地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 78-91.DOI: 10.13745/j.esf.sf.2025.3.10
• 全球变化、圈层相互作用研究与地球系统科学 • 上一篇 下一篇
王铁军1,2(), 晏智锋1,2, 宋照亮1,2, 周浩然1,2, 孙新超1,2, 陈伟1,2, 李攀1,2, 刘丛强1,2,*(
)
收稿日期:
2025-02-02
修回日期:
2025-02-23
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*刘丛强(1955—),男,中国科学院院士,美国地球化学学会和欧洲地球化学学会会士,爱丁堡皇家学会外籍院士,致力于表层地球系统科学研究。E-mail:作者简介:
王铁军(1978—),男,教授,博士生导师,主要从事陆表过程和生态水文学方面的研究。E-mail:tiejun.wang@tju.edu.cn
基金资助:
WANG Tiejun1,2(), AN Zhifeng1,2, SONG Zhaoliang1,2, ZHOU Haoran1,2, SUN Xinchao1,2, CHEN Wei1,2, LI Pan1,2, LIU Cong-Qiang1,2,*(
)
Received:
2025-02-02
Revised:
2025-02-23
Online:
2025-03-25
Published:
2025-04-20
摘要:
表层地球系统科学强调地球圈层间相互作用的整体性、动态平衡和互馈机制,为研究生态系统的结构、功能及其演变规律以及人类活动的影响提供了新的理论框架和方法体系。本文从表层地球系统科学的视角出发,探讨了生态系统科学在相关研究领域中的地位和作用,并梳理了当前的热点议题和面临的挑战。首先,讨论了表层地球系统科学与生态系统科学的关系:前者关注地球表层各圈层之间的相互作用及其整体行为,后者通过研究生态系统能量和物质流动,探究与其他圈层之间的协同演变机制。其次,探讨了表层地球系统科学对生态系统科学研究的理论革新,特别是多圈层耦合框架和复杂系统理论的引入,推动了生态系统科学从局部到全球、从静态到动态的研究范式转变。结合从局部观测到全球整合的发展趋势,本文还讨论了系统观测与数据集成、跨尺度建模技术、新兴技术和指标等在生态系统科学研究中的重要应用。从多圈层相互作用的角度出发,讨论了全球变化背景下生态系统与其他地表圈层间的关联关系,以及对全球变化的响应与适应机制等问题,表明通过整合不同圈层间的互作机制,可以为研究生态系统稳定性和服务功能等提供重要的科学基础。最后,面对人类活动加剧的全球变化,本文指出生态系统科学需要进一步整合遥感技术、大数据分析和人工智能等新兴技术,以深刻揭示人类世背景下生态系统的演变规律以及非线性响应机制和临界阈值等问题,为全球可持续发展提供科学依据和决策支持。
中图分类号:
王铁军, 晏智锋, 宋照亮, 周浩然, 孙新超, 陈伟, 李攀, 刘丛强. 表层地球系统科学视角下的生态系统科学研究[J]. 地学前缘, 2025, 32(3): 78-91.
WANG Tiejun, AN Zhifeng, SONG Zhaoliang, ZHOU Haoran, SUN Xinchao, CHEN Wei, LI Pan, LIU Cong-Qiang. Ecosystem science research from the perspective of surface Earth system science[J]. Earth Science Frontiers, 2025, 32(3): 78-91.
[1] | EARTH SYSTEM SCIENCES COMMITTEE. Earth system science: overview: a program for global change[R]. Washington D C: National Academies Press, 1986. |
[2] |
孙枢. 对我国全球变化与地球系统科学研究的若干思考[J]. 地球科学进展, 2005, 20(1): 6-10.
DOI |
[3] | 刘东生. 走向“地球系统”的科学: 地球系统科学的学科雏形及我们的机遇[J]. 中国科学基金, 2006, 20: 266-271. |
[4] | STEFFEN W, RICHARDSON K, ROCKSTRÖM J, et al. The emergence and evolution of earth system science[J]. Nature Reviews Earth & Environment, 2020, 1: 54-63. |
[5] |
REID W V, BRÉCHIGNAC C, TSEH LEE Y. Earth system research priorities[J]. Science, 2009, 325(5938): 245.
