地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 7-22.DOI: 10.13745/j.esf.sf.2025.3.11
• 全球变化、圈层相互作用研究与地球系统科学 • 上一篇 下一篇
刘静(), 孙照通, 王文鑫, 李云帅, 姚文倩, 崔凤珍, 刘丛强*(
)
收稿日期:
2025-02-05
修回日期:
2025-02-20
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*刘丛强(1955—),男,博士,教授,博士生导师,主要从事地表地球化学和表层地球系统科学方面的研究。E-mail:作者简介:
刘 静(1969—),女,教授,博士生导师,主要从事活动构造、构造地貌及自然灾害方面的研究。E-mail:liu_zeng@tju.edu.cn
基金资助:
LIU Jing(), SUN Zhaotong, WANG Wenxin, LI Yunshuai, YAO Wenqian, CUI Fengzhen, LIU Cong-Qiang*(
)
Received:
2025-02-05
Revised:
2025-02-20
Online:
2025-03-25
Published:
2025-04-20
摘要:
地球深部过程对表层地球系统的影响构成了地球系统科学研究的核心议题。通过构造运动和火山喷发等多种机制,深部过程改变了物质循环和能量传输的深浅部模式,进而对表层地球系统产生深远影响。这种影响具体表现在以下几个方面:(1)构造活动通过地形的重塑,调控了流域尺度的侵蚀-沉积过程;(2)火山活动和构造运动通过改变大气成分和环流格局,在地质时间尺度上驱动了气候变化,其中硅酸盐风化作用在调节大气中CO2浓度方面扮演了关键角色;(3)深部过程可能引发生态系统演化中的生物灭绝事件,同时也能促进生物多样性的形成;(4)在全球气候变化的背景下,地震和地质灾害通过影响社会-生态系统的稳定性,可能进一步加剧其不稳定性。随着观测技术的持续进步,地球系统科学研究将继续深入理解表层地球系统对深部过程的响应机制、量化其影响强度、预测自然灾害的演化趋势,以及增强社会-生态系统对灾害的适应能力。本文系统梳理了深部过程-表层系统-社会生态的跨尺度耦合机制,有助于理解地球系统整体演化。
中图分类号:
刘静, 孙照通, 王文鑫, 李云帅, 姚文倩, 崔凤珍, 刘丛强. 表层地球系统的深部过程响应与地表自然灾害[J]. 地学前缘, 2025, 32(3): 7-22.
LIU Jing, SUN Zhaotong, WANG Wenxin, LI Yunshuai, YAO Wenqian, CUI Fengzhen, LIU Cong-Qiang. Surface-Earth response to deep-Earth processes and consequential natural disasters[J]. Earth Science Frontiers, 2025, 32(3): 7-22.
图1 构造-侵蚀-气候相互作用及其对地球关键带组成和结构的影响(据文献[18-19]修改)
Fig.1 Interaction among tectonics, erosion and climate and the effect on Earth’s critical zone. Modified from [18-19].
图3 构造抬升-季风降雨-剥蚀-沉积的过程耦合的卡通图(改自C. France-Lanord)
Fig.3 Cartoon showing the coupled processes of tectonic uplift, monsoon precipitation, denudation, and sedimentation. Modified after C. France-Lanord
图4 地质碳循环中负反馈机制的概念模型(据文献[77]) (a)—构造活动不活跃的平坦地区,侵蚀作用较弱且稳定。任何脱气通量的增加都会导致温度升高,并通过硅酸盐风化强度的增强,增加硅酸盐风化通量,实现几乎相同程度的CO2吸收通量增加,最终达到平衡。(b)—造山带地区。在脱气通量恒定的条件下,造山带侵蚀作用的增加导致造山带CO2吸收通量整体上升。
Fig.4 Conceptual model of negative needback mechanisms in the geological carbon cycle. Modified from [77].
