地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 23-34.DOI: 10.13745/j.esf.sf.2025.3.12

• 全球变化、圈层相互作用研究与地球系统科学 • 上一篇    下一篇

构造-地貌-气候-生态系统动力学研究进展

徐胜(), 杨业, 张茂亮, 邵延秀, 李云帅, 徐海, 刘静, 刘丛强*()   

  1. 天津大学 地球系统科学学院 构造-地貌-气候-生态系统科学研究中心, 天津 300072
  • 收稿日期:2025-01-09 修回日期:2025-02-12 出版日期:2025-03-25 发布日期:2025-04-20
  • 通信作者: *刘丛强(1955—),男,教授,博士生导师,主要从事地表地球化学和表层地球系统科学研究。E-mail:liucongqiang@tju.edu.cn
  • 作者简介:徐 胜(1963—),男,教授,博士生导师,主要从事地球化学研究。E-mail:sheng.xu@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(42361144879);国家自然科学基金项目(42272242)

Advances in tectonics-geomorphology-climate-ecosystem dynamics

XU Sheng(), YANG Ye, ZHANG Maoliang, SHAO Yanxiu, LI Yunshuai, XU Hai, LIU Jing, Liu Cong-Qiang*()   

  1. Center for Tectonics-Geomorphy-Climate-Ecosystem, School of Earth System Science, Tianjin University, Tianjin 300072, China
  • Received:2025-01-09 Revised:2025-02-12 Online:2025-03-25 Published:2025-04-20

摘要:

构造-地貌-气候-生态系统的相互作用构成了表层地球系统的核心动力学框架。这些要素之间的内在联系和作用体现了系统科学的属性:构造运动首先塑造了大地地貌格局,并与气候和生态系统形成了相互作用系统;气候因子驱动地貌演变和生态系统变化;生态系统通过生物地球化学循环反馈于地貌和气候。构造-地貌-气候-生态系统的协同作用是表层地球系统演化的核心内容。从地质时间尺度看,板块运动和地貌重组引发了区域气候变化和生物群落更替;在现代尺度上,这种耦合关系塑造了地球表层环境的动态平衡。对构造-地貌-气候-生态系统的系统研究对揭示表层地球系统过程和功能以及服务机理至关重要。本文通过梳理构造与气候和地貌、地貌和气候与生态系统变化的耦合关系,旨在探索构造-地貌-气候-生态系统动力学和表层地球系统科学研究的系统性思路。同时,青藏高原是研究这一主题的天然实验室,其独特的构造活动、复杂的地貌形态、多样化的气候带和敏感的生态系统提供了系统研究的关键平台。围绕青藏高原构造-地貌-气候-生态系统的综合研究,将帮助解决青藏高原表层地球系统科学中的前沿科学问题,为全球环境变化研究提供借鉴。构造-地貌-气候-生态系统动力学研究发展需要注重各要素之间的定量耦合关系与协同演化,深化多学科交叉融合,利用先进的实验测试与观测/监测技术,强调大数据驱动的多尺度整合与人工智能的深度应用,构建地球系统动态耦合模型,以期达到对地球系统多圈层相互作用的深入理解,并为应对全球变化带来的挑战提供理论支撑。

关键词: 地球系统科学, 构造抬升, 地貌演化, 气候变化, 生态系统, 风化剥蚀

Abstract:

The interactions between tectonics, geomorphology, climate, and ecosystems constitute the foundation of surface-Earth system dynamics. Investigating these complex interactions and their implications is a central objective of systems science. For instance, tectonic processes not only drive landscape evolution but also exert significant influence on climate change and ecosystem dynamics. Conversely, climate change drives landscape transformation and ecosystem shifts, while ecosystems, through biogeochemical cycles, provide feedback mechanisms that influence landscape evolution and climate regulation. The evolution of the surface-Earth system inherently depends on the synergistic interactions among these components. Over geological timescales, plate tectonics and landscape reorganization have triggered regional climate shifts and biological turnovers. On modern timescales, these couplings maintain the dynamic equilibrium of Earth’s surface environment. Systematic research into these interactions is critical for understanding the sustainability of the surface-Earth system. This study reviews the coupling relationships between tectonics, climate, and landscapes, as well as between landscapes, climate, and ecosystems. It aims to uncover the dynamics of tectonics-geomorphology-climate-ecosystem interactions and establish a systematic framework for surface-Earth system science. The Tibetan Plateau, with its unique tectonic activity, complex geomorphology, diverse climatic zones, and sensitive ecosystems, serves as a natural laboratory for studying these dynamics. Comprehensive investigations into the interactions on the Tibetan Plateau will address key scientific questions in surface-Earth system science and offer valuable insights into global environmental change. Advancing research on tectonics-geomorphology-climate-ecosystem dynamics requires quantitative studies on the coupling and co-evolution of these factors. This can be achieved through interdisciplinary integration, field observations, laboratory analyses, big data approaches, and deep learning in artificial intelligence. Developing dynamic coupling models of Earth’s systems will enhance our understanding of the interactions among Earth’s spheres and provide theoretical support to tackle challenges posed by global change.

Key words: Earth system science, tectonic uplift, landscape evolution, climate change, ecosystem, weathering and denudation

中图分类号: