地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 35-51.DOI: 10.13745/j.esf.sf.2025.3.3
• 全球变化、圈层相互作用研究与地球系统科学 • 上一篇 下一篇
滕辉(), 余光辉, 陈春梅, 郝丽萍, 张坚超, 朱翔宇, 孙富生, 王钺博, 刘丛强*(
)
收稿日期:
2025-02-01
修回日期:
2025-02-20
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*刘丛强(1955—),男,博士,教授,博士生导师,主要从事地表地球化学和表层地球系统科学方面的研究。E-mail:作者简介:
滕 辉(1962—),男,教授,博士生导师,主要从事表生地球化学和地质微生物方面的研究。E-mail:huihenry.teng@tju.edu.cn
基金资助:
TENG Hui(), YU Guanghui, CHEN Chunmei, HAO Liping, ZHANG Jianchao, ZHU Xiangyu, SUN Fusheng, WANG Yuebo, Liu Cong-Qiang*(
)
Received:
2025-02-01
Revised:
2025-02-20
Online:
2025-03-25
Published:
2025-04-20
摘要:
土壤圈是表层地球系统中大气圈、水圈、生物圈和岩石圈相互作用的产物,在地球表层系统演变中起着关键作用。本文回顾了控制土壤形成和演化的界面过程,强调了它们复杂的相互作用和反馈机制。土壤圈的形成和演化受物理和化学风化过程、气-水-岩异质反应以及生物有机质-矿物相互作用的协同影响。这些过程在不同的地理、气候和生物条件下有所不同,导致土壤的异质性和组分多样性。本文将界面过程分为两大类:无机圈之间的相互作用和生物与无机圈之间的相互作用。无机圈之间的相互作用包括空气和水对岩石的改造、热交换、风蚀、水-岩反应和成岩作用。这些过程对母质的物理分解和化学转变至关重要。生物与无机圈之间的相互作用包括光合作用、呼吸作用和微生物降解有机物的有机碳输入和输出,以及生物转化,其中涉及生物矿物营养素的释放和矿物-有机质聚集体的形成。本文探讨了土壤圈与生物圈的关系,强调了土壤与生态系统之间的物质和能量交换及其对生态系统的支撑作用。此外,本文还讨论了土壤在生态系统服务中的作用,如生产力、生物多样性维护和气候调节。最后,本文强调了多时间和多空间尺度研究的重要性,以了解地表过程对土壤圈演化的影响,并确定未来的研究热点。总体而言,本文详细概述了驱动土壤形成和演化的界面过程,强调了它们在维持生态平衡、支持人类活动和应对全球环境挑战方面的重要性。
中图分类号:
滕辉, 余光辉, 陈春梅, 郝丽萍, 张坚超, 朱翔宇, 孙富生, 王钺博, 刘丛强. 表层地球系统界面过程与土壤圈演化研究[J]. 地学前缘, 2025, 32(3): 35-51.
TENG Hui, YU Guanghui, CHEN Chunmei, HAO Liping, ZHANG Jianchao, ZHU Xiangyu, SUN Fusheng, WANG Yuebo, Liu Cong-Qiang. Investigation into the interface processes of the surface-earth system and the evolution of the pedosphere[J]. Earth Science Frontiers, 2025, 32(3): 35-51.
图2 新的土壤学涉及土壤圈和其他地球系统之间的相互作用(据文献[7])
Fig.2 The emerging pedology focuses on the interactions between the pedosphere and other Earth systems. Adapted from [7].
类别 | 生态系统服务 | 土壤功能 | 示例 |
---|---|---|---|
支持 | 初级生产 | 支持陆地植被 | 支持主要的光自养生物 |
土壤形成 | 土壤形成过程 | 岩石风化和有机物质积累 | |
营养循环 | 储存、内部循环和养分处理 | 氮固定和氮磷矿化及循环 | |
供给 | 避难所 | 为常住和暂住种群提供栖息地 | 为土壤大型动物提供洞穴 |
水储存 | 保持景观中的水分 | 保持孔隙网络中的水分,调节土壤生化过程 | |
平台 | 支持结构 | 支持住房、工业和基础设施 | |
食物供应 | 提供植物生长 | 提供作物和牲畜的食物 | |
生物材料 | 提供植物生长 | 生产木材、纤维和燃料 | |
原材料 | 提供原材料来源 | 矿石、矿物和集料提取 | |
生物多样性和遗传资源 | 提供独特的生物材料和产品来源 | 医疗产品、抗病原体和害虫的基因 | |
调节 | 水质调节 | 过滤和缓冲水 | 供人类消费的饮用水和河流、湖泊及海洋的良好生态状态 |
水供应调节 | 调节水文流动 | 在过剩时进行洪水控制,在缺乏时进行灌溉 | |
气体调节 | 调节大气化学成分 | 二氧化碳/氧气平衡、紫外线保护的臭氧和二氧化硫水平 | |
气候调节 | 调节全球温度、降水 和其他生物介导的气候过程 | 温室气体调节 | |
侵蚀控制 | 在生态系统内保持土壤和胶体 | 在山坡和湿地中保持土壤 | |
文化 | 娱乐 | 提供娱乐活动的平台 | 生态旅游、体育 |
认知 | 提供非商业活动的机会 | 美学、教育、精神和科学价值 | |
