EXAFS approaches[J]. Geochimica et Cosmochimica Acta, 2015, 160: 55-69. |
[60] | COUDER E, MATTIELLI N, DROUET T, et al. Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation[J]. Comptes Rendus. Géoscience, 2015, 347(7/8): 386-396. |
[61] | TANG Y T, CLOQUET C, DENG T H B, et al. Zinc isotope fractionation in the hyperaccumulator Noccaea caerulescens and the nonaccumulating plant Thlaspi arvense at low and high Zn supply[J]. Environmental Science & Technology, 2016, 50(15): 8020-8027. |
[62] | CHEN J, HINTELMANN H, FENG X, et al. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada[J]. Geochimica et Cosmochimica Acta, 2012, 90: 33-46. |
[63] |
ZHENG W, HINTELMANN H. Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light[J]. Journal of Physical Chemistry A, 2010, 114(12): 4238-4245.
DOI PMID |
[64] | CHEN J B, GAILLARDET J, DESSERT C, et al. Zn isotope compositions of the thermal spring waters of La Soufrière volcano, Guadeloupe Island[J]. Geochimica et Cosmochimica Acta, 2014, 127: 67-82. |
[65] | YUAN W, SALDI G D, CHEN J, et al. Gallium isotope fractionation during Ga adsorption on calcite and goethite[J]. Geochimica et Cosmochimica Acta, 2018, 223: 350-363. |
[66] | YUAN W, WANG Z, SALDI G D, et al. Gallium isotope fractionation during precipitation of α-GaOOH from aqueous solution[J]. Chemical Geology, 2024, 646: 121923. |
[67] | YUAN W, GONG Y, CHEN J, et al. Gallium isotope constraints on the intense weathering of basalt[J]. Geochimica et Cosmochimica Acta, 2022, 333: 22-38. |
[68] |
LI S, LI W, BEARD B L, et al. K isotopes as a tracer for continental weathering and geological K cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(18): 8740-8745.
DOI PMID |
[69] | JI T T, JIANG X W, HAN G, et al. Contrasting behavior of K isotopes in modern and fossil groundwater: implications for K cycle and subsurface weathering[J]. Earth and Planetary Science Letters, 2024, 626: 118526. |
[70] | BAI J, WU C, WU H, et al. δ142Ce minus δ146Nd value as a redox indicator in Earth’s surface environments[J]. Earth and Planetary Science Letters, 2024, 629: 118597. |
[71] | GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293-296. |
[72] | ANDERSON R F. GEOTRACES: Accelerating research on the marine biogeochemical cycles of trace elements and their isotopes[J]. Annual Review of Marine Science, 2020, 12(1): 49-85. |
[73] | LAM P J, ANDERSON R F. GEOTRACES: the marine biogeochemical cycle of trace elements and their isotopes[J]. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 2018, 14(6): 377-378. |
[74] | LIU Y, CHEN M, ZHANG T, et al. Isotope compositions of century-long corals reveal significant dissolved Cu, Zn fluxes from human-accelerated weathering into the ocean[J]. Geophysical Research Letters, 2023, 50(7): e2022GL102482. |
[75] |
BENDER M M. C/C ratio changes in crassulacean acid metabolism plants[J]. Plant Physiology, 1973, 52(5): 427-30.
DOI PMID |
[76] | 刘金亮, 薛滨, 姚书春, 等. 湖泊水生植物稳定碳同位素分馏机制与应用研究进展[J]. 生态学报, 2020, 40(8): 2533-2544. |
[77] | 胡耀武. 稳定同位素生物考古学的概念、简史、原理和目标[J]. 人类学学报, 2021, 40(3): 526-534. |
[78] | 杨蓉, 李垒. 碳氮氧稳定同位素技术在水生态环境中的应用[J]. 环境科学研究, 2022, 35(1): 191-201. |
[79] |
O’BRIEN D M. Stable isotope ratios as biomarkers of diet for health research[J]. Annual Review of Nutrition, 2015, 35: 565-594.
