地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 52-61.DOI: 10.13745/j.esf.sf.2025.3.13
• 全球变化、圈层相互作用研究与地球系统科学 • 上一篇 下一篇
陈喜1,2,3(), 董建志1,2,3, 王礼春1,2,3, 张永根1,2,3, 王学静1,2,3, 狄崇利1,2,3, 高满1,2,3, 刘丛强1,2,3,*(
)
收稿日期:
2025-02-03
修回日期:
2025-02-25
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*刘丛强(1955—),男,教授,博士生导师,中国科学院院士,主要从事地表地球化学和表层地球系统科学研究。E-mail:作者简介:
陈 喜(1964—),男,教授,博士生导师,主要从事水文水资源研究。E-mail:xi_chen@tju.edu.cn
基金资助:
CHEN Xi1,2,3(), DONG Jianzhi1,2,3, WANG Lichun1,2,3, ZHANG Yonggen1,2,3, WANG Xuejing1,2,3, DI Chongli1,2,3, GAO Man1,2,3, Liu Cong-Qiang1,2,3,*(
)
Received:
2025-02-03
Revised:
2025-02-25
Online:
2025-03-25
Published:
2025-04-20
摘要:
在全球变化背景下,生态水文研究的时空尺度得到了极大的拓展,研究内容从水与生物之间的互馈关系及其变化,延伸至水与其他非生物要素(如大气、土壤、岩石)以及人类活动之间的互馈关系及其演变机制。本文基于地球系统科学理念,结合全球变化下生态水文面临的挑战以及研究范式转变,从“土壤-植被-大气”连续体(SPAC)、地球关键带以及流域等多维度探讨生态水文学过程,阐释水分、能量和物质在基岩、土壤、植被和大气界面之间的传输与交换机制以及植被生长对土壤结构和水分动态的反馈作用,论述气候变化和人类活动影响下基岩风化、土壤形成与生态水文过程的协同演变及其对水文循环和物质平衡的影响,并讨论了流域作为连接全球与局地尺度的关键中间单元的重要性。面向水-生态资源可持续利用需求,提出了在人工智能背景下生态水文研究的可能突破途径,包括多源数据融合、物理过程与机器学习结合的建模方法,以及跨学科协作的研究范式。本文旨在构建生态-水文-社会协同发展理论框架,为提升生态系统质量、保障水资源可持续利用、促进社会经济绿色发展提供科学依据和决策支持。
中图分类号:
陈喜, 董建志, 王礼春, 张永根, 王学静, 狄崇利, 高满, 刘丛强. 全球变化下生态水文学发展与展望[J]. 地学前缘, 2025, 32(3): 52-61.
CHEN Xi, DONG Jianzhi, WANG Lichun, ZHANG Yonggen, WANG Xuejing, DI Chongli, GAO Man, Liu Cong-Qiang. Development and prospect of ecohydrology under global change[J]. Earth Science Frontiers, 2025, 32(3): 52-61.
[1] | 王根绪, 钱鞠, 程国栋. 生态水文科学研究的现状与展望[J]. 地球科学进展, 2001, 16(3): 314-323. |
[2] |
于贵瑞, 王秋凤, 于振良. 陆地生态系统水-碳耦合循环与过程管理研究[J]. 地球科学进展, 2004, 19(5): 831-839.
DOI |
[3] | 刘昌明, 刘璇, 于静洁, 等. 生态水文学兴起: 学科理论与实践问题的评述[J]. 北京师范大学学报(自然科学版), 2022, 58(3): 412-423. |
[4] | 汤秋鸿. 全球变化水文学: 陆地水循环与全球变化[J]. 中国科学: 地球科学, 2020, 50(3): 436-438. |
[5] | 刘昌明. 土壤-植物-大气系统水分运行的界面过程研究[J]. 地理学报, 1997, 52(4): 80-87. |
[6] | 李中恺, 李小雁, 周沙, 等. 土壤-植被-水文耦合过程与机制研究进展[J]. 中国科学: 地球科学, 2022, 52(11): 2105-2138. |
[7] |
SPERRY J S, LOVE D M. What plant hydraulics can tell us about responses to climate-change droughts[J]. New Phytologist, 2015, 207(1): 14-27.