图5 新生代大型火成岩省(LIPs)火山活动、气候与大气CO2记录(据文献[92])
Fig.5 Cenozoic large igneous provinces (LIPs): volcanic activity, climate, and atmospheric CO2 record. Modified from [92].
图6 造山作用与生物多样性的关系(据文献[100]) (a)—生物多样性,包括不同地区物种间的系统发育关系和土壤适应性;(b)—山体上可见的生物和地质特征,包括植被的垂直分带、侵蚀地貌和基岩露头,这些特征通过促进生物群落迁移和增强生物相互作用驱动生物多样性分异和适应性辐射;(c)—山体“隐藏”的地质与气候多样性过程,包括地形降水、风化-土壤-沉积作用序列,以及不整合面、褶皱冲断带和断裂系统共同构成生物多样性形成的深层控制机制。
Fig.6 Mountain building and biodiversity. Adapted from [100].
图7 青藏高原地震-滑坡-泥石流灾害链以及景观地貌的剧烈改变(以2008年Mw7.9汶川地震为例)
Fig.7 Earthquake-induced cascading disaster chain and drastic landscape changes, as exemplified by the 2008 Mw7.9 Wenchuan earthquake.
[1] | NRC (National Research Council) Basic research opportunities in Earth Science[M]. Washington, D.C.: National Academy Press, 2001. |
[2] | LENTON T. Earth system science: a very short introduction[M]. Oxford: Oxford University Press, 2016. |
[3] | STEFFEN W, RICHARDSON K, ROCKSTRÖM J, et al. The emergence and evolution of Earth System Science[J]. Nature Reviews Earth & Environment, 2020, 1: 54-63. |
[4] |
刘丛强, 李思亮, 刘学炎, 等. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466.
DOI |
[5] | 汪品先, 田军, 黄恩清, 等. 地球系统与演化[M]. 北京: 科学出版社, 2018. |
[6] | BRANTLEY S L, GOLDHABER M B, RAGNARSDOTTIR K V, et al. Crossing disciplines and scales to understand the critical zone[J]. Elements, 2007, 3(5): 307-314. |
[7] | LEE R M, SHOSHITAISHVILI B, WOOD R L, et al. The meanings of the critical zone[J]. Anthropocene, 2023, 42: 100377. |
[8] | 李思亮, 王浩阳, 晏智锋, 等. 地球关键带过程和生态环境效应研究进展[J/OL]. 矿物岩石地球化学通报, 2024, 43: 1-15.[2024-12-04]https://link.cnki.net/urlid/52.1102.P.20241104.1047.001. |
[9] | ANDERSON S P, BLANCKENBURG F V, WHITE A F, et al. Physical and chemical controls on the critical zone[J]. Elements, 2007, 3(5): 315-319. |
[10] | LIN H. Earth’s critical zone and hydropedology: concepts, characteristics and advances[J]. Hydrology and Earth System Sciences, 2010, 14(1): 25-45. |
[11] |
朱永官, 李刚, 张甘霖, 等. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 2015, 70(12): 1859-1869.
DOI |
[12] | 李小雁, 马育军, 等. 地球关键带科学与水文土壤学研究进展[J]. 北京师范大学学报(自然科学版), 2016, 52(6): 731-737. |
[13] | HOLBROOK W S, MARCON V, BACON A R, et al. Links between physical and chemical weathering inferred from a 65-m-deep borehole through Earth’s critical zone[J]. Scientific Reports, 2019, 9: 4495. |
[14] | PUEL S, BECKER T W, VILLA U, et al. Volcanic arc rigidity variations illuminated by coseismic deformation of the 2011 Tohoku-Oki M9[J]. Science Advances, 2024, 10(23): eadl4264. |
[15] |
安培浚, 张志强, 王立伟, 等. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
DOI |
[16] | BRANTLEY S L, WHITE T S, WHITE A F, et al. Frontiers in exploration of the critical zone[R]. Newark, DE, USA: National Science Foundation. 2006: 30. |
[17] | RIEBE C S, HAHM W J, BRANTLEY S L, et al. Controls on deep critical zone architecture: a historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 2017, 42(1): 128-156. |
[18] | WILLETT S D, HOVIUS N, BRANDON M T, et al. Tectonics, climate, and landscape evolution[M]. Boulder: Geological Society of America, 2006, 398:vii-xi. |
[19] | 刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63(30): 3070-3088. |
[20] |
ILES C E, HEGERL G C. Systematic change in global patterns of streamflow following volcanic eruptions[J]. Nature Geoscience, 2015, 8: 838-842.