遗产 | 保存陆地占用和文明的考古记录 | 考古记录的保存/破坏 |
表1 土壤和土地利用相关的生态系统服务与功能
Table 1 Ecosystem services and functions related to soil and land use
类别 | 生态系统服务 | 土壤功能 | 示例 |
---|---|---|---|
支持 | 初级生产 | 支持陆地植被 | 支持主要的光自养生物 |
土壤形成 | 土壤形成过程 | 岩石风化和有机物质积累 | |
营养循环 | 储存、内部循环和养分处理 | 氮固定和氮磷矿化及循环 | |
供给 | 避难所 | 为常住和暂住种群提供栖息地 | 为土壤大型动物提供洞穴 |
水储存 | 保持景观中的水分 | 保持孔隙网络中的水分,调节土壤生化过程 | |
平台 | 支持结构 | 支持住房、工业和基础设施 | |
食物供应 | 提供植物生长 | 提供作物和牲畜的食物 | |
生物材料 | 提供植物生长 | 生产木材、纤维和燃料 | |
原材料 | 提供原材料来源 | 矿石、矿物和集料提取 | |
生物多样性和遗传资源 | 提供独特的生物材料和产品来源 | 医疗产品、抗病原体和害虫的基因 | |
调节 | 水质调节 | 过滤和缓冲水 | 供人类消费的饮用水和河流、湖泊及海洋的良好生态状态 |
水供应调节 | 调节水文流动 | 在过剩时进行洪水控制,在缺乏时进行灌溉 | |
气体调节 | 调节大气化学成分 | 二氧化碳/氧气平衡、紫外线保护的臭氧和二氧化硫水平 | |
气候调节 | 调节全球温度、降水 和其他生物介导的气候过程 | 温室气体调节 | |
侵蚀控制 | 在生态系统内保持土壤和胶体 | 在山坡和湿地中保持土壤 | |
文化 | 娱乐 | 提供娱乐活动的平台 | 生态旅游、体育 |
认知 | 提供非商业活动的机会 | 美学、教育、精神和科学价值 | |
遗产 | 保存陆地占用和文明的考古记录 | 考古记录的保存/破坏 |
策略 | 作用机制 | 作用 | 应用 | |
---|---|---|---|---|
碳封存 | 利用微生物增强土壤及海洋中的碳封存 | 减少大气中的CO2并增强土壤、海洋的生产力以及海洋碳封存 | 农林业可持续性和海洋生物封存 | |
甲烷氧化 | 使用甲烷营养细菌将甲烷氧化成无害化合物 | 降低甲烷排放并促进大气清除:减少潜在的温室气体 | 垃圾填埋场;牲畜管理;内陆淡水水体;湿地 | |
生物能源 | 培养藻类和其他微生物用于生物燃料生产 | 提供可再生能源:减少对化石燃料的依赖 | 生物燃料生产:工业应用 | |
生物修复 | 污染物和有害物质的微生物分解 | 改善环境健康:减少毒素暴露 | 工业废物管理;污染土地和沉积物修复 | |
微生物疗法 | 使用微生物疗法(例如,益生菌、后生元、益生元)进行有针对性的微生物组管理:可以减轻有害的微生物组和随之而来的环境恶化:恢复宿主和生态系统中的有益微生物组 | 改善有机体和环境健康,可应用于可持续实践,从而最大限度地减少温室气体排放 | 野生动植物和生态系统恢复与恢复;可持续农业;人类健康 | |
氮管理 | 使用共生细菌改造作物以固定大气中的氮或产生生物营养抑制剂的作物 | 提高土壤肥力,减少肥料使用;提高植物氮素利用效率;减少富营养化和温室气体排放 | 可持续农业;农作物生产 |
表2 气候变化的微生物应对策略
Table 2 Microbial coping strategies for climate change
策略 | 作用机制 | 作用 | 应用 | |
---|---|---|---|---|
碳封存 | 利用微生物增强土壤及海洋中的碳封存 | 减少大气中的CO2并增强土壤、海洋的生产力以及海洋碳封存 | 农林业可持续性和海洋生物封存 | |
甲烷氧化 | 使用甲烷营养细菌将甲烷氧化成无害化合物 | 降低甲烷排放并促进大气清除:减少潜在的温室气体 | 垃圾填埋场;牲畜管理;内陆淡水水体;湿地 | |
生物能源 | 培养藻类和其他微生物用于生物燃料生产 | 提供可再生能源:减少对化石燃料的依赖 | 生物燃料生产:工业应用 | |
生物修复 | 污染物和有害物质的微生物分解 | 改善环境健康:减少毒素暴露 | 工业废物管理;污染土地和沉积物修复 | |
微生物疗法 | 使用微生物疗法(例如,益生菌、后生元、益生元)进行有针对性的微生物组管理:可以减轻有害的微生物组和随之而来的环境恶化:恢复宿主和生态系统中的有益微生物组 | 改善有机体和环境健康,可应用于可持续实践,从而最大限度地减少温室气体排放 | 野生动植物和生态系统恢复与恢复;可持续农业;人类健康 | |
氮管理 | 使用共生细菌改造作物以固定大气中的氮或产生生物营养抑制剂的作物 | 提高土壤肥力,减少肥料使用;提高植物氮素利用效率;减少富营养化和温室气体排放 | 可持续农业;农作物生产 |
[1] | KHOMIAKOV D M. Soil is an essential component of the biosphere and the global food system (critical assessment of the situation)[J]. Moscow University Soil Science Bulletin, 2020, 75: 147-58. |
[2] |
朱永官, 李刚, 张甘霖, 等. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 2015, 70(12): 1859-1869.