DOI PMID |
[8] | CHEN S, FU Y H, GENG X, et al. Influences of shifted vegetation phenology on runoff across a hydroclimatic gradient[J]. Frontiers in Plant Science, 2022, 12: 802664. |
[9] | LEVIS S. Modeling vegetation and land use in models of the Earth System[J]. Wiley Interdisciplinary Reviews-Climate Change, 2010, 1(6): 840-856. |
[10] | 黄奕龙, 傅伯杰, 陈利顶. 生态水文过程研究进展[J]. 生态学报, 2003, 23(3): 580-587. |
[11] | LI X, LIU F, MA C, et al. Land data assimilation: harmonizing theory and data in land surface process studies[J]. Reviews of Geophysics, 2024, 62(1): 1-45. |
[12] | PHILIP J R. Plant water relations: some physical aspects[J]. Annual Review of Plant Physiology, 1966, 17(1): 245-268. |
[13] | 杨大文, 丛振涛, 尚松浩, 等. 从土壤水动力学到生态水文学的发展与展望[J]. 水利学报, 2016, 47(3): 390-397. |
[14] | 夏军, 左其亭, 王根续, 等. 生态水文学[M]//国家科学思想库:地球科学学科前沿丛书. 北京: 科学出版社, 2020. |
[15] | MINGAN S, WENZHI Y. Mathematical model of soil moisture absorption of plant roots[J]. Acta Pedologica Sinica (China), 1987, 24(4): 295-305. |
[16] | 康绍忠. 土壤-植物-大气连续体水流阻力分布规律的研究[J]. 生态学报, 1993(2): 157-163. |
[17] | 刘昌明, 窦清晨. 土壤-植物-大气连续体模型中的蒸散发计算[J]. 水科学进展, 1992, 3(4): 255-263. |
[18] | HILLERISLAMBERS R, RIETKERK M, VAN den Bosch F, et al. Vegetation pattern formation in semi-arid grazing systems[J]. Ecology, 2001, 82(1): 50-61. |
[19] | SCANLAN C A. Processes and effects of root-induced changes to soil hydraulic properties[D]. Perth: University of Western Australia, 2009. |
[20] | HUDSON B D. Soil organic matter and available water capacity[J]. Journal of Soil and Water Conservation, 1994, 49(2): 189-194. |
[21] | SCHWINNING S. The ecohydrology of roots in rocks[J]. Ecohydrology: Ecosystems, Land and Water Process Interactions, Ecohydrogeomorphology, 2010, 3(2): 238-245. |
[22] | NIEMEYER R J, FREMIER A K, HEINSE R, et al. Woody vegetation increases saturated hydraulic conductivity in dry tropical nicaragua[J]. Vadose Zone Journal, 2014, 13(1): 1-11. |
[23] | SHARMA P, CHUNG W T, AKOUSH B, et al. A review of physics-informed machine learning in fluid mechanics[J]. Energies, 2023, 16(5): 2343. |
[24] | FATICHI S, OR D, WALKO R, et al. Soil structure is an important omission in Earth system models[J]. Nature Communications, 2020, 11(1): 522. |
[25] | YANG C, LI H, FANG Y, et al. Effects of groundwater pumping on ground surface temperature: a regional modeling study in the North China Plain[J]. Journal of Geophysical Research-Atmospheres, 2020, 125(9): e2019JD031764. |
[26] |
NOVICK K A, FICKLIN D L, BALDOCCHI D, et al. Confronting the water potential information gap[J]. Nature Geoscience, 2022, 15(3): 158.
DOI PMID |
[27] | BRANTLEY S L, LEBEDEVA M I, BALASHOV V N, et al. Toward a conceptual model relating chemical reaction fronts to water flow paths in hills[J]. Geomorphology, 2017, 277: 100-117. |
[28] |
REMPE D M, DIETRICH W E. Direct observations of rock moisture, a hidden component of the hydrologic cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11): 2664-2669.