DOI PMID |
[80] | LEE-THORP J A. On isotopes and old bones[J]. Archaeometry, 2008, 50: 925-950. |
[81] | SCHOENINGER M J. Stable isotope analyses and the evolution of human diets[J]. Annual Review of Anthropology, 2014, 43: 413-430. |
[82] | 王万洁, 侯兴旺, 刘稷燕, 等. 传统稳定同位素技术在环境科学领域的应用及研究进展[J]. 环境化学, 2021, 40(12): 3640-3650. |
[83] | SAMANTA M, ELLWOOD M J, SINOIR M, et al. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean[J]. Marine Chemistry, 2017, 192: 1-12. |
[84] | ZHU X K, GUO Y, WILLIAMS R J P, et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters, 2002, 200(1/2): 47-62. |
[85] |
NAVARRETE J U, BORROK D M, VIVEROS M, et al. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 784-799.
PMID |
[86] | RADIC A, LACAN F, MURRAY J W. Iron isotopes in the seawater of the equatorial Pacific Ocean: new constraints for the oceanic iron cycle[J]. Earth and Planetary Science Letters, 2011, 306(1/2): 1-10. |
[87] | HE M, YU X, DENG W, et al. In situ analysis of sulfur isotopic fractionation in deep-sea corals using secondary-ion mass spectrometry: insights into vital effects[J]. Journal of Geophysical Research: Biogeosciences, 2024, 129(10): e2024JG008032. |
[88] | ZHANG T, SUN R, LIU Y, et al. Copper and Zinc isotope signatures in scleratinian corals: implications for Cu and Zn cycling in modern and ancient ocean[J]. Geochimica et Cosmochimica Acta, 2022, 317: 395-408. |
[89] | MAVROMATIS V, GONZALEZ A G, DIETZEL M, et al. Zinc isotope fractionation during the inorganic precipitation of calcite: towards a new pH proxy[J]. Geochimica et Cosmochimica Acta, 2019, 244: 99-112. |
[90] | ZHAO M, TARHAN L G, ZHANG Y, et al. Evaluation of shallow-water carbonates as a seawater zinc isotope archive[J]. Earth and Planetary Science Letters, 2021, 553: 116599. |
[91] |
WEBER T, JOHN S, TAGLIABUE A, et al. Biological uptake and reversible scavenging of zinc in the global ocean[J]. Science, 2018, 361(6397): 72-76.
DOI PMID |
[92] | MOYNIER F, CREECH J, DALLAS J, et al. Serum and brain natural copper stable isotopes in a mouse model of Alzheimer’s disease[J]. Scientific Reports, 2019, 9(1): 11894. |
[93] | MOYNIER F, LE BORGNE M, LAOUD E, et al. Copper and zinc isotopic excursions in the human brain affected by Alzheimer’s disease[J]. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 2020, 12(1): e12112. |
[94] | 郭瑞. 面向癌症诊断的Fe、Cu、Zn同位素分析方法及潜在应用[D]. 合肥: 中国科学技术大学, 2024. |
[95] | 陈国俊. 微生物还原六价铬过程中的铬同位素分馏机理探究[D]. 合肥: 中国科学技术大学, 2018. |
[96] | KRITEE K, BLUM J D, JOHNSON M W, et al. Mercury stable isotope fractionation during reduction of Hg(II) to Hg(0) by mercury resistant microorganisms[J]. Environmental Science & Technology, 2007, 41(6): 1889-1895. |
[97] | KRITEE K, BLUM J D, BARKAY T. Mercury stable isotope fractionation during reduction of Hg(II) by different microbial pathways[J]. Environmental Science & Technology, 2008, 42(24): 9171-9177. |
