地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 23-34.DOI: 10.13745/j.esf.sf.2025.3.12
• 全球变化、圈层相互作用研究与地球系统科学 • 上一篇 下一篇
徐胜(), 杨业, 张茂亮, 邵延秀, 李云帅, 徐海, 刘静, 刘丛强*(
)
收稿日期:
2025-01-09
修回日期:
2025-02-12
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*刘丛强(1955—),男,教授,博士生导师,主要从事地表地球化学和表层地球系统科学研究。E-mail:作者简介:
徐 胜(1963—),男,教授,博士生导师,主要从事地球化学研究。E-mail:sheng.xu@tju.edu.cn
基金资助:
XU Sheng(), YANG Ye, ZHANG Maoliang, SHAO Yanxiu, LI Yunshuai, XU Hai, LIU Jing, Liu Cong-Qiang*(
)
Received:
2025-01-09
Revised:
2025-02-12
Online:
2025-03-25
Published:
2025-04-20
摘要:
构造-地貌-气候-生态系统的相互作用构成了表层地球系统的核心动力学框架。这些要素之间的内在联系和作用体现了系统科学的属性:构造运动首先塑造了大地地貌格局,并与气候和生态系统形成了相互作用系统;气候因子驱动地貌演变和生态系统变化;生态系统通过生物地球化学循环反馈于地貌和气候。构造-地貌-气候-生态系统的协同作用是表层地球系统演化的核心内容。从地质时间尺度看,板块运动和地貌重组引发了区域气候变化和生物群落更替;在现代尺度上,这种耦合关系塑造了地球表层环境的动态平衡。对构造-地貌-气候-生态系统的系统研究对揭示表层地球系统过程和功能以及服务机理至关重要。本文通过梳理构造与气候和地貌、地貌和气候与生态系统变化的耦合关系,旨在探索构造-地貌-气候-生态系统动力学和表层地球系统科学研究的系统性思路。同时,青藏高原是研究这一主题的天然实验室,其独特的构造活动、复杂的地貌形态、多样化的气候带和敏感的生态系统提供了系统研究的关键平台。围绕青藏高原构造-地貌-气候-生态系统的综合研究,将帮助解决青藏高原表层地球系统科学中的前沿科学问题,为全球环境变化研究提供借鉴。构造-地貌-气候-生态系统动力学研究发展需要注重各要素之间的定量耦合关系与协同演化,深化多学科交叉融合,利用先进的实验测试与观测/监测技术,强调大数据驱动的多尺度整合与人工智能的深度应用,构建地球系统动态耦合模型,以期达到对地球系统多圈层相互作用的深入理解,并为应对全球变化带来的挑战提供理论支撑。
中图分类号:
徐胜, 杨业, 张茂亮, 邵延秀, 李云帅, 徐海, 刘静, 刘丛强. 构造-地貌-气候-生态系统动力学研究进展[J]. 地学前缘, 2025, 32(3): 23-34.
XU Sheng, YANG Ye, ZHANG Maoliang, SHAO Yanxiu, LI Yunshuai, XU Hai, LIU Jing, Liu Cong-Qiang. Advances in tectonics-geomorphology-climate-ecosystem dynamics[J]. Earth Science Frontiers, 2025, 32(3): 23-34.