DOI PMID |
[29] | MCCORMICK E L, DRALLE D N, HAHM W J, et al. Widespread woody plant use of water stored in bedrock[J]. Nature, 2021, 597(7875): 225. |
[30] | 陈喜, 张志才. 喀斯特地区地球关键带科学与生态水文学发展综述[J]. 中国岩溶, 2022, 41(3): 356-364. |
[31] | AMUNDSON R, RICHTER D D, HUMPHREYS G S, et al. Coupling between biota and earth materials in the Critical Zone[J]. Elements, 2007, 3(5): 327-332. |
[32] | DIXEY F. Drainage basin form and process: a geomorphological approach[J]. Journal of Hydrology, 1974, 23(3/4): 357-360. |
[33] | ISMAIL M F, NAZ B S, WORTMANN M, et al. Comparison of two model calibration approaches and their influence on future projections under climate change in the Upper Indus Basin[J]. Climatic Change, 2020, 163(3): 1227-1246. |
[34] | 陈喜, 石朋, 刘金涛, 等. 气候和人类活动对水循环的影响机理[M]. 北京: 科学出版社, 2022. |
[35] | THOMPSON S E, HARMAN C J, HEINE P, et al. Vegetation-infiltration relationships across climatic and soil type gradients[J]. Journal of Geophysical Research-Biogeosciences, 2010, 115: G02023. |
[36] | QICAI L. Influence of dams on river ecosystem and its countermeasures[J]. Journal of Water Resource and Protection, 2011, 3(1): 60-66. |
[37] | ZHANG P, MAO J, TIAN M, et al. The impact of the three gorges reservoir on water exchange between the Yangtze River and Poyang Lake[J]. Frontiers in Earth Science, 2022, 10: 876286. |
[38] |
杨泽龙, 李艳忠, 梁康, 等. 植被恢复背景下黄河中游及6个典型流域蒸散发及其组分变化格局[J]. 自然资源学报, 2022, 37(3): 816-828.
DOI |
[39] | NARAYANAN A, COHEN S, GARDNER J R. Riverine sediment response to deforestation in the Amazon Basin[J]. Earth Surface Dynamics, 2024, 12(2): 581-599. |
[40] | WAGENER T, SIVAPALAN M, TROCH P A, et al. The future of hydrology: an evolving science for a changing world[J]. Water Resources Research, 2010, 46(5): W50301. |
[41] | SUN Y, XIA L. A review of research on the impact of global climate change on hydrology and water resources[J]. International Journal of Energy, 2023, 3(1): 66-70. |
[42] | LIANG W, BAI D, WANG F, et al. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau[J]. Water Resources Research, 2015, 51(8): 6500-6519. |
[43] | YANG W, LONG D, BAI P. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China[J]. Journal of Hydrology, 2019, 570: 201-219. |
[44] | DAI Z, YU M, CHEN H, et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems[J]. Global Change Biology, 2020, 26(9): 5267-5276. |
[45] | XU Y, LIU W, FAN H, et al. Impacts of climate change and fruit tree expansion on key hydrological components at different spatial scales[J]. Frontiers in Forests and Global Change, 2023, 6: 1114423. |
[46] | 刘春蓁, 巢清尘, 王守荣, 等. 水文气象学领域的水文循环研究进展[J]. 气候变化研究进展, 2023, 19(1): 1-10. |
[47] | SAWICZ K A, KELLEHER C, WAGENER T, et al. Characterizing hydrologic change through catchment classification[J]. Hydrology and Earth System Sciences, 2014, 18(1): 273-285. |
[48] | SIVAPALAN M. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science[J]. Hydrology and Earth System Sciences, 2018, 22(3): 1665-1693. |
[49] | 李思亮, 王浩阳, 晏智锋, 等. 地球关键带过程和生态环境效应研究进展[J]. 矿物岩石地球化学通报, 2024. DOI: 10.3724/j.issn.1007-2802.20240119. |
[50] | SCANLON B R, JOLLY I, SOPHOCLEOUS M, et al. Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality[J]. Water Resources Research, 2007, 43(3): W03437. |
[51] | LIU Y, CHAI Y, YUE Y, et al. Effects of global greening phenomenon on water sustainability[J]. Catena, 2022, 208: 105732. |
[52] |
夏军, 左其亭, 韩春辉. 生态水文学学科体系及学科发展战略[J]. 地球科学进展, 2018, 33(7): 665-674.