DOI PMID |
[21] |
LIU F, CHAI J, WANG B, et al. Global monsoon precipitation responses to large volcanic eruptions[J]. Scientific Reports, 2016, 6: 24331.
DOI PMID |
[22] | FIANTIS D, GINTING F I, GUSNIDAR, et al. Volcanic ash, insecurity for the people but securing fertile soil for the future[J]. Sustainability, 2019, 11(11): 3072. |
[23] |
GU L, BALDOCCHI D D, WOFSY S C, et al. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis[J]. Science, 2003, 299: 2035-2038.
PMID |
[24] | ZHANG Y, BASTOS A, MAIGNAN F, et al. Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model[J]. Geoscientific Model Development, 2020, 13: 5401-5423. |
[25] | 张原, 梁尔源, 汪涛, 等. 火山喷发对陆地植被与碳循环影响的研究进展[J]. 科学通报, 2024, 69: 160-168. |
[26] |
CLAIR J ST, MOON S, HOLBROOK W S, et al. Geophysical imaging reveals topographic stress control of bedrock weathering[J]. Science, 2015, 350(6260): 534-538.
DOI PMID |
[27] | 刘静, 刘丛强, 陈喜, 等. 圈层相互作用: 深部过程如何影响表层地球系统?[J]. 地球科学, 2022, 47(10): 2. |
[28] | CLARK M K, SCHOENBOHM L M, ROYDEN L H, et al. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 2004, 23: TC1006. |
[29] | LIU-ZENG J, TAPPONNIER P, GAUDEMER Y, et al. Quantifying landscape differences across the Tibetan plateau: implications for topographic relief evolution[J]. Journal of Geophysical Research: Solid Earth, 2008, 113: F04018. |
[30] | ZHENG H, CLIFT P D, WANG P, et al. Pre-miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences, 2013, 110(19): 7556-7561. |
[31] | ANDERSON R S, RAJARAM H, ANDERSON S P, et al. Climate driven coevolution of weathering profiles and hillslope topography generates dramatic differences in critical zone architecture[J]. Hydrological Processes, 2019, 33(1): 4-19. |
[32] | BADGLEY C. Tectonics, topography, and mammalian diversity[J]. Ecography, 2010, 33(2): 220-231. |
[33] |
ANTONELLI A, KISSLING W D, FLANTUA S G A, et al. Geological and climatic influences on mountain biodiversity[J]. Nature Geoscience, 2018, 11(10): 718-725.