[98] | KRITEE K, BARKAY T, BLUM J D. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury[J]. Geochimica et Cosmochimica Acta, 2009, 73(5): 1285-1296. |
[99] | RODRIGUEZ-GONZALEZ P, EPOV V N, BRIDOU R, et al. Species-specific stable isotope fractionation of mercury during Hg(II) methylation by an anaerobic bacteria (Desulfobulbus propionicus) under dark conditions[J]. Environmental Science & Technology, 2009, 43(24): 9183-9188. |
[100] | JANSSEN S E, SCHAEFER J K, BARKAY T, et al. Fractionation of mercury stable isotopes during microbial methylmercury production by iron- and sulfate-reducing bacteria[J]. Environmental Science & Technology, 2016, 50(15): 8077-8083. |
[101] | KRITEE K, BLUM J D, REINFELDER J R, et al. Microbial stable isotope fractionation of mercury: a synthesis of present understanding and future directions[J]. Chemical Geology, 2013, 336: 13-25. |
[102] | KRITEE K, MOTTA L C, BLUM J D, et al. Photomicrobial visible light-induced magnetic mass independent fractionation of mercury in a marine microalga[J]. ACS Earth and Space Chemistry, 2017, 2(5): 432-440. |
[103] | YANG L, YU B, LIU H, et al. Foraging behavior and sea ice-dependent factors affecting the bioaccumulation of mercury in Antarctic coastal waters[J]. Science of the Total Environment, 2024, 912: 169557. |
[104] | MENG M, SUN R Y, LIU H W, et al. Mercury isotope variations within the marine food web of Chinese Bohai Sea: implications for mercury sources and biogeochemical cycling[J]. Journal of Hazardous Materials, 2020, 384: 121379. |
[105] | BLUM J D, POPP B N, DRAZEN J C, et al. Methylmercury production below the mixed layer in the North Pacific Ocean[J]. Nature Geoscience, 2013, 6(10): 879-884. |
[106] | MOTTA L C, BLUM J D, JOHNSON M W, et al. Mercury cycling in the North Pacific Subtropical Gyre as revealed by mercury stable isotope ratios[J]. Global Biogeochemical Cycles, 2019, 33(6): 777-794. |
[107] |
SUN R, YUAN J, SONKE J E, et al. Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna[J]. Nature Communications, 2020, 11(1): 3389.
DOI PMID |
[108] |
BLUM J D, DRAZEN J C, JOHNSON M W, et al. Mercury isotopes identify near-surface marine mercury in deep-sea trench biota[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29292-29298.
DOI PMID |
[109] | KYSER K. Isotopes as tracers of elements across the geosphere-biosphere interface[M]//Isotopic analysis:fundamentals and applications using ICP-MS. Weinheim: Wiley-VCH, 2012: 351-372. |
[110] | VON BLANCKENBURG F, VON WIREN N, GUELKE M, et al. Fractionation of metal stable isotopes by higher plants[J]. Elements, 2009, 5(6): 375-380. |
[111] | CHAUDHURI S, CLAUER N, SEMHI K. Plant decay as a major control of river dissolved potassium: a first estimate[J]. Chemical Geology, 2007, 243(1): 178-190. |
[112] |
LIU C, GAO T, LIU Y, et al. Isotopic fingerprints indicate distinct strategies of Fe uptake in rice[J]. Chemical Geology, 2019, 524: 323-328.