DOI |
[53] | SIVAPALAN M, KONAR M, SRINIVASAN V, et al. Socio-hydrology: use-inspired water sustainability science for the Anthropocene[J]. Earths Future, 2014, 2(4): 225-230. |
[54] |
DI BALDASSARRE G, SIVAPALAN M, RUSCA M, et al. Sociohydrology: scientific challenges in addressing the sustainable development goals[J]. Water Resources Research, 2019, 55(8): 6327-6355.
DOI PMID |
[55] | 刘烨, 田富强. 基于社会水文耦合模型的干旱区节水农业水土政策比较[J]. 清华大学学报(自然科学版), 2016, 56(4): 365-372. |
[56] | 宫兴龙, 付强, 孙爱华, 等. 自然-社会水循环模型估算平原-丘陵-湿地区水稻种植潜力[J]. 农业工程学报, 2019, 35(1): 138-147. |
[57] | KONAR M, GARCIA M, SANDERSON M R, et al. Expanding the scope and foundation of sociohydrology as the science of coupled human-water systems[J]. Water Resources Research, 2019, 55(2): 874-887. |
[58] | WADA Y, BIERKENS M F P, DE ROO A, et al. Humanwater interface in hydrological modelling: current status and future directions[J]. Hydrology and Earth System Sciences, 2017, 21(8): 4169-4193. |
[59] | SIVAPALAN M. Debates—perspectives on sociohydrology: changing water systems and the “tyranny of small problems” Sociohydrology[J]. Water Resources Research, 2015, 51(6): 4795-4805. |
[60] | TRIPATHY K P, MISHRA A K. Deep learning in hydrology and water resources disciplines: concepts, methods, applications, and research directions[J]. Journal of Hydrology, 2024, 628: 130458. |
[61] | 左其亭, 赵衡, 马军霞. 水资源与经济社会和谐平衡研究[J]. 水利学报, 2014, 45(7): 785-792. |
[62] |
GE Y, LI X, CHENG G, et al. What dominates sustainability in endorheic regions?[J]. Science Bulletin, 2022, 67(16): 1636-1640.
DOI PMID |
[63] | ZHAO T, WANG S, OUYANG C, et al. Artificial intelligence for geoscience: progress, challenges, and perspectives[J]. Innovation, 2024, 5(5): 100691. |
[64] | HAN B A, VARSHNEY K R, LADEAU S, et al. A synergistic future for AI and ecology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(38): e2220283120. |
[65] | FRAZIER A E, SONG L. Artificial intelligence in landscape ecology: recent advances, perspectives, and opportunities[J]. Current Landscape Ecology Reports, 2025, 10(1): 113. |
[66] |
GOULDEN M L, BALES R C. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(39): 14071-14075.