DOI |
[3] | 张甘霖, 朱永官, 邵明安. 地球关键带过程与水土资源可持续利用的机理[J]. 中国科学: 地球科学, 2019, 49(12): 1945-1947. |
[4] | BANWART S A, BERNASCONI S M, BLUM W E H, et al. Chapter one - Soil functions in earth’s critical zone: key results and conclusions[M]//BANWART S A, SPARKS D L. Advances in Agronomy. New York: Academic Press, 2017: 1-27. |
[5] |
温学发, 张心昱, 魏杰, 等. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
DOI |
[6] | HUGGETT R J. Soil as a system[M]//HUNT A, EGLI M, FA BISHENKD B. Hydrogeology, Chemical weathering, and soil formation. Hoboken: Wiley, 2021: 1-20. |
[7] | HUGGETT R. Soil as part of the Earth system[J]. Progress in Physical Geography: Earth and Environment, 2023, 47(3): 454-66. |
[8] |
ZHANG W, ZHOU T, WU P. Anthropogenic amplification of precipitation variability over the past century[J]. Science, 2024, 385(6707): 427-432.
DOI PMID |
[9] | DOETTERL S, BERHE A A, ARNOLD C, et al. Links among warming, carbon and microbial dynamics mediated by soil mineral weathering[J]. Nature Geoscience, 2018, 11: 589-493. |
[10] | BUFE A, RUGENSTEIN J K C, HOVIUS N. CO2 drawdown from weathering is maximized at moderate erosion rates[J]. Science, 2024, 383(6687): 1075-1080. |
[11] | BEERLING D J, KANTZAS E P, LOMAS M R, et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands[J]. Nature, 2020, 583(7815): 242-248. |
[12] | WILD B, GERRITS R, BONNEVILLE S. The contribution of living organisms to rock weathering in the critical zone[J]. npj Materials Degradation, 2022, 6(1): 98. |
[13] | WAN J, TOKUNAGA T K, BEUTLER C A, et al. Hydrological control of rock carbon fluxes from shale weathering[J]. Nature Water, 2024, 2(9): 848-862. |
[14] | ZHU Y G, MICHAEL G, PASCAL S, et al. Human dissemination of genes and microorganisms in Earth’s Critical Zone[J]. Global Change Biology, 2018, 24(4): 1488-1499. |
[15] | MORAVEC B, CHOROVER J. Critical zone biogeochemistry[M]//DONTSOVA K, BALOGH-BRUNSTAD Z, LE ROUX G. Biogeochemical cycles:ecological drivers and environmental impact. Hoboken: Wiley, 2020: 131-149. |
[16] | HOPMANS J W, QURESHI A S, KISEKKA I, et al. Chapter one - Critical knowledge gaps and research priorities in global soil salinity[M]//SPARKS D L. Advances in agronomy. New York: Academic Press, 2021: 1-191. |
[17] | VADEZ V, GRONDIN A, CHENU K, et al. Crop traits and production under drought[J]. Nature Reviews Earth & Environment, 2024, 5: 211-225. |
[18] | CLEVERLY J, EAMUS D, COUPE N R, et al. Soil moisture controls on phenology and productivity in a semi-arid critical zone[J]. Science of the Total Environment, 2016, 568: 1227-1237. |
[19] | JELEN B I, GIOVANNELLI D, FALKOWSKI P G. The role of microbial electron transfer in the coevolution of the biosphere and geosphere[J]. Annual review of microbiology, 2016, 70(1): 45-62. |
[20] | BANWART S A, NIKOLAIDIS N P, ZHU Y G, et al. Soil functions: connecting earth’s critical zone[J]. Annual Review of Earth and Planetary Sciences, 2019, 47(1): 333-359. |
[21] | EHLERS T A, CHEN D, APPEL E, et al. Past, present, and future geo-biosphere interactions on the Tibetan Plateau and implications for permafrost[J]. Earth-Science Reviews, 2022, 234: 104197. |
[22] |
UROZ S, KELLY L C, TURPAULT M-P, et al. The mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communities[J]. Trends in Microbiology, 2015, 23(12): 751-762.
DOI PMID |
[23] |
LI H, YU G H, HAO L, et al. Mycorrhizae enhance reactive minerals but reduce mineral-associated carbon[J]. Global Change Biology, 2023, 29(20): 5941-5954.
DOI PMID |
[24] | WEN T, YU G H, HONG W D, et al. Root exudate chemistry affects soil carbon mobilization via microbial community reassembly[J]. Fundamental Research, 2022, 2(5): 697-707. |
[25] |
ANGST G, FROUZ J, VAN GROENIGEN J W, et al. Earthworms as catalysts in the formation and stabilization of soil microbial necromass[J]. Global Change Biology, 2022, 28(16): 4775-4782.