DOI |
[113] | GUELKE M, VON BLANCKENBURG F. Fractionation of stable iron isotopes in higher plants[J]. Environmental Science & Technology, 2007, 41(6): 1896-1901. |
[114] | CALDELAS C, WEISS D J. Zinc homeostasis and isotopic fractionation in plants: a review[J]. Plant and Soil, 2017, 411(1): 17-46. |
[115] | JOUVIN D, WEISS D J, MASON T F M, et al. Stable isotopes of Cu and Zn in higher plants: evidence for Cu reduction at the root surface and two conceptual models for isotopic fractionation processes[J]. Environmental Science & Technology, 2012, 46(5): 2652-2660. |
[116] | WEINSTEIN C, MOYNIER F, WANG K, et al. Isotopic fractionation of Cu in plants[J]. Chemical Geology, 2011, 286(3/4): 266-271. |
[117] | NAVARRETE J U, VIVEROS M, ELLZEY J T, et al. Copper isotope fractionation by desert shrubs[J]. Applied Geochemistry, 2011, 26: S319-S321. |
[118] | 嵇静, 赵海香. 铜同位素分馏机理及影响因素研究综述[J]. 地球科学前沿, 2017, 7(3): 336-348. |
[119] | XIA R, ZHOU J, ZENG Z, et al. Cadmium isotope fractionations induced by foliar and root uptake for rice exposed to atmospheric particles: implications for environmental source tracing[J]. Environmental Science & Technology Letters, 2023, 10(11): 1096-1102. |
[120] | XIA R, ZHOU J, SUN Y, et al. Stable isotope ratios trace the rice uptake of cadmium from atmospheric deposition via leaves and roots[J]. Environmental Science & Technology, 2023, 57(44): 16873-16883. |
[121] | YIN R, FENG X, MENG B. Stable mercury isotope variation in rice plants (Oryza sativa L. ) from the Wanshan mercury mining district, SW China[J]. Environmental Science & Technology, 2013, 47(5): 2238-2245. |
[122] | YUAN W, WANG X, LIN C J, et al. Fate and transport of mercury through waterflows in a tropical rainforest[J]. Environmental Science & Technology, 2024, 58(11): 4968-4978. |
[123] | YUAN W, WANG X, LIN C J, et al. Deposition and re-emission of atmospheric elemental mercury over the tropical forest floor[J]. Environmental Science & Technology, 2023, 57(29): 10686-10695. |
[124] | YUAN W, WANG X, LIN C J, et al. Mercury uptake, accumulation, and translocation in roots of subtropical forest: implications of global mercury budget[J]. Environmental Science & Technology, 2022, 56(19): 14154-14165. |
[125] | WANG X, YUAN W, LIN C J, et al. Mercury cycling and isotopic fractionation in global forests[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(21): 3763-3786. |
[126] | YUAN W, WANG X, LIN C J, et al. Stable mercury isotope transition during postdepositional decomposition of biomass in a forest ecosystem over five centuries[J]. Environmental Science & Technology, 2020, 54(14): 8739-8749. |
[127] | WANG X, YUAN W, LIN C J, et al. Climate and vegetation as primary drivers for global mercury storage in surface soil[J]. Environmental Science & Technology, 2019, 53(18): 10665-10675. |
[128] | ZHENG W, OBRIST D, WEIS D, et al. Mercury isotope compositions across North American forests[J]. Global Biogeochemical Cycles, 2016, 30(10): 1475-1492. |
[129] | OBRIST D, AGNAN Y, JISKRA M, et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution[J]. Nature, 2017, 547(7662): 201-204. |
[130] | ZHOU J, OBRIST D, DASTOOR A, et al. Vegetation uptake of mercury and impacts on global cycling[J]. Nature Reviews Earth & Environment, 2021, 2(4): 269-284. |
[131] | YUAN W, LIU M, CHEN D, et al. Mercury isotopes show vascular plants had colonized land extensively by the early Silurian[J]. Science Advances, 2023, 9(17): eade9510. |
[132] |
AMOR M, BUSIGNY V, LOUVAT P, et al. Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria[J]. Science, 2016, 352(6286): 705-708.
DOI PMID |
[133] | SEN I S, PEUCKER-EHRENBRINK B. Anthropogenic disturbance of element cycles at the Earth’s surface[J]. Environmental Science & Technology, 2012, 46(16): 8601-8609. |
[134] |
MACKLIN M G, THOMAS C J, MUDBHATKAL A, et al. Impacts of metal mining on river systems: a global assessment[J]. Science, 2023, 381(6664): 1345-1350.