DOI PMID |
[6] | 郑永飞, 郭正堂, 焦念志, 等. 地球系统科学研究态势[J]. 中国科学: 地球科学, 2024, 54(10): 3065-3090. |
[7] | BAATZ R, HENDRICKS FRANSSEN H J, EUSKIRCHEN E, et al. Reanalysis in earth system science: toward terrestrial ecosystem reanalysis[J]. Reviews of Geophysics, 2021, 59(3): 1-39. |
[8] |
FOLEY J A, DEFRIES R, ASNER G P, et al. Global consequences of land use[J]. Science, 2005, 309(5734): 570-574.
DOI PMID |
[9] | STEFFEN W, RICHARDSON K, ROCKSTRÖM J, et al. Planetary boundaries: guiding human development on a changing planet[J]. Science, 2015, 347(6223): 1259855. |
[10] | INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Climate Change 2021:The physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2023. https://doi.org/10.1017/9781009157896 |
[11] | ROCKSTRÖM J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263): 472-475. |
[12] | 傅伯杰, 牛栋, 于贵瑞. 生态系统观测研究网络在地球系统科学中的作用[J]. 地理科学进展, 2007, 26(1): 1-16. |
[13] | PAN X, CHEN D, PAN B, et al. Evolution and prospects of earth system models: challenges and opportunities[J]. Earth-Science Reviews, 2025, 260: 104986. |
[14] | GIDDEN M J, RIAHI K, SMITH S J, et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century[J]. Geoscientific Model Development, 2019, 12(4): 1443-1475. |
[15] | ALBERTI M, MARZLUFF J M, SHULENBERGER E, et al. Integrating humans into ecology: opportunities and challenges for studying urban ecosystems[J]. BioScience, 2003, 53(12): 1169-1179. |
[16] | REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566: 195-204. |
[17] | Yu G, Piao S, Zhang Y, et al. Moving toward a new era of ecosystem science[J]. Geography and Sustainability, 2021, 2(3): 151-162. |
[18] | 郎赟超, 丁虎, 韩晓昆, 等. 地球系统科学观下的滨海湿地生态系统保护和恢复科学[J]. 中国科学基金, 2022, 36(3): 376-382. |
[19] | 于贵瑞, 高扬, 王秋凤, 等. 陆地生态系统碳氮水循环的关键耦合过程及其生物调控机制探讨[J]. 中国生态农业学报, 2013, 21(1): 1-13. |
[20] | GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. |
[21] | ELLISON D, MORRIS C E, LOCATELLI B, et al. Trees, forests and water: cool insights for a hot world[J]. Global Environmental Change, 2017, 43: 51-61. |
[22] | DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1): 1-8. |
[23] |
ALONGI D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science, 2014, 6: 195-219.
DOI PMID |
[24] | TAN L, GE Z, ZHOU X, et al. Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: a global meta‐analysis[J]. Global Change Biology, 2020, 26(3): 1638-1653. |
[25] |
于贵瑞, 王秋凤. 生态学的科学概念及其演变与当代生态学学科体系之商榷[J]. 应用生态学报, 2021, 32(1): 1-15.
DOI |
[26] | BONAN G B, DONEY S C. Climate, ecosystems, and planetary futures: the challenge to predict life in earth system models[J]. Science, 2018, 359(6375): eaam8328. |
[27] | BALDOCCHI D, FALGE E, GU L, et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society, 2001, 82: 2415-2434. |
[28] | BRANTLEY S L, MCDOWELL W H, DIETRICH W E, et al. Designing a network of critical zone observatories to explore the living skin of the terrestrial earth[J]. Earth Surface Dynamics, 2017, 5(4): 841-860. |
[29] | KAWAMIYA M, HAJIMA T, TACHIIRI K, et al. Two decades of earth system modeling with an emphasis on model for interdisciplinary research on climate (MIROC)[J]. Progress in Earth and Planetary Science, 2020, 7: 64. |
[30] | COSTANZA R, HANNON B, LIMBURG K, et al. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387: 253-260. |
[31] | DANABASOGLU G, LAMARQUE J F, BACMEISTER J, et al. The community earth system model version 2 (CESM2)[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(2): e2019MS001916. |
[32] | FRIEDLINGSTEIN P, JONES M W, O’SULLIVAN M, et al. Global carbon budget 2021[J]. Earth System Science Data, 2022, 14(4): 1917-2005. |
[33] |
HUANG W, XIA X. Element cycling with micro(nano)plastics[J]. Science, 2024, 385: 933-935.