DOI PMID |
[26] |
ANGST G, MUELLER C W, PRATER I, et al. Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass[J]. Communications Biology, 2019, 2(1): 441.
DOI PMID |
[27] |
LIU T, CHEN X, GONG X, et al. Earthworms coordinate soil biota to improve multiple ecosystem functions[J]. Current Biology, 2019, 29(20): 3420-3429.
DOI PMID |
[28] | FANG Q, LU A, HONG H, et al. Mineral weathering is linked to microbial priming in the critical zone[J]. Nature communications, 2023, 14(1): 345. |
[29] | BANFIELD J F, BARKER W W, WELCH S A, et al. Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere[J]. Proceedings of the National Academy of Sciences, 1999, 96(7): 3404-3411. |
[30] | VAN SCHÖLL L, KUYPER T W, SMITS M M, et al. Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles[J]. Plant and Soil, 2008, 303(1): 35-47. |
[31] | BALOGH-BRUNSTAD Z, KELLER C K, GILL R A, et al. The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments[J]. Biogeochemistry, 2008, 88(2): 153-167. |
[32] | LEWIS S L, MASLIN M A. Defining the Anthropocene[J]. Nature, 2015, 519: 171. |
[33] | YANG Y, TILMAN D, JIN Z, et al. Climate change exacerbates the environmental impacts of agriculture[J]. Science, 2024, 385(6713): 3747. |
[34] | CHEN L, ZHOU G, FENG B, et al. Saline-alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon[J]. Science Bulletin, 2024, 69(18): 2948-2958. |
[35] | 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究:历程、现状与展望[J]. 土壤学报, 2022, 59(1): 10-27. |
[36] | WANG X, RAN Y, PANG G, et al. Contrasting characteristics, changes, and linkages of permafrost between the Arctic and the Third Pole[J]. Earth-Science Reviews, 2022, 230: 104042. |
[37] | CHEN H, JU P, ZHU Q, et al. Carbon and nitrogen cycling on the Qinghai-Tibetan Plateau[J]. Nature Reviews Earth & Environment, 2022, 3: 701-716. |
[38] | 李思亮, 王浩阳, 晏智锋, 等. 地球关键带过程和生态环境效应研究进展[J]. 矿物岩石地球化学通报, 2024, 43: 1-15. |
[39] | LIN H. Earth’s Critical Zone and hydropedology: concepts, characteristics, and advances[J]. Hydrology and Earth System Sciences, 2010, 14(1): 25-45. |
[40] | WONKKA C L, TWIDWELL D, WEST J B, et al. Shrubland resilience varies across soil types: implications for operationalizing resilience in ecological restoration[J]. Ecology Applications, 2016, 26(1): 128-145. |
[41] | DAVIS A G, HUGGINS D R, REGANOLD J P. Linking soil health and ecological resilience to achieve agricultural sustainability[J]. Frontiers in Ecollogy and Environment, 2023, 21(3): 131-139. |
[42] | VAN DER PUTTEN W H, BARDGETT R D, BEVER J D, et al. Plant-soil feedbacks: the past, the present and future challenges[J]. Journal of Ecollogy, 2013, 101(2): 265-276. |
[43] | FAUCON M P, HOUBEN D, LAMBERS H. Plant functional traits: soil and ecosystem services[J]. Trends Plant Science, 2017, 22(5): 385-394. |
[44] | ZAK D R, HOLMES W E, WHITE D C, et al. Plant diversity, soil microbial communities, and ecosystem function: are there any links?[J]. Ecology, 2003, 84(8): 2042-2050. |
[45] | LANGE M, EISENHAUER N, SIERRA C A, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nature Communications, 2015, 6(1): 6707. |
[46] |
PHILIPPOT L, CHENU C, KAPPLER A, et al. The interplay between microbial communities and soil properties[J]. Nature Reviews Microbiology, 2023, 22: 226-239.
DOI PMID |
[47] | YAN S, SINGH A N, FU S, et al. A soil fauna index for assessing soil quality[J]. Soil Biollogy Biochemistry, 2012, 47: 158-165. |
[48] | CHEN S, WANG W, XU W, et al. Plant diversity enhances productivity and soil carbon storage[J]. Proceedings of the National Academy of Science of the United States of America, 2018, 115(16): 4027-4032. |
[49] | NIELSEN U N, AYRES E, WALL D H, et al. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships[J]. European Journal of Soil Science, 2011, 62(1): 105-116. |
[50] | CHAPIN III F S, RANDERSON J T, MCGUIRE A D, et al. Changing feedbacks in the climate-biosphere system[J]. Frontiers in Ecollogy and Environment, 2008, 6(6): 313-320. |
[51] | SMITH K A, BALL T, CONEN F, et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes[J]. European Journal of Soil Science, 2018, 69(1): 10-20. |
[52] |
SELLERS P J, DICKINSON R E, RANDALL D A, et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere[J]. Science, 1997, 275(5299): 502-509.