DOI |
[34] | ENGLAND P, MOLNAR P. Surface uplift, uplift of rocks, and exhumation of rocks[J]. Geology, 1990, 18(12): 1173-1177. |
[35] | SCHEINGROSS J S, LIMAYE A B, MCCOY S W, et al. The shaping of erosional landscapes by internal dynamics[J]. Nature Reviews Earth & Environment, 2020, 1(12): 661-676. |
[36] | MONTGOMERY D R, BRANDON M T. Topographic controls on erosion rates in tectonically active mountain ranges[J]. Earth and Planetary Science Letters, 2002, 201(3/4): 481-489. |
[37] | BURBANK D W, LELAND J, FIEDING E, et al. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas[J]. Nature, 1996, 379(6565): 505-510. |
[38] | KIRBY E, WHIPPLE K X. Expression of active tectonics in erosional landscapes[J]. Journal of Structural Geology, 2012, 44: 54-75. |
[39] | PAOLA C. Quantitative models of sedimentary basin filling[J]. Sedimentology, 2000, 47: 121-178. |
[40] | MOLNAR P, ANDERSON R S, ANDERSON S P, et al. Tectonics, fracturing of rock, and erosion[J]. Journal of Geophysical Research: Earth Surface, 2007, 112, F03014, doi:10.1029/2005JF000433. |
[41] | BOOTH-REA G, AZAÑÓN J M, GARCÍA-DUEÑAS V, et al. Extensional tectonics in the northeastern Betics (SE Spain): case study of extension in a multilayered upper crust with contrasting rheologies[J]. Journal of Structural Geology, 2004, 26(11): 2039-2058. |
[42] | THOURET J C, LAVIGNE F, SUWA H, et al. Volcanic hazards at Mount Semeru, East Java (Indonesia), with emphasis on lahars[J]. Bulletin of Volcanology, 2007, 70: 221-244. |
[43] | PIERSON T C, MAJOR J J. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 469-507. |
[44] | IVERSON R M. The physics of debris flows[J]. Reviews of Geophysics, 1997, 35(3): 245-296. |
[45] | NEARING M A, JETTEN V, BAFFAUT C, et al. Modeling response of soil erosion and runoff to changes in precipitation and cover[J]. Catena, 2005, 61(2/3): 131-154. |
[46] | BOGAARDT A, GRECO R. Landslide hydrology: from hydrology to pore pressure[J]. Wiley Interdisciplinary Reviews: water, 2016, 3(3): 439-459. |
[47] | PIÑOL J, ÁVILA A, RODÀ F. The seasonal variation of streamwater chemistry in three forested Mediterranean catchments[J]. Journal of Hydrology, 1992, 140(1/4): 119-141. |
[48] | ODA T, OHTE N, SUZUKI M, et al. Importance of frequent storm flow data for evaluating changes in stream water chemistry following clear-cutting in Japanese headwater catchments[J]. Forest Ecology and Management, 2011, 262(7): 1305-1317. |
[49] | WHITE A F, BRANTLEY S L. The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?[J]. Chemical Geology, 2003, 202(3/4): 479-506. |
[50] |
BRANTLEY S L, MEGONIGAL J P, SCATENA F N, et al. Twelve testable hypotheses on the geobiology of weathering[J]. Geobiology, 2011, 9(2): 140-165.
DOI PMID |
[51] | HALES T C, ROERING J J. Climate-controlled variations in scree production, southern Alps, New Zealand[J]. Geology, 2005, 33(9): 701-704. |
[52] | BOULTON G S. Processes of glacier erosion on different substrata[J]. Journal of Glaciology, 1979, 23(89): 15-38. |
[53] | HERMAN F, DE D F, DELANEY I, et al. The impact of glaciers on mountain erosion[J]. Nature Reviews Earth & Environment, 2021, 2(6): 422-435. |
[54] | MULCH A, TEYSSIER C, COSCA M A, et al. Reconstructing paleoelevation in eroded orogens[J]. Geology, 2004, 32(6): 525-528. |
[55] | BOOKHAGEN B, BURBANK D W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya[J]. Geophysical Research Letters, 2006, 33: L08405. doi:10.1029/2006GL026037. |
[56] | MOLNAR P, ENGLAND P, MARTINOD J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396. |
[57] |
AN Z S, CLEMENS S C, SHEN J, et al. Glacial-interglacial Indian summer monsoon dynamics[J]. Science, 2011, 333(6043): 719-723.