[1] | WILLETT S D, HOVIUS N, BRANDON M T, et al. Tectonics, climate, and landscape evolution[M]. Boulder, Colorado: Geological Society of America, 2006. |
[2] | 刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63: 3070-3088. |
[3] | AN Z, KUTZBACH J E, PRELL W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. |
[4] | ANDERS A M, ROE G H, HALLET B, et al. Spatial patterns of precipitation and topography in the Himalaya[M]. Boulder, Colorado: Geological Society of America, 2006. |
[5] | ADAMS B A, WHIPPLE K X, FORTE A M, et al. Climate controls on erosion in tectonically active landscapes[J]. Science Advances, 2020, 6(42): eaaz3166. |
[6] | ZHANG X, XU S, CUI L, et al. Erosions on the southern Tibetan Plateau: evidence from in-situ cosmogenic nuclides 10Be and 26Al in fluvial sediments[J]. Journal of Geographical Sciences, 2022, 32(2): 333-357. |
[7] | HUANG R, FAN X. The landslide story[J]. Nature Geoscience, 2013, 6(5): 325-326. |
[8] | KIRKPATRICK H M, MOON S, YIN A, et al. Impact of fault damage on eastern Tibet topography[J]. Geology, 2021, 49(1): 30-34. |
[9] | WEST A J, HETZEL R, LI G, et al. Dilution of 10Be in detrital quartz by earthquake-induced landslides: implications for determining denudation rates and potential to provide insights into landslide sediment dynamics[J]. Earth and Planetary Science Letters, 2014, 396: 143-153. |
[10] | LIU Z J, TAPPONNIER P, GAUDEMER Y, et al. Quantifying landscape differences across the Tibetan Plateau: implications for topographic relief evolution[J]. Journal of Geophysical Research, 2008, 113(F4): F04018. |
[11] | YANG Y, CUI L F, XU S, et al. Topographic relief response to fluvial incision in the central Tibetan Plateau: evidence from cosmogenic 10Be[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(10): e2021JF006111. |
[12] | ZHANG M, XU S, SANO Y. Deep carbon recycling viewed from global plate tectonics[J]. National Science Review, 2024, 11(6): nwae089. |
[13] | FRIEDLINGSTEIN P, O’SULLIVAN M, JONES M W, et al. Global Carbon Budget 2023[J]. Earth System Science Data, 2023, 15(12): 5301-5369. |
[14] | BERNER R A. The Phanerozoic carbon cycle: CO2 and O2[M]. Oxford: Oxford University Press, 2004. |
[15] | WALKER J C G, HAYS P B, KASTING J F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature[J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9776-9782. |
[16] | BLACK B A, NEELY R R, LAMARQUE J F, et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing[J]. Nature Geoscience, 2018, 11(12): 949-954. |
[17] | FERRIER K L, HUPPERT K L, PERRON J T. Climatic control of bedrock river incision[J]. Nature, 2013, 496(7444): 206-209. |
[18] | HERMAN F, DE DONCKER F, DELANEY I, et al. The impact of glaciers on mountain erosion[J]. Nature Reviews Earth & Environment, 2021, 2(6): 422-435. |
[19] | NIE J, RUETENIK G, GALLAGHER K, et al. Rapid incision of the Mekong River in the Middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience, 2018, 11(12): 944-948. |
[20] | MOLNAR P. Isostasy can’t be ignored[J]. Nature Geoscience, 2012, 5: 83. |
[21] | MEY J, SCHERLER D, WICKERT A D, et al. Glacial isostatic uplift of the European Alps[J]. Nature Communications, 2016, 7(1): 13382. |
[22] | HAN X, DAI J G, SMITH A G G, et al. Recent uplift of Chomolungma enhanced by river drainage piracy[J]. Nature Geoscience, 2024, 17(10): 1031-1037. |
[23] | UREY H C. The planets: their origin and development[M]. New Haven, CT: Yale University, 1952. |
[24] | BERNER R A, LASAGA A C, GARRELS R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283: 641-683. |
[25] | RAYMO M E, RUDDIMAN W F. Tectonic forcing of Late Cenozoic climate[J]. Nature, 1992, 359(6391): 117-122. |
[26] | RAYMO M E, RUDDIMAN W F, FROELICH P N. Influence of Late Cenozoic mountain building on ocean geochemical cycles[J]. Geology, 1988, 16(7): 649-653. |
[27] | BURTON K W. Global weathering variations inferred from marine radiogenic isotope records[J]. Journal of Geochemical Exploration, 2006, 88(1): 262-265. |
[28] |
MISRA S, FROELICH P N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering[J]. Science, 2012, 335(6070): 818-823.
DOI PMID |
[29] | FRANCE-LANORD C, DERRY L A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion[J]. Nature, 1997, 390(6655): 65-67. |
[30] | BERNER R A, CALDEIRA K. The need for mass balance and feedback in the geochemical carbon cycle[J]. Geology, 1997, 25(10): 955-956. |
[31] | GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1): 3-30. |
[32] | MOON S, CHAMBERLAIN C P, HILLEY G E. New estimates of silicate weathering rates and their uncertainties in global rivers[J]. Geochimica et Cosmochimica Acta, 2014, 134: 257-274. |
[33] | DESSERT C, DUPRÉ B, GAILLARDET J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle[J]. Chemical Geology, 2003, 202(3): 257-273. |
[34] | LI G, ELDERFIELD H. Evolution of carbon cycle over the past 100 million years[J]. Geochimica et Cosmochimica Acta, 2013, 103: 11-25. |
[35] | LI G, HARTMANN J, DERRY L A, et al. Temperature dependence of basalt weathering[J]. Earth and Planetary Science Letters, 2016, 443: 59-69. |
[36] |
DUNLEA A G, MURRAY R W, SANTIAGO RAMOS D P, et al. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering[J]. Nature Communications, 2017, 8(1): 844.