PMID |
[53] | SMITH P, HOUSE J I, BUSTAMANTE M, et al. Global change pressures on soils from land use and management[J]. Global Change Biollogy, 2016, 22(3): 1008-1028. |
[54] | AGUILERA E, LASSALETTA L, GATTINGER A, et al. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: a meta-analysis[J]. Agric, Ecosystem Environmental, 2013, 168: 25-36. |
[55] | ABS E, COULETTE D, CIAIS P, et al. Microbial evolution drives adaptation of substrate degradation on decadal to centennial time scales relevant to global change[J]. Ecology Letters, 2024, 27(10): e14530. |
[56] | LLADÓ S, LÓPEZ-MONDÉJAR R, BALDRIAN P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change[J]. Microbiology and Molecular Biology Reviews, 2017, 81(2): 10. 1128. |
[57] | SARDANS J, PEÑUELAS J. Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change[J]. Plant Soil, 2013, 365(1): 1-33. |
[58] | AMELUNG W, BOSSIO D, DE VRIES W, et al. Towards a global-scale soil climate mitigation strategy[J]. Nature Communations, 2020, 11(1): 5427. |
[59] | DOMINATI E, PATTERSON M, MACKAY A. A framework for classifying and quantifying the natural capital and ecosystem services of soils[J]. Ecological Economics, 2010, 69(9): 1858-1868. |
[60] | 孙东晓. 土壤生态系统服务及其价值的研究综述[J]. 土壤科学, 2021, 9(2): 60-66. |
[61] | 张琨, 吕一河, 傅伯杰. 生态恢复中生态系统服务的演变: 趋势、过程与评估[J]. 生态学报, 2016, 36(20): 8. |
[62] | 李奕赞, 张江周, 贾吉玉, 等. 农田土壤生态系统多功能性研究进展[J]. 土壤学报, 2022, 59(5): 1177-1189. |
[63] | 褚海燕, 刘满强, 韦中, 等. 保持土壤生命力, 保护土壤生物多样性[J]. 科学, 2020, 72(6): 38-42. |
[64] | SULLIVAN M B, CAVICCHIOLI R, TIMMIS K N, et al. Scientists’ warning to humanity: microorganisms and climate change[J]. Nature Reviews Microbiology, 2019, 17(9): 1-7. |
[65] | 陈保冬, 赵方杰, 张莘, 等. 土壤生物与土壤污染研究前沿与展望[J]. 生态学报, 2015, 35(20): 6604-6613. |
[66] |
ANTHONY M A, CROWTHER T W, VAN DER LINDE S, et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe[J]. ISME Journal, 2022, 16(5): 1327-1336.
DOI PMID |
[67] | STRACK M, DAVIDSON S J, HIRANO T, et al. The potential of peatlands as nature-based climate solutions[J]. Current Climate Change Reports, 2022, 8(3): 71-82. |
[68] |
JANSSON J K. Microorganisms, climate change, and the sustainable development goals: progress and challenges[J]. Nature Reviews Microbiology, 2023, 21(10): 622-623.
DOI PMID |
[69] | STEFFEN W, RICHARDSON K, ROCKSTROM J, et al. Sustainability. Planetary boundaries: guiding human development on a changing planet[J]. Science, 2015, 347(6223): 1259855. |
[70] | BAKKEN L R, FROSTEGÅRD Å. Emerging options for mitigating N2O emissions from food production by manipulating the soil microbiota[J]. Current Opinion in Environmental Sustainability, 2020, 47: 89-94. |
[71] | LASSEN J, DIFFORD G F. Review: Genetic and genomic selection as a methane mitigation strategy in dairy cattle[J]. Animal, 2020, 14(S3): s473-s483. |
[72] | AUGUSTIN M A, HARTLEY C J, MALONEY G, et al. Innovation in precision fermentation for food ingredients[J]. Critical Reviews in Food Science and Nutrition, 2024, 64(18): 6218-6238. |
[73] | CROWTHER T W, RAPPUOLI R, CORINALDESI C, et al. Scientists’ call to action: microbes, planetary health, and the sustainable development goals[J]. Cell, 2024, 187(19): 5195-5216. |
[74] | PEIXOTO R, VOOLSTRA C R, STEIN L Y, et al. Microbial solutions must be deployed against climate catastrophe[J]. Nature Microbiology, 2024, 9(12): 3084-3085. |
[75] |
刘丛强, 李思亮, 刘学炎, 等. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466.