DOI PMID |
[58] | SCOTESE C R, SONG H, MILLS B J W, et al. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years[J]. Earth-Science Reviews, 2021, 215: 103503. |
[59] | SEGONNI S, PICIULLI L, GARIANO S L. A review of the recent literature on rainfall thresholds for landslide occurrence[J]. Landslides, 2018, 15(8): 1483-1501. |
[60] | MOORE R D, FLEMING S W, MENOUNOS B, et al. Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality[J]. Hydrological Processes: An International Journal, 2009, 23(1): 42-61. |
[61] | RIEBE C S, KIRCHNER J W, FINKEL R C. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 547-562. |
[62] | 郑永飞, 郭正堂, 焦念志, 等. 地球系统科学研究态势[J]. 中国科学: 地球科学, 2024, 54(10): 3065-3090. |
[63] | 徐义刚, 黄小龙, 王强, 等. 地球宜居性的深部驱动机制[J]. 科学通报, 2024, 69(2): 169-183. |
[64] | GUTJAHR M, RIDGWELL A, SEXTON P F, et al. Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum[J]. Nature, 2017, 548(7669): 573-577. |
[65] | CUI Y, LI M S, VAN SOELEN E E, et al. Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(23): e2014701118. |
[66] | 沈树忠, 张飞飞, 王文倩, 等. 深时重大生物和气候事件与全球变化: 进展与挑战[J]. 科学通报, 2024, 69(3): 268-285. |
[67] | ROBOCK A. Volcanic eruptions and climate[J]. Reviews of Geophysics, 2000, 38(2): 191-219. |
[68] | SHEN S Z, RAMEZANI J, CHEN J, et al. A sudden end-Permian mass extinction in South China[J]. Geological Society of America Bulletin, 2019, 131(1/2): 205-223. |
[69] | NEAL C R, COFFIN M F, ARNDT N T, et al. Investigating large igneous province formation and associated paleoenvironmental events: a white paper for scientific drilling[J]. Scientific Drilling, 2008, 6: 4-18. |
[70] | STENCHIKOV G L, KIRCHNER I, ROBOCK A, et al. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption[J]. Journal of Geophysical Research, 1998, 103(D12): 13837-13857. |
[71] | MARSHALL L R, MATERS E C, SCHMIDT A, et al. Volcanic effects on climate: recent advances and future avenues[J]. Bulletin of Volcanology, 2022, 84(4): 54. |
[72] |
BRONNIMANN S, FRANKE J, NUSSBAUMER S U, et al. Last phase of the Little Ice Age forced by volcanic eruptions[J]. Nature Geoscience, 2019, 12(8): 650-656.
DOI |
[73] | AN Z S, KUTZBACH J E, PRELL W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. |
[74] | 安芷生, 张培震, 王二七, 等. 中新世以来我国季风-干旱环境演化与青藏高原的生长[J]. 第四纪研究, 2006, 26(5): 678-693. |
[75] | RAYMO M E, RUDDIMAN W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6391): 117-122. |
[76] | 2021—2030地球科学发展战略研究组. 2021—2030地球科学发展战略: 宜居地球的过去、现在与未来[M]. 北京: 科学出版社, 2021. |
[77] | FANG X M, GALY A, YANG Y, et al. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau[J]. Geology, 2019, 47(10): 992-996. |
[78] | BERNER R A, CALDEIRA K. The need for mass balance and feedback in the geochemical carbon cycle[J]. Geology, 1997, 25(10): 955-956. |
[79] | HILLEY G E, PORDER S. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(44): 16855-16859. |
[80] | EMBERSON R, HOVIUS N, GALY A, et al. Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding[J]. Nature Geoscience, 2016, 9(1): 42-45. |
[81] | 金章东, HILTON R G, WEST A J, 等. 地震滑坡在活跃造山带侵蚀和风化中的作用: 进展与展望[J]. 中国科学: 地球科学, 2022, 52(2): 222-237. |
[82] | LEE C T A, SHEN B, SLOTNICK B S, et al. Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change[J]. Geosphere, 2013, 9(1): 21-36. |