DOI PMID |
[135] |
SOVACOOL B K, ALI S H, BAZILIAN M, et al. Sustainable minerals and metals for a low-carbon future[J]. Science, 2020, 367(6473): 30-33.
DOI PMID |
[136] | WIEDERHOLD J G. Metal stable isotope signatures as tracers in environmental geochemistry[J]. Environmental Science & Technology, 2015, 49(5): 2606-2624. |
[137] | SUN R, HEIMBÜRGER L E, SONKE J E, et al. Mercury stable isotope fractionation in six utility boilers of two large coal-fired power plants[J]. Chemical Geology, 2013, 336: 103-111. |
[138] | YUAN J, SUN R, WANG R, et al. Denitrification devices in urban boilers change mercury isotope fractionation signatures of coal combustion products[J]. Environmental Pollution, 2021, 268: 115753. |
[139] | BORROK D M, GIERÉ R, REN M, et al. Zinc isotopic composition of particulate matter generated during the combustion of coal and coal+tire-derived fuels[J]. Environmental Science & Technology, 2010, 44(23): 9219-9224. |
[140] | OCHOA GONZALEZ R, WEISS D. Zinc isotope variability in three coal-fired power plants: a predictive model for determining isotopic fractionation during combustion[J]. Environmental Science & Technology, 2015, 49(20): 12560-12567. |
[141] |
MARTINKOVÁ E, CHRASTNÝ V, FRANCOVÁ M, et al. Cadmium isotope fractionation of materials derived from various industrial processes[J]. Journal of Hazardous Materials, 2016, 302: 114-119.
DOI PMID |
[142] | FOUSKAS F, MA L, ENGLE M A, et al. Cadmium isotope fractionation during coal combustion: insights from two U.S. coal-fired power plants[J]. Applied Geochemistry, 2018, 96: 100-112. |
[143] | SUN R, SONKE J E, HEIMBÜRGER L E, et al. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions[J]. Environmental Science & Technology, 2014, 48(13): 7660-7668. |
[144] |
SUN R. Mercury stable isotope fractionation during coal combustion in coal-fired boilers: reconciling atmospheric Hg isotope observations with Hg isotope fractionation theory[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(5): 657-664.
DOI PMID |
[145] | SUN R, CAO F, DAI S, et al. Atmospheric mercury isotope shifts in response to mercury emissions from underground coal fires[J]. Environmental Science & Technology, 2023, 57(23): 8638-8649. |
[146] | CLOQUET C, CARIGNAN J, LIBOUREL G, et al. Tracing source pollution in soils using cadmium and lead isotopes[J]. Environmental Science & Technology, 2006, 40(8): 2525-2530. |
[147] | CHEN J, GAILLARDET J, LOUVAT P. Zinc isotopes in the Seine River waters, France: a probe of anthropogenic contamination[J]. Environmental Science & Technology, 2008, 42(17): 6494-6501. |
[148] | MENG M, SUN R Y, LIU H W, et al. An integrated model for input and migration of mercury in Chinese coastal sediments[J]. Environmental Science & Technology, 2019, 53(5): 2460-2471. |
[149] | CHOI H B, RYU J S, SHIN W J, et al. The impact of anthropogenic inputs on lithium content in river and tap water[J]. Nature Communications, 2019, 10(1): 5371. |
[150] | 孙若愚, 李程皓, 李松旌, 等. 海洋汞同位素的研究范式及最新进展[J]. 矿物岩石地球化学通报, 2024, 43(4): 689-705. DOI: 10.3724/j.issn.1007-2802.20240016. |
[151] | YUAN J, LIU Y, CHEN S, et al. Mercury isotopes in deep-sea epibenthic biota suggest limited Hg transfer from photosynthetic to chemosynthetic food webs[J]. Environmental Science & Technology, 2023, 57(16): 6550-6562. https://doi.org/10.1021/acs.est.3c01276. |
[152] | YU G H, CHI Z L, KAPPLER A, et al. Fungal nanophase particles catalyze iron transformation for oxidative stress removal and iron acquisition[J]. Current Biology, 2020, 30(15): 2943-2950. |
[153] |
SUBIRANA M A, PATON L, HALL J, et al. Development of mercury analysis by nanoSIMS for the localization of mercury-selenium particles in whale liver[J]. Analytical Chemistry, 2021, 93(37): 12733-12739.