DOI PMID |
[37] | BUFE A, HOVIUS N, EMBERSON R, et al. Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion[J]. Nature Geoscience, 2021, 14(4): 211-216. |
[38] | BUFE A, RUGENSTEIN J K C, HOVIUS N. CO2 drawdown from weathering is maximized at moderate erosion rates[J]. Science, 2024, 383(6687): 1075-1080. |
[39] | ZONDERVAN J R, HILTON R G, DELLINGER M, et al. Rock organic carbon oxidation CO2 release offsets silicate weathering sink[J]. Nature, 2023, 623: 329-333. |
[40] | WILLENBRING J K, VON BLANCKENBURG F. Long-term stability of global erosion rates and weathering during Late-Cenozoic cooling[J]. Nature, 2010, 465: 211-214. |
[41] | CAVES RUGENSTEIN J K, IBARRA D E, VON BLANCKENBURG F. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes[J]. Nature, 2019, 571(7763): 99-102. |
[42] | POGGE VON STRANDMANN P A E, HENDERSON G M. The Li isotope response to mountain uplift[J]. Geology, 2015, 43(1): 67-70. |
[43] |
ZHANG F, DELLINGER M, HILTON R G, et al. Hydrological control of river and seawater lithium isotopes[J]. Nature Communications, 2022, 13(1): 3359.
DOI PMID |
[44] | WEST A, GALY A, BICKLE M. Tectonic and climatic controls on silicate weathering[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 211-228. |
[45] | WEST A J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks[J]. Geology, 2012, 40(9): 811-814. |
[46] | DUNAI T J. Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences[M]. Cambridge: Cambridge University Press, 2010. |
[47] | 杨业, BINNIE S A, 徐胜, 等. 亚洲高山流域千年尺度地表剥蚀的制约因素[J]. 中国科学: 地球科学, 2025, 55 (1): 75-94. |
[48] | VON BLANCKENBURG F, BOUCHEZ J, WITTMANN H. Earth surface erosion and weathering from the 10Be(meteoric)/9Be ratio[J]. Earth and Planetary Science Letters, 2012, 351-352: 295-305. |
[49] | YUAN X, LI Y, BRUNE S, et al. Coordination between deformation, precipitation, and erosion during orogenic growth[J]. Nature Communications, 2024, 15(1): 10362. |
[50] | TURNER M G, GARDNER R H. Landscape Ecology in theory and practice: pattern and process[M]. New York: Springer, 2001. |
[51] | IPCC. Climate change 2021:the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[R]. Cambridge and New York: Cambridge University Press, 2021. |
[52] | BENZ S A, IRVINE D J, RAU G C, et al. Global groundwater warming due to climate change[J]. Nature Geoscience, 2024, 17(6): 545-551. |
[53] | UNITED NATIONS GENERAL ASSEMBLY. United Nations decade on ecosystem restoration (2021-2030): resolution adopted by the general assembly[R]. New York: the United Nations General Assembly, 2019. |
[54] | 王白雪, 程维明, 宋珂钰, 等. 生态地貌学研究动态: 地貌学和生态系统生态学的交叉融合[J]. 生态学报, 2022, 42: 4334-4348. |
[55] | KÖRNER C. The use of ‘altitude’ in ecological research[J]. Trends in Ecology & Evolution, 2007, 22(11): 569-574. |
[56] | XU F, ZHANG G, WOOLWAY R I, et al. Widespread societal and ecological impacts from projected Tibetan Plateau lake expansion[J]. Nature Geoscience, 2024, 17(6): 516-523. |
[57] | LI S L, LIU C Q, CHEN J A, et al. Karst ecosystem and environment: characteristics, evolution processes, and sustainable development[J]. Agriculture, Ecosystems & Environment, 2021, 306: 107173. |
[58] | 刘宇, 宋进喜, 邢璐通, 等. 黄土高原植被变化对土壤侵蚀的影响[J]. 西北大学学报(自然科学版), 2024, 54: 398-412. |
[59] | GOU Y, TAO Y, KOU P, et al. Elucidate the complex drivers of significant greening on the Loess Plateau from 2000 to 2020[J]. Environmental Development, 2024, 50: 100991. |
[60] | HUGHES T P, KERRY J T, BAIRD A H, et al. Global warming transforms coral reef assemblages[J]. Nature, 2018, 556(7702): 492-496. |
[61] | TRENBERTH K E, FASULLO J T, SHEPHERD T G. Attribution of climate extreme events[J]. Nature Climate Change, 2015, 5(8): 725-730. |