[83] | 刘勇胜, 陈春飞, 何德涛, 等. 俯冲带地球深部碳循环作用[J]. 中国科学: 地球科学, 2019, 49(12): 1982-2003. |
[84] | MAO H K, MAO W L. Key problems of the four-dimensional Earth system[J]. Matter and Radiation at Extremes, 2020, 5(3): 038102. |
[85] | TAMBURELLO G, PONDRELLI S, CHIODINI G, et al. Global-scale control of extensional tectonics on CO2 earth degassing[J]. Nature Communications, 2018, 9(1): 4608. |
[86] | BRUNE S, WILLIAMS S E, MÜLLER R D. Potential links between continental rifting, CO2 degassing and climate change through time[J]. Nature Geoscience, 2017, 10(12): 941-946. |
[87] | LEE H, MUIRHEAD J D, FISCHER T P, et al. Massive and prolonged deep carbon emissions associated with continental rifting[J]. Nature Geoscience, 2016, 9(2): 145-149. |
[88] | 徐胜, 管芦峰, 张茂亮, 等. 青藏高原东缘鲜水河-安宁河断裂带深源气体释放[J]. 中国科学: 地球科学, 2022, 52(2): 291-308. |
[89] | KULONGOSKI J T, HILTON D R, BARRY P H, et al. Volatile fluxes through the Big Bend section of the San Andreas Fault, California: Helium and carbon-dioxide systematics[J]. Chemical Geology, 2013, 339: 92-102. |
[90] | MEERT J G, LEVASHOVA N M, BAZHENOV M L, et al. Rapid changes of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation[J]. Gondwana Research, 2016, 34: 149-157. |
[91] | CHANNELL J E T, VIGLIOTTI L. The role of geomagnetic field intensity in late quaternary evolution of humans and large mammals[J]. Reviews of Geophysics, 2019, 57(3): 709-738. |
[92] | BLACK B A, KARLSTROM L, MILLS B J, et al. Cryptic degassing and protracted greenhouse climates after flood basalt events[J]. Nature Geoscience, 2024, 1-7. |
[93] | KNOLL A H, BAMBACH R K, PAYNE J L, et al. Paleophysiology and end-Permian mass extinction[J]. Earth and Planetary Science Letters, 2007, 256(3/4): 295-313. |
[94] | 殷鸿福, 宋海军. 古、 中生代之交生物大灭绝与泛大陆聚合[J]. 中国科学: 地球科学, 2013, 43(9): 1539-1552. |
[95] | WIGNALL P B, NEWTON R. Contrasting deep-water records from the upper permian and lower triassic of south tibet and british columbia: evidence for a diachronous mass extinction[J]. Palaios, 2003, 18(2): 153-167. |
[96] | SHEN Y, FARQUHAR J, ZHANG H, et al. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction[J]. Nature Communications, 2011, 2(1): 210-215. |
[97] | ZHAO M, MILLS B J, POULTON S W, et al. Drivers of the global phosphorus cycle over geological time[J]. Nature Reviews Earth & Environment, 2024, 1: 1-17. |
[98] | BERNARDI M, PETTI F M, BENTON M J. Tetrapod distribution and temperature rise during the Permian-Triassic mass extinction[J]. Proceedings of the Royal Society B: Biological Sciences, 2018, 285(1870): 20172331. |
[99] | ZOU Y, MITCHELL R N, CHU X, et al. Surface evolution during the mid-Proterozoic stalled by mantle warming under Columbia-Rodinia[J]. Earth and Planetary Science Letters, 2023, 607: 118055. |
[100] |
PERRIGO A, HOORN C, ANTONELLI A. Why mountains matter for biodiversity[J]. Journal of Biogeography, 2020, 47(2): 315-325.
DOI |
[101] | DING W N, REE R H, SPICER R A, et al. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora[J]. Science, 2020, 369(6503): 578-581. |
[102] |
郑度, 姚檀栋. 青藏高原隆升及其环境效应[J]. 地球科学进展, 2006, 21(5): 451-458.