DOI PMID |
[154] |
MASBOU J, POINT D, GUILLOU G, et al. Carbon stable isotope analysis of methylmercury toxin in biological materials by gas chromatography isotope ratio mass spectrometry[J]. Analytical Chemistry, 2015, 87(23): 11732-11738.
DOI PMID |
[155] |
DAL CORSO J, MILLS B J W, CHU D, et al. Permo-Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse[J]. Nature Communications, 2020, 11(1): 2962.
DOI PMID |
[156] | SONG Z, SUN R, ZHANG Y. Modeling mercury isotopic fractionation in the atmosphere[J]. Environmental Pollution, 2022, 307: 119588. |
[157] | SONG Z, HUANG S, ZHANG P, et al. Isotope data constrains redox chemistry of atmospheric mercury[J]. Environmental Science & Technology, 2024, 58(30): 13307-13317. |
[158] | LI X, FENG M, RAN Y, et al. Big Data in Earth system science and progress towards a digital twin[J]. Nature Reviews Earth & Environment, 2023, 4(5): 319-332. |
[159] | LIN M, THIEMENS M H. 40 years of theoretical advances in mass-independent oxygen isotope effects and applications in atmospheric chemistry: a critical review and perspectives[J]. Applied Geochemistry, 2024, 161: 105860. |
[160] | ONO S. Photochemistry of sulfur dioxide and the origin of mass-independent isotope fractionation in Earth’s atmosphere[J]. Annual Review of Earth and Planetary Sciences, 2017, 45: 301-329. |
[161] | BAO H, CAO X, HAYLES J A. Triple oxygen isotopes: fundamental relationships and applications[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 463-492. |
[162] | SCHAUBLE E A. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements[J]. Geochimica et Cosmochimica Acta, 2007, 71(9): 2170-2189. |
[163] | YANG S, LIU Y. Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead[J]. Scientific Reports, 2015, 5(1): 12626. |
[164] | ZHENG W, HINTELMANN H. Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light[J]. The Journal of Physical Chemistry A, 2010, 114(12): 4238-4245. |
[165] |
SCHAUBLE E A. Modeling nuclear volume isotope effects in crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17714-17719.
DOI PMID |
[166] |
刘耘. 非传统稳定同位素分馏理论及计算[J]. 地学前缘, 2015, 22(5): 1-28.
DOI |
[167] | 郑旺, 赵亚秋, 孙若愚, 等. 汞的稳定同位素分馏机理[J]. 矿物岩石地球化学通报, 2021, 40(5): 1087-1110. |
[168] | BLUM J D, SHERMAN L S, JOHNSON M W. Mercury isotopes in Earth and environmental sciences[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 249-269. |
[169] | MAYUMI D, TAMAKI H, KATO S, et al. Hydrogenotrophic methanogens overwrite isotope signals of subsurface methane[J]. Science, 2024, 386(6728): 1372-1376. |
[170] | WALDRON K J, RUTHERFORD J C, FORD D, et al. Metalloproteins and metal sensing[J]. Nature, 2009, 460(7257): 823-830. |
[171] |
ALBAREDE F, TELOUK P, BALTER V, et al. Medical applications of Cu, Zn, and S isotope effects[J]. Metallomics, 2016, 8(10): 1056-1070.