[62] | PIAO S, WANG X, PARK T, et al. drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2020, 1(1): 14-27. |
[63] | QIN Y, ADAMOWSKI J F, DEO R C, et al. Controlling factors of plant community composition with respect to the slope aspect gradient in the Qilian Mountains[J]. Ecosphere, 2019, 10(9): e02851. |
[64] | PAN Y, REN L, XIANG X, et al. Effect of slope aspect on plant above- and belowground functional traits of alpine meadow on the Qinghai-Tibet Plateau, China[J]. Journal of Geophysical Research: Biogeosciences, 2023, 128(2): e2022JG007268. |
[65] | ZHANG Q P, FANG R Y, DENG C Y, et al. Slope aspect effects on plant community characteristics and soil properties of alpine meadows on Eastern Qinghai-Tibetan Plateau[J]. Ecological Indicators, 2022, 143: 109400. |
[66] | KÖRNER C. Alpine treelines: functional ecology of the global high elevation tree limits[M]. Basel: Springer, 2012. |
[67] |
BONAN G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5882): 1444-1449.
DOI PMID |
[68] | 朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报, 2019, 64: 2842-2855. |
[69] |
LIU X, YU C, SHI P, et al. Debris flow and landslide hazard mapping and risk analysis in China[J]. Frontiers of Earth Science, 2012, 6(3): 306-313.
DOI |
[70] | CUI P. The landslide/debris flow and control technology in China[M]. Singapore: Springer Nature Singapore, 2022. |
[71] | YAO T, THOMPSON L G, MOSBRUGGER V, et al. Third pole environment (TPE)[J]. Environmental Development, 2012, 3: 52-64. |
[72] | EARLE A, JÄGERSKOG A, ÖJENDAL J. Transboundary water management: principles and practice[M]. London: Routledge, 2013. |
[73] |
ANDERSON R, BAYER P E, EDWARDS D. Climate change and the need for agricultural adaptation[J]. Current Opinion in Plant Biology, 2020, 56: 197-202.
DOI PMID |
[74] |
IMMERZEEL W W, VAN BEEK L P H, BIERKENS M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1385.
DOI PMID |
[75] | HARRIS R B. Rangeland degradation on the Qinghai-Tibetan Plateau: a review of the evidence of its magnitude and causes[J]. Journal of Arid Environments, 2010, 74(1): 1-12. |
[76] |
XU J, GRUMBINE R E, SHRESTHA A, et al. The melting himalayas: cascading effects of climate change on water, biodiversity, and livelihoods[J]. Conservation Biology, 2009, 23(3): 520-530.
DOI PMID |
[77] | BRUNE S, WILLIAMS S E, MÜLLER R D. Potential links between continental rifting, CO2 degassing and climate change through time[J]. Nature Geoscience, 2017, 10(12): 941-946. |
[78] | BALDWIN S L, BEHR W M, BECK S, et al. Challenges and opportunities for research in tectonics: understanding deformation and the processes that link Earth systems, from geologic time to human time. A community vision document submitted to the U.S. National Science Foundation[M]. Washington: University of Washington, 2017. |
[79] | 刘静, 刘丛强, 陈喜, 等. 圈层相互作用: 深部过程如何影响表层地球系统?[J]. 地球科学, 2022, 47: 3781-3782. |
[80] | NASEM. A vision for NSF Earth sciences 2020-2030: Earth in time[M]. Washington: National Academies Press, 2020. |
[81] |
ZHANG M, GUO Z, XU S, et al. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau[J]. Nature Communications, 2021, 12(1): 4157.
DOI PMID |
[82] | DING L, KAPP P, CAI F, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3(10): 652-667. |
[83] | YAO T, BOLCH T, CHEN D, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3(10): 618-632. |
[84] | DONG Y, SHI X, SUN S, et al. Co-evolution of the Cenozoic tectonics, geomorphology, environment and ecosystem in the Qinling Mountains and adjacent areas, Central China[J]. Geosystems and Geoenvironment, 2022, 1(2): 100032. |
[85] |
ANTONELLI A, KISSLING W D, FLANTUA S G A, et al. Geological and climatic influences on mountain biodiversity[J]. Nature Geoscience, 2018, 11(10): 718-725.