DOI |
[103] | 周浙昆, 邓涛. 青藏高原是研究生物演化和环境演变的天然实验室[J]. 中国科学: 地球科学, 2020, 50(2): 175-176. |
[104] | 丁林, MAKSATBEK S, 蔡福龙, 等. 印度与欧亚大陆初始碰撞时限、封闭方式和过程[J]. 中国科学: 地球科学, 2017, 47(2): 293-309. |
[105] | 邓涛, 吴飞翔, 苏涛, 等. 青藏高原: 现代生物多样性形成的演化枢纽[J]. 中国科学: 地球科学, 2020, 50(2): 177-193. |
[106] | 周浙昆, 刘佳, 陈琳琳, 等. 西藏新生代植物近十年来的重要发现、认识及其意义[J]. 中国科学: 地球科学, 2023, 53(2): 193-215. |
[107] | SU T, SPICER R A, LI S H, et al. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet[J]. National Science Review, 2019, 6(3): 495-504. |
[108] | SU T, SPICER R A, WU F X, et al. A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(52): 32989-32995. |
[109] | XIONG Z Y, LIU X H, DING L, et al. The rise and demise of the Paleogene Central Tibetan Valley[J]. Science Advances, 2022, 8(8): eabj0944. |
[110] | HE S, DING L, XIONG Z, et al. A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet[J]. Science Bulletin, 2022, 67(13): 1391-1400. |
[111] |
MIAO Y, FANG X, SUN J, et al. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau[J]. Science, 2022, 378(6624): 1074-1079.
DOI PMID |
[112] | MOHR C H, MANGA M, HELLE G, et al. Trees talk tremor—Wood anatomy and 13C content reveal contrasting tree-growth responses to earthquakes[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(8): e2021JG006385. |
[113] | GAO S, LIANG E, LIU R, et al. Shifts of forest resilience after seismic disturbances in tectonically active regions[J]. Nature Geoscience, 2024, 17(2): 189-196. |
[114] | ZAN J, LOUYS J, DENNELL R, et al. Mid-Pleistocene aridity and landscape shifts promoted Palearctic hominin dispersals[J]. Nature Communications, 2024, 15(1): 10279. |
[115] | TAPPONNIER P, MOLNAR P. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 1977, 82(20): 2905-2930. |
[116] | 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学D辑: 地球科学, 2002, 32(12): 1020-1030. |
[117] | 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学D辑: 地球科学, 2003, 33(B04): 12-20. |
[118] | 张国民, 马宏生, 王辉, 等. 中国大陆活动地块与强震活动关系[J]. 中国科学D辑: 地球科学, 2004, 34(7): 591-599. |
[119] | GELLER R J. Earthquake prediction: a critical review[J]. Geophysical Journal International, 1997, 131(3): 425-450. |
[120] | 马瑾. 从“是否存在有助于预报的地震先兆”说起[J]. 科学通报, 2016, 61(增刊1): 409-414. |
[121] | 刘杰, 张国民. “是否存在有助于预报的地震前兆”的讨论[J]. 科学通报, 2016, 61(18): 1988-1994. |
[122] | 刘静, 邵志刚. 高频GPS观测发现可靠的大地震前兆信号?[J]. 科学通报, 2023, 68(33): 4442-4444. |
[123] | 崔鹏, 苏凤环, 邹强, 等. 青藏高原山地灾害和气象灾害风险评估与减灾对策[J]. 科学通报, 2015 (32): 3067-3077. |
[124] | CUI P, JIA Y, SU F H, et al. Natural hazards in Tibetan Plateau and key issue for feature research[J]. Bulletin of Chinese Academy of Sciences (Chinese Version), 2017, 32(9): 985-992. |
[125] | 彭建兵, 张永双, 黄达, 等. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应[J]. 地球科学, 2023, 48(8): 3099-3114. |
[126] | MIZRAHI S. Cascading disasters, information cascades and continuous time models of domino effects[J]. International Journal of Disaster Risk Reduction, 2020, 49: 101672. |