DOI |
[76] | YANG S, FENG W, WANG S, et al. Farmland heavy metals can migrate to deep soil at a regional scale: a case study on a wastewater-irrigated area in China[J]. Environmental Pollution, 2021, 281: 116977. |
[77] | ELHACHAM E, BEN-URI L, GROZOVSKI J, et al. Global human-made mass exceeds all living biomass[J]. Nature, 2020, 588(7838): 442-444. |
[78] | PALANSOORIYA K N, SHAHEEN S M, CHEN S S, et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review[J]. Environment International, 2020, 134: 105046. |
[79] | ZHOU S, SU S, MENG L, et al. Potentially toxic trace element pollution in long-term fertilized agricultural soils in China: a meta-analysis[J]. Science of the Total Environment, 2021, 789: 147967. |
[80] | LIU H, ZHOU J, LI M, et al. Dynamic behaviors of newly deposited atmospheric heavy metals in thes soil-pak choi system[J]. Environmental Science Technology, 2022, 56(17): 12734-12744. |
[81] | KHAN S, NAUSHAD M, LIMA E C, et al. Global soil pollution by toxic elements: current status and future perspectives on the risk assessment and remediation strategies: a review[J]. Journal of Hazardous Materials, 2021, 417: 126039. |
[82] | RAZA S, ZAMANIAN K, ULLAH S, et al. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation[J]. Journal of Cleaner Production, 2021, 315: 128036. |
[83] | CURTINRICH H J, SEBESTYEN S D, GRIFFITHS N A, et al. Warming stimulates iron-mediated carbon and nutrient cycling in mineral-poor peatlands[J]. Ecosystems, 2022, 25: 44-60. |
[84] | PATZNER M S, LOGAN M, MCKENNA A M, et al. Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw[J]. Communications Earth & Environment, 2022, 3(1): 76. |
[85] |
WANG M M, GUO X W, ZHANG S, et al. Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate[J]. Nature Communications, 2022, 13(1): 5514.
DOI PMID |
[86] | 范玉涛. 土壤盐碱化危害及改良方法研究[J]. 农业与技术, 2020, 40(23): 114-116. |
[87] | SONG X J, WU H J, LI S P, et al. The need to update and refine concepts relating to mineral-associated organic matter saturation in soil[J]. Soil Biology & Biochemistry, 2025, 202: 109672. |
[88] | HECKMAN K A, POSSINGER A R, BADGLEY B D, et al. Moisture-driven divergence in mineral-associated soil carbon persistence[J]. Proceedings of the National Academy of Science of the United States of America, 2023, 120(7): e2210044120. |
[89] | ZHANG H, HOBBIE E A, FENG P, et al. Responses of soil organic carbon and crop yields to 33-year mineral fertilizer and straw additions under different tillage systems[J]. Soil and Tillage Research, 2021, 209: 104943. |
[90] | LI H, SANTOS F, BUTLER K, et al. A Critical Review on the Multiple Roles of Manganese in Stabilizing and Destabilizing Soil Organic Matter[J]. Environmental Science & Technology, 2021, 55(18): 12136-12152. |
[91] | OFITI N O E, ZOSSO C U, SOONG J L, et al. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter[J]. Soil Biology and Biochemistry, 2021, 156: 108185. |
[92] | STRAUSS J, SCHIRRMEISTER L, GROSSE G, et al. Deep yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability[J]. Earth-Science Reviews, 2017, 172: 75-86. |
[93] |
NI H, HU H, ZOHNER C M, et al. Effects of winter soil warming on crop biomass carbon loss from organic matter degradation[J]. Nature Communications, 2024, 15(1): 8847.
DOI PMID |
[94] |
ZOSSO C U, OFITI N O E, TORN M S, et al. Rapid loss of complex polymers and pyrogenic carbon in subsoils under whole-soil warming[J]. Nature Geoscience, 2023, 16(4): 344-348.
DOI PMID |
[95] | LIN Z, LU X, XU Y, et al. Increased straw return promoted soil organic carbon accumulation in China’s croplands over the past 40 years[J]. Science of the Total Environmental, 2024, 945: 173903. |
[96] |
LI J, ZHU T, SINGH B K, et al. Key microorganisms mediate soil carbon-climate feedbacks in forest ecosystems[J]. Science Bulletin, 2021, 66(19): 2036-2044.
DOI PMID |
[97] | JONES D L, MURPHY D V, KHALID M, et al. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated[J]. Soil Biology and Biochemistry, 2011, 43(8): 1723-1731. |
[98] | GALVEZ A, SINICCO T, CAYUELA M L, et al. Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties[J]. Agriculture, Ecosystems and Environment, 2012, 160: 3-14. |
[99] | BÜCHI L, WENDLING M, AMOSSÉ C, et al. Long and short term changes in crop yield and soil properties induced by the reduction of soil tillage in a long term experiment in Switzerland[J]. Soil and Tillage Research, 2017, 174: 120-129. |
[100] | KELLER T, COLOMBI T, RUIZ S, et al. Soil structure recovery following compaction: Short-term evolution of soil physical properties in a loamy soil[J]. Soil Science Society of America Journal, 2021, 85(4): 1002-1020. |
[101] | MARTÍN A, DÍAZ-RAVIÑA M, CARBALLAS T. Short- and medium-term evolution of soil properties in Atlantic forest ecosystems affected by wildfires[J]. Land Degradation & Development, 2012, 23(5): 427-439. |
[102] | ZHU Y, WANG L, SONG X, et al. Changes in abundant and rare microbial taxa that dominated the formation of soil carbon pool during short-term dryland-to-paddy conversion[J]. Carbon Research, 2023, 2(1): 1-13. |
[103] | ANDRUSCHKEWITSCH R, GEISSELER D, DULTZ S, et al. Rate of soil-aggregate formation under different organic matter amendments: a short-term incubation experiment[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(2): 297-306. |