DOI PMID |
[67] | IBRAHIM A, WAYAYOK A, SHAFRI H Z M, et al. Remote sensing technologies for unlocking new groundwater insights: a comprehensive review[J]. Journal of Hydrology, 2024, 23: 100175. |
[68] | DU J, WATTS J D, JIANG L, et al. Remote sensing of environmental changes in cold regions: methods, achievements and challenges[J]. Remote Sensing, 2019, 11(16): 1952. |
[69] | XU Y, KOHTZ S, BOAKYE J, et al. Physics-informed machine learning for reliability and systems safety applications: state of the art and challenges[J]. Reliability Engineering & System Safety, 2023, 230: 108900. |
[70] | CUOMO S, DI COLA V S, GIAMPAOLO F, et al. Scientific machine learning through physics-informed neural networks: where we are and what’s next[J]. Journal of Scientific Computing, 2022, 92(3): 88. |
[71] | KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. |
[72] | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
[73] | SHEN C, APPLING A P P, GENTINE P, et al. Differentiable modelling to unify machine learning and physical models for geosciences[J]. Nature Reviews Earth & Environment, 2023, 4(8): 552-567. |
[74] | EMAMJOMEHZADEH O, KERACHIAN R, EMAMISKARDI M J, et al. Combining urban metabolism and reinforcement learning concepts for sustainable water resources management: a nexus approach[J]. Journal of Environmental Management, 2023, 329: 117046. |
[75] | ANONYMOUS. Advancing geoscience with AI[J]. Nature Geoscience, 2024, 17(10): 947. |
[1] | 肖昀廷, 蔡晨康, 黄亦心, 朱佳雷. 海表温度日变化特征对海陆风模拟的影响研究[J]. 地学前缘, 2025, 32(3): 218-230. |
[2] | 陈玖斌, 郑旺, 刘羿, 孙若愚, 袁玮, 孟梅, 蔡虹明, 刘丛强. 同位素地球化学与地球系统圈层相互作用和全球变化研究[J]. 地学前缘, 2025, 32(3): 137-155. |
[3] | 刘丛强. 全球变化、层圈相互作用研究与地球系统科学[J]. 地学前缘, 2025, 32(3): 1-6. |
[4] | 徐胜, 杨业, 张茂亮, 邵延秀, 李云帅, 徐海, 刘静, 刘丛强. 构造-地貌-气候-生态系统动力学研究进展[J]. 地学前缘, 2025, 32(3): 23-34. |
[5] | 崔灏, 韦刚健. 青藏高原周缘始新世—渐新世气候转换期风化演变及其对全球及区域气候环境变化的响应[J]. 地学前缘, 2025, 32(3): 274-287. |
[6] | 滕辉, 余光辉, 陈春梅, 郝丽萍, 张坚超, 朱翔宇, 孙富生, 王钺博, 刘丛强. 表层地球系统界面过程与土壤圈演化研究[J]. 地学前缘, 2025, 32(3): 35-51. |
[7] | 陈喜, 高满, 董建志, 王哲. 京津冀地区水资源供需演变面临挑战问题及研究途径[J]. 地学前缘, 2025, 32(3): 436-444. |
[8] | 桑丽源, 郭威, 张静文, 刘艺轩, 章同坤, 张竹卿, 岳展鹏, 李丹阳, 张润, 张旭, 唐伟平, 刘展航, 丁虎, 郎赟超, 刘丛强. 城市地球关键带水文过程与水环境和水资源研究:现状、挑战与未来[J]. 地学前缘, 2025, 32(3): 445-461. |
[9] | 李思亮, 王欣楚, 戚羽霖, 钟君, 丁虎, 文航, 刘学炎, 郎赟超, 易沅壁, 王宝利, 刘丛强. 流域生物地球化学循环与表层地球系统层圈相互作用[J]. 地学前缘, 2025, 32(3): 62-77. |
[10] | 王铁军, 晏智锋, 宋照亮, 周浩然, 孙新超, 陈伟, 李攀, 刘丛强. 表层地球系统科学视角下的生态系统科学研究[J]. 地学前缘, 2025, 32(3): 78-91. |
[11] | 傅平青, 胡伟, 赵曦, 徐占杰, 丁士元, 吴礼彬, 邓君俊, 姜哲, 李晓东, 朱佳雷, 刘丛强. 地-气界面科学与全球变化研究[J]. 地学前缘, 2025, 32(3): 92-104. |
[12] | 刘丛强, 李思亮, 刘学炎, 王宝利, 郎赟超, 丁虎, 郝丽萍, 张琼予. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466. |
[13] | 谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕. 小小地质微生物演绎跨圈层的相互作用[J]. 地学前缘, 2024, 31(1): 446-454. |
[14] | 刘志飞, 陈建芳, 石学法. 深海沉积与全球变化研究的前缘与挑战[J]. 地学前缘, 2022, 29(4): 1-9. |
[15] | 朱亮, 刘景涛, 张玉玺, 刘丹丹, 角世哲. 基于水循环分析的水资源乘数效应评价:以黄河上游北川河流域为例[J]. 地学前缘, 2022, 29(3): 263-270. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||