DOI PMID |
[34] | SCHEFFER M, CARPENTER S, FOLEY J A, et al. Catastrophic Shifts in Ecosystems[J]. Nature, 2001, 413(6856): 591-596. |
[35] | LENTON T M, HELD H, KRIEGLER E, et al. Tipping elements in the earth’s climate system[J]. Nature Reviews Earth & Environment, 2022, 3(1): 25-42. |
[36] | LOVEJOY T E, NOBRE C. Amazon tipping point[J]. Science Advances, 2018, 4(2): eaat2340. |
[37] | BROVKIN V, BROOK E, WILLIAMS J W, et al. Past abrupt changes, tipping points and cascading impacts in the earth system[J]. Nature Geoscience, 2021, 14: 550-558. |
[38] | HUGHES T P, CARPENTER S, ROCKSTRÖM J, et al. Multiscale regime shifts and planetary boundaries[J]. Trends in Ecology & Evolution, 2013, 28(7), 389-395. |
[39] | BARNOSKY A D, HADLY E A, BASCOMPTE J, et al. Approaching a state shift in earth’s biosphere[J]. Nature, 2012, 486(7401): 52-58. |
[40] | DEARING J A, WANG R, ZHANG K, et al. Safe and just operating spaces for regional social-ecological systems[J]. Global Environmental Change, 2014, 28: 227-238. |
[41] | 于贵瑞, 何洪林, 周玉科. 大数据背景下的生态系统观测与研究[J]. 中国科学院院刊, 2018, 33: 832-837. |
[42] | 牛书丽, 王松, 汪金松, 等. 大数据时代的整合生态学研究: 从观测到预测[J]. 中国科学: 地球科学, 2020, 50(10): 1323-1338. |
[43] |
RUNGE J, BATHIANY S, BOLLT E, et al. Inferring causation from time series in earth system sciences[J]. Nature Communications, 2019, 10(1): 2553.
DOI PMID |
[44] | HOU P, JIANG W, LI W, et al. Ecosystem observation, simulation and assessment: progress and challenges[J]. Diversity, 2023, 15(2): 255. |
[45] | BONAN G B, LUCIER O, COEN D R, et al. Reimagining earth in the earth system[J]. Journal of Advances in Modeling Earth Systems, 2024, 16(8): e2023MS004017. |
[46] |
于贵瑞, 张黎, 何洪林. 大尺度陆地生态系统动态变化与空间变异的过程模型及模拟系统[J]. 应用生态学报, 2021, 32(8): 2653-2665.
DOI |
[47] | SCHIMEL J. The democracy of dirt: relating micro-scale dynamics to macro-scale ecosystem function[M]//HURST C J. Microbes:the foundation stone of the biosphere. Cham: Springer, 2021: 89-102. |
[48] |
YAN Z, BOND-LAMBERTY B, TODD-BROWN K E, et al. A moisture function of soil heterotrophic respiration that incorporates microscale processes[J]. Nature Communications, 2018, 9: 2562.
DOI PMID |
[49] |
范丽军, 符淙斌, 陈德亮. 统计降尺度法对未来区域气候变化情景预估的研究进展[J]. 地球科学进展, 2005, 20(3): 320-329.
DOI |
[50] |
LI X, ZHAO N, JIN R, et al. Internet of things to network smart devices for ecosystem monitoring[J]. Science Bulletin, 2019, 64(17): 1234-1245.
DOI PMID |
[51] | BERGER M, MORENO J, JOHANNESSEN J A, et al. ESA’s sentinel missions in support of earth system science[J]. Remote Sensing of Environment, 2012, 120: 84-90. |
[52] |
TABERLET P, COISSAC E, HAJIBABAEI M, et al. Environmental DNA[J]. Molecular Ecology, 2012, 21(8): 1789-1799.