[104] | CORNU S, MONTAGNE D, HUBERT F, et al. Evidence of short-term clay evolution in soils under human impact[J]. Comptes Rendus Géoscience, 2012, 344(11/12): 747-757. |
[105] | HUANG L M, THOMPSON A, ZHANG G L, et al. The use of chronosequences in studies of paddy soil evolution: a review[J]. Geoderma, 2015, 237/238: 199-210. |
[106] | WISSING L, KÖLBL A, VOGELSANG V, et al. Organic carbon accumulation in a 2000-year chronosequence of paddy soil evolution[J]. CATENA, 2011, 87(3): 376-385. |
[107] | NAVEED M, MOLDRUP P, VOGEL H J, et al. Impact of long-term fertilization practice on soil structure evolution[J]. Geoderma, 2014, 217-218: 181-189. |
[108] | CLIVOT H, MOUNY J C, DUPARQUE A, et al. Modeling soil organic carbon evolution in long-term arable experiments with AMG model[J]. Environmental Modelling & Software, 2019, 118: 99-113. |
[109] | CIARKOWSKA K, GARGIULO L, MELE G. Natural restoration of soils on mine heaps with similar technogenic parent material: a case study of long-term soil evolution in Silesian-Krakow Upland Poland[J]. Geoderma, 2016, 261: 141-150. |
[110] | WENGER A S, ATKINSON S, SANTINI T, et al. Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands[J]. Environmental Research Letters, 2018, 13(4): 044035. |
[111] | VANWALLEGHEM T, STOCKMANN U, MINASNY B, et al. A quantitative model for integrating landscape evolution and soil formation[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(2): 331-347. |
[112] | RICHTER D D, YAALON D H. “The changing model of soil” revisited[J]. Soil Science Society of America Journal, 2012, 76(3): 766-778. |
[113] |
ZHANG Y, LU L, CHANG X, et al. Small-scale soil microbial community heterogeneity linked to landform historical events on King George Island, Maritime Antarctica[J]. Frontiers in Microbiology, 2018, 9: 3065.
DOI PMID |
[114] | ŠTURSOVÁ M, BÁRTA J, ŠANTRŮČKOVÁ H, et al. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil[J]. FEMS Microbiology Ecology, 2016, 92(12): fiw185. |
[115] | QIU W, CURTIN D, JOHNSTONE P, et al. Small-scale spatial variability of plant nutrients and soil organic matter: an arable cropping case study[J]. Communications in Soil Science and Plant Analysis, 2016, 47(19): 2189-2199. |
[116] | GROß J, GENTSCH N, BOY J, et al. Influence of small-scale spatial variability of soil properties on yield formation of winter wheat[J]. Plant and Soil, 2023, 493(1): 79-97. |
[117] | BUCKA F B, PIHLAP E, KAISER J, et al. A small-scale test for rapid assessment of the soil development potential in post-mining soils[J]. Soil and Tillage Research, 2021, 211: 105016. |
[118] | WANG Y, YUAN J H, CHEN H, et al. Small-scale interaction of iron and phosphorus in flooded soils with rice growth[J]. Science of The Total Environment, 2019, 669: 911-919. |
[119] | D’AMICO M, GORRA R, FREPPAZ M. Small-scale variability of soil properties and soil-vegetation relationships in patterned ground on different lithologies (NW Italian Alps)[J]. CATENA, 2015, 135: 47-58. |
[120] | ZHANG H, GOLL D S, WANG Y-P, et al. Microbial dynamics and soil physicochemical properties explain large-scale variations in soil organic carbon[J]. Global Change Biology, 2020, 26(4): 2668-2685. |
[121] | OCHSNER T E, COSH M H, CUENCA R H, et al. State of the art in large-scale soil moisture monitoring[J]. Soil Science Society of America Journal, 2013, 77(6): 1888-1919. |
[122] | NYMAN A, JOHNSON A, YU C, et al. A nationwide acid sulfate soil study: a rapid and cost-efficient approach for characterizing large-scale features[J]. Science of The Total Environment, 2023, 869: 161845. |
[123] | FAN Y. Groundwater in the Earth’s critical zone: Relevance to large-scale patterns and processes[J]. Water Resources Research, 2015, 51(5): 3052-3069. |
[124] | BEHRENS T, SCHMIDT K, RAMIREZ-LOPEZ L, et al. Hyper-scale digital soil mapping and soil formation analysis[J]. Geoderma, 2014, 213: 578-588. |
[125] | COULTHARD T J, HANCOCK G R, LOWRY J B C. Modelling soil erosion with a downscaled landscape evolution model[J]. Earth Surface Processes and Landforms, 2012, 37(10): 1046-1055. |
[126] | WERTEBACH T M, HÖLZEL N, KÄMPF I, et al. Soil carbon sequestration due to post-Soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory[J]. Global Change Biology, 2017, 23(9): 3729-3741. |
[127] | WIEDER W R, BONAN G B, ALLISON S D. Global soil carbon projections are improved by modelling microbial processes[J]. Nature Climate Change, 2013, 3(10): 909-912. |
[128] | LUO Z, VISCARRA ROSSEL R A, SHI Z. Distinct controls over the temporal dynamics of soil carbon fractions after land use change[J]. Global Change Biology, 2020, 26(8): 4614-4625. |
[129] | SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review[J]. Earth-Science Reviews, 2010, 99(3): 125-161. |
[130] | BORRELLI P, ROBINSON D A, PANAGOS P, et al. Land use and climate change impacts on global soil erosion by water (2015-2070)[J]. Proceedings of the National Academy of Sciences, 2020, 117(36): 21994-22001. |
[131] | WU W, AL-SHAFIE W M, MHAIMEED A S, et al. Soil salinity mapping by multiscale remote sensing in mesopotamia, Iraq[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(11): 4442-4452. |
[132] |
PENG B, GUAN K, TANG J, et al. Towards a multiscale crop modelling framework for climate change adaptation assessment[J]. Nature Plants, 2020, 6(4): 338-348.