PMID |
[172] | RICHTER D D, BILLINGS S A, GROFFMAN P M, et al. Ideas and perspectives: strengthening the biogeosciences in environmental research networks[J]. Biogeosciences, 2018, 15(15): 4815-4832. |
[1] | 刘丛强. 全球变化、层圈相互作用研究与地球系统科学[J]. 地学前缘, 2025, 32(3): 1-6. |
[2] | 肖昀廷, 蔡晨康, 黄亦心, 朱佳雷. 海表温度日变化特征对海陆风模拟的影响研究[J]. 地学前缘, 2025, 32(3): 218-230. |
[3] | 徐胜, 杨业, 张茂亮, 邵延秀, 李云帅, 徐海, 刘静, 刘丛强. 构造-地貌-气候-生态系统动力学研究进展[J]. 地学前缘, 2025, 32(3): 23-34. |
[4] | 崔灏, 韦刚健. 青藏高原周缘始新世—渐新世气候转换期风化演变及其对全球及区域气候环境变化的响应[J]. 地学前缘, 2025, 32(3): 274-287. |
[5] | 曹晨晞, 张茂亮, 王立胜, 王学锋, 段武辉, 徐胜. 藏南活动断裂带第四纪CO2释放初探:来自钙华年代学与地球化学的约束[J]. 地学前缘, 2025, 32(3): 334-349. |
[6] | 滕辉, 余光辉, 陈春梅, 郝丽萍, 张坚超, 朱翔宇, 孙富生, 王钺博, 刘丛强. 表层地球系统界面过程与土壤圈演化研究[J]. 地学前缘, 2025, 32(3): 35-51. |
[7] | 陈喜, 董建志, 王礼春, 张永根, 王学静, 狄崇利, 高满, 刘丛强. 全球变化下生态水文学发展与展望[J]. 地学前缘, 2025, 32(3): 52-61. |
[8] | 李思亮, 王欣楚, 戚羽霖, 钟君, 丁虎, 文航, 刘学炎, 郎赟超, 易沅壁, 王宝利, 刘丛强. 流域生物地球化学循环与表层地球系统层圈相互作用[J]. 地学前缘, 2025, 32(3): 62-77. |
[9] | 王铁军, 晏智锋, 宋照亮, 周浩然, 孙新超, 陈伟, 李攀, 刘丛强. 表层地球系统科学视角下的生态系统科学研究[J]. 地学前缘, 2025, 32(3): 78-91. |
[10] | 傅平青, 胡伟, 赵曦, 徐占杰, 丁士元, 吴礼彬, 邓君俊, 姜哲, 李晓东, 朱佳雷, 刘丛强. 地-气界面科学与全球变化研究[J]. 地学前缘, 2025, 32(3): 92-104. |
[11] | 谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕. 小小地质微生物演绎跨圈层的相互作用[J]. 地学前缘, 2024, 31(1): 446-454. |
[12] | 金之钧, 陈书平, 张瑞. 沉积盆地波动过程分析:研究现状与展望[J]. 地学前缘, 2024, 31(1): 284-296. |
[13] | 刘丛强, 李思亮, 刘学炎, 王宝利, 郎赟超, 丁虎, 郝丽萍, 张琼予. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466. |
[14] | 刘志飞, 陈建芳, 石学法. 深海沉积与全球变化研究的前缘与挑战[J]. 地学前缘, 2022, 29(4): 1-9. |
[15] | 赵俊猛, 张培震, 张先康, Xiaohui YUAN, Rainer KIND, Robertvander HILST, 甘卫军, 孙继敏, 邓涛, 刘红兵, 裴顺平, 徐强, 张衡, 嘉世旭, 颜茂都, 郭晓玉, 卢占武, 杨小平, 邓攻, 琚长辉. 中国西部壳幔结构与动力学过程及其对资源环境的制约:“羚羊计划”研究进展[J]. 地学前缘, 2021, 28(5): 230-259. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||