DOI |
[86] | 董云鹏, 任建国, 张志飞, 等. 地质学科未来5-10年发展战略: 趋势与对策[J]. 科学通报, 2022, 67: 2708-2718. |
[87] |
汪品先. 地球深部与表层的相互作用[J]. 地球科学进展, 2009, 24(12): 1331-1338.
DOI |
[88] | 郑永飞, 郭正堂, 焦念志, 等. 地球系统科学研究态势[J]. 中国科学: 地球科学, 2024, 54: 3065-3090. |
[89] | GLOBAL RISKS REPORT. The global risks report 2024[R]. Cologny/Geneva: the World Economic Forum, 2024. |
[1] | 刘丛强. 全球变化、层圈相互作用研究与地球系统科学[J]. 地学前缘, 2025, 32(3): 1-6. |
[2] | 李磊, 徐鹏, 曾昭, 赵丹丹, 马韶君, 刘丛强. 社会-生态系统科学与人类世可持续发展[J]. 地学前缘, 2025, 32(3): 105-117. |
[3] | 陈玖斌, 郑旺, 刘羿, 孙若愚, 袁玮, 孟梅, 蔡虹明, 刘丛强. 同位素地球化学与地球系统圈层相互作用和全球变化研究[J]. 地学前缘, 2025, 32(3): 137-155. |
[4] | 李婉珠, 王宝利, 刘丛强. 水体硅碳化学计量趋同的浮游植物驱动机制[J]. 地学前缘, 2025, 32(3): 311-319. |
[5] | 滕辉, 余光辉, 陈春梅, 郝丽萍, 张坚超, 朱翔宇, 孙富生, 王钺博, 刘丛强. 表层地球系统界面过程与土壤圈演化研究[J]. 地学前缘, 2025, 32(3): 35-51. |
[6] | 桑丽源, 郭威, 张静文, 刘艺轩, 章同坤, 张竹卿, 岳展鹏, 李丹阳, 张润, 张旭, 唐伟平, 刘展航, 丁虎, 郎赟超, 刘丛强. 城市地球关键带水文过程与水环境和水资源研究:现状、挑战与未来[J]. 地学前缘, 2025, 32(3): 445-461. |
[7] | 陈喜, 董建志, 王礼春, 张永根, 王学静, 狄崇利, 高满, 刘丛强. 全球变化下生态水文学发展与展望[J]. 地学前缘, 2025, 32(3): 52-61. |
[8] | 刘静, 孙照通, 王文鑫, 李云帅, 姚文倩, 崔凤珍, 刘丛强. 表层地球系统的深部过程响应与地表自然灾害[J]. 地学前缘, 2025, 32(3): 7-22. |
[9] | 王铁军, 晏智锋, 宋照亮, 周浩然, 孙新超, 陈伟, 李攀, 刘丛强. 表层地球系统科学视角下的生态系统科学研究[J]. 地学前缘, 2025, 32(3): 78-91. |
[10] | 于涛, 韩鹏飞, 王旭升, 蒋小伟, 张志远, 万力. 基于Budyko模式的白洋淀流域不同时间尺度径流对气候变化的响应研究[J]. 地学前缘, 2025, 32(1): 449-458. |
[11] | 梁文翔, 骆震, 陈伏龙, 王统霞, 安杰, 龙爱华, 何朝飞. 基于CMIP6多模式集合的内陆河径流模拟及预估[J]. 地学前缘, 2024, 31(6): 450-461. |
[12] | 王鹏寿, 许民, 韩海东, 李振中, 宋轩宇, 周卫永. 天山南坡阿克苏流域冰川物质平衡及其融水径流对气候变化的响应研究[J]. 地学前缘, 2024, 31(2): 435-446. |
[13] | 刘丛强, 李思亮, 刘学炎, 王宝利, 郎赟超, 丁虎, 郝丽萍, 张琼予. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466. |
[14] | 邢智峰, 张湘赟, 李婉颖, 齐永安, 郑伟, 吴盼盼, 张立军. PTME后华北板块南缘生物复苏后期古环境特征:来自豫西登封中三叠统二马营组的证据[J]. 地学前缘, 2023, 30(5): 491-509. |
[15] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||