DOI PMID |
[133] | DOMAZETOVĆ, ŠILJEG A, MARIĆ I. Chapter 7 - A comprehensive framework for multiscale soil erosio modeling: a case study of Pag Island, Croatia[M]//PETROPOULOS G P, CHALKIAS C. Geographical information science. Amsterdam: Elsevier, 2024: 127-157. |
[134] | MCBRATNEY A, FIELD D J, KOCH A. The dimensions of soil security[J]. Geoderma, 2014, 213: 203-213. |
[135] | VEREECKEN H, SCHNEPF A, HOPMANS J W, et al. Modeling soil processes: review, key challenges, and new perspectives[J]. Vadose Zone Journal, 2016, 15(5): vzj2015. 09.0131. |
[136] | NOCITA M, STEVENS A, VAN WESEMAEL B, et al. Chapter Four - Soil Spectroscopy: an alternative to wet chemistry for soil monitoring[M]//SPARKS D L. Advances in agronomy. New York: Academic Press, 2015: 139-159. |
[137] | RUMPEL C, KÖGEL-KNABNER I. Deep soil organic matter: a key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2011, 338(1): 143-158. |
[138] | KOVEN C D, LAWRENCE D M, RILEY W J. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics[J]. Proceedings of the National Academy of Sciences, 2015, 112(12): 3752-3757. |
[139] | CHAOPRICHA N T, MARÍN-SPIOTTA E. Soil burial contributes to deep soil organic carbon storage[J]. Soil Biology and Biochemistry, 2014, 69: 251-264. |
[140] | MAEGHT J L, REWALD B, PIERRET A. How to study deep roots and why it matters[J]. Frontiers in Plant Science, 2013, 4: 1-14. |
[1] | 王铁军, 晏智锋, 宋照亮, 周浩然, 孙新超, 陈伟, 李攀, 刘丛强. 表层地球系统科学视角下的生态系统科学研究[J]. 地学前缘, 2025, 32(3): 78-91. |
[2] | 陈喜, 董建志, 王礼春, 张永根, 王学静, 狄崇利, 高满, 刘丛强. 全球变化下生态水文学发展与展望[J]. 地学前缘, 2025, 32(3): 52-61. |
[3] | 徐胜, 杨业, 张茂亮, 邵延秀, 李云帅, 徐海, 刘静, 刘丛强. 构造-地貌-气候-生态系统动力学研究进展[J]. 地学前缘, 2025, 32(3): 23-34. |
[4] | 陈玖斌, 郑旺, 刘羿, 孙若愚, 袁玮, 孟梅, 蔡虹明, 刘丛强. 同位素地球化学与地球系统圈层相互作用和全球变化研究[J]. 地学前缘, 2025, 32(3): 137-155. |
[5] | 李磊, 徐鹏, 曾昭, 赵丹丹, 马韶君, 刘丛强. 社会-生态系统科学与人类世可持续发展[J]. 地学前缘, 2025, 32(3): 105-117. |
[6] | 刘丛强. 全球变化、层圈相互作用研究与地球系统科学[J]. 地学前缘, 2025, 32(3): 1-6. |
[7] | 刘丛强, 李思亮, 刘学炎, 王宝利, 郎赟超, 丁虎, 郝丽萍, 张琼予. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466. |
[8] | 金之钧, 陈书平, 张瑞. 沉积盆地波动过程分析:研究现状与展望[J]. 地学前缘, 2024, 31(1): 284-296. |
[9] | 赵俊猛, 张培震, 张先康, Xiaohui YUAN, Rainer KIND, Robertvander HILST, 甘卫军, 孙继敏, 邓涛, 刘红兵, 裴顺平, 徐强, 张衡, 嘉世旭, 颜茂都, 郭晓玉, 卢占武, 杨小平, 邓攻, 琚长辉. 中国西部壳幔结构与动力学过程及其对资源环境的制约:“羚羊计划”研究进展[J]. 地学前缘, 2021, 28(5): 230-259. |
[10] | 罗照华. 流体地球科学与地球系统科学[J]. 地学前缘, 2018, 25(6): 277-282. |
[11] | 王训练. 地史学研究的简要回顾[J]. 地学前缘, 2018, 25(3): 204-214. |
[12] | 王训练,吴怀春. 地球系统科学时代的高分辨综合地层学[J]. 地学前缘, 2016, 23(6): 246-252. |
[13] | 王学求. 全球地球化学基准:了解过去,预测未来[J]. 地学前缘, 2012, 19(3): 7-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||