[127] | YIN Y, LI B, GAO Y, et al. Geostructures, dynamics and risk mitigation of high-altitude and long-runout rockslides[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(1): 66-101. |
[128] | FAN X, Dufresne A, Subramanian S S, et al. The formation and impact of landslide dams-State of the art[J]. Earth-Science Reviews, 2020, 203: 103116. |
[129] | 杜朋, 李琳琳, 王大伟, 等. 全球地震-滑坡-海啸灾害链数据库的建立及链生机制分析[J]. 科学通报, 2025, 70(4/5): 567-584. |
[130] | PESCAROLI G, Alexander D. Critical infrastructure, panarchies and the vulnerability paths of cascading disasters[J]. Natural Hazards, 2016, 82: 175-192. |
[131] | SMITH K, Fearnley C J, Dixon D, et al. Environmental hazards: assessing risk and reducing disaster[M]. London: Routledge, 2023. |
[132] | DANIELL J, Wenzel F, Schaefer A. The economic costs of natural disasters globally from 1900—2015:historical and normalised floods, storms, earthquakes, volcanoes, bushfires, drought and other disasters[C]//EGU general assembly conference abstracts. 2016: EPSC 2016-1899. |
[133] | TIERNEY K. The social roots of risk: Producing disasters, promoting resilience[M]. Stanford: Stanford University Press, 2014. |
[134] | BRÜCKNER M. Population size and civil conflict risk: Is there a causal link?[J]. The Economic Journal, 2010, 120(544): 535-550. |
[135] | SAHOO S K, KAVASI N, SORIMACHI A, et al. Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant[J]. Scientific Reports, 2016, 6(1): 23925. |
[136] | IRISAWA A. The 2011 Great East Japan earthquake: a report of a regional hospital in Fukushima Prefecture coping with the Fukushima nuclear disaster[J]. Digestive Endoscopy, 2012, 24: 3-7. |
[137] | CHERNOV D, SORNETTE D. Man-made catastrophes and risk information concealment[M]. Heidelberg, New York, Dordrecht, London: Springer, 2016. |
[138] | CUTTER S L, BORUFF B J, SHIRLEY W L. Social vulnerability to environmental hazards[M]//Hazards vulnerability and environmental justice. London: Routledge, 2012: 143-160. |
[139] | ALDRICH D P. Building resilience: Social capital in post-disaster recovery[M]. Chicago: University of Chicago Press, 2012. |
[140] | PELLING M, DILL K. Disaster politics: tipping points for change in the adaptation of sociopolitical regimes[J]. Progress in Human Geography, 2010, 34(1): 21-37. |
[141] | IPCC. Climate Change 2021:the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2021. |
[142] | ŠAKIĆTROGRLIĆ R, DONOVAN A, MALAMUD B D. Invited perspectives: views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals[J]. Natural Hazards and Earth System Sciences, 2022, 22(8): 2771-2790. |
[1] | 王铁军, 晏智锋, 宋照亮, 周浩然, 孙新超, 陈伟, 李攀, 刘丛强. 表层地球系统科学视角下的生态系统科学研究[J]. 地学前缘, 2025, 32(3): 78-91. |
[2] | 李思亮, 王欣楚, 戚羽霖, 钟君, 丁虎, 文航, 刘学炎, 郎赟超, 易沅壁, 王宝利, 刘丛强. 流域生物地球化学循环与表层地球系统层圈相互作用[J]. 地学前缘, 2025, 32(3): 62-77. |
[3] | 桑丽源, 郭威, 张静文, 刘艺轩, 章同坤, 张竹卿, 岳展鹏, 李丹阳, 张润, 张旭, 唐伟平, 刘展航, 丁虎, 郎赟超, 刘丛强. 城市地球关键带水文过程与水环境和水资源研究:现状、挑战与未来[J]. 地学前缘, 2025, 32(3): 445-461. |
[4] | 王欣楚, 刘丛强, 李思亮, 徐胜, 丁虎, 庞智勇, 帅燕华. 甲烷团簇同位素研究进展及其在表层地球系统碳循环研究中的应用[J]. 地学前缘, 2023, 30(2): 463-478. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||