DOI PMID |
[53] | CILLEROS K, VALENTINI A, ALLARD L, et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): a test with Guianese freshwater fishes[J]. Molecular Ecology Resources, 2023, 19(1): 27-46. |
[54] | JERDE C L, MAHON A R, CHADDERTON W L, et al. “Sight-unseen” detection of rare aquatic species using environmental DNA[J]. Conservation Letters, 2011, 4(2): 150-157. |
[55] | 吴峰, 温佩颖, 唐志珍. 东北虎豹国家公园植物DNA微条形码数据库[J]. 北京师范大学学报(自然科学版), 2023, 59(3): 623-628. |
[56] | GOLD Z, KELLY R P, SHELTON A O, et al. Archived DNA reveals marine heatwave-associated shifts in fish assemblages[J]. Environmental DNA, 2023, 6(1): e400. |
[57] | HUA L, LI L, CHEN W, et al. Climate effects of ecosystem change converge according to the ratio of the daytime to daily vapor flux[J]. The Innovation, 2025, 6(1): 100733. |
[58] | GUO X, ZHANG Y, ZHA T, et al. Biophysical controls of dew formation in a typical cropland and its relationship to drought in the North China Plain[J]. Journal of Hydrology, 2023, 617: 128945. |
[59] | WANKMULLER F J P, DELVAL L, LEHMANN P, et al. Global influence of soil texture on ecosystem water limitation[J]. Nature, 2024: 1-8. |
[60] | JIANG H, SU J, REN Z, et al. Dual function of overexpressing plasma membrane H+-ATPase in balancing carbon-water use[J]. Science Advances, 2024, 10(45): eadp8017. |
[61] | LIAN X, PIAO S, HUNTINGFOR C, et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations[J]. Nature Climate Change, 2018, 8: 640-646. |
[62] | 贾志军, 宋长春. 湿地生态系统CO2净交换、水汽通量及二者关系浅析[J]. 生态与农村环境学报, 2006, 22(2): 75-79. |
[63] |
席振华, 王玉阳, 马耀明, 等. 珠峰北坡高寒灌丛草原生长季碳、水通量特征分析[J]. 高原气象, 2023, 42(4): 887-898.
DOI |
[64] | 耿洁, 王传娟, 张彦群, 等. 华北平原秸秆覆盖下农田水热通量动态变化及其对气象因子的响应[J]. 中国农业气象, 2024, 45(8): 822-834. |
[65] | LOVELOCK J E, MARGULIS L. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis[J]. Tellus, 1974, 26(1/2): 2-10. |
[66] | CHARLSON R J, LOVELOCK J E, ANDREAE M O, et al. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate[J]. Nature, 1987, 326(6114): 655-661. |
[67] | WATSON A J, LOVELOCK J E. Biological homeostasis of the global environment: the parable of Daisy world[J]. Tellus B: Chemical and Physical Meteorology, 1983, 35(4): 284-289. |
[68] |
BEERLING D J. Leaf evolution: gases, genes and geochemistry[J]. Annals of Botany, 2005, 96(3): 345-352.
DOI PMID |
[69] | LENTON T M, DAHL T W, DAINES S J, et al. Earliest land plants created modern levels of atmospheric oxygen[J]. Proceedings of the National Academy of Sciences, 2016, 113(35): 9704-9709. |
[70] | JUDSON O P. The energy expansions of evolution[J]. Nature Ecology & Evolution, 2017, 1(6): 0138. |
[71] |
BELCHER C M, MILLS B J W, VITALI R, et al. The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen[J]. Nature Communications, 2021, 12(1): 503.
DOI PMID |
[72] |
QUIRK J, BEERLING D J, BANWART S A, et al. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering[J]. Biology Letters, 2012, 8(6): 1006-1011.
DOI PMID |
[73] | PAGANI M, CALDEIRA K, BERNER R, et al. The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years[J]. Nature, 2009, 460(7251): 85-88. |
[74] | KEELEY J E, RUNDEL P W. Fire and the Miocene expansion of C4 grasslands[J]. Ecology Letters, 2005, 8(7): 683-690. |
[75] | BEERLING D J, TAYLOR L L, BRADSHAW C D C, et al. Ecosystem CO2 starvation and terrestrial silicate weathering: mechanisms and global-scale quantification during the late Miocene[J]. Journal of Ecology, 2012, 100(1): 31-41. |
[76] | PAUSAS J G, BOND W J. On the three major recycling pathways in terrestrial ecosystems[J]. Trends In Ecology & Evolution, 2020, 35(9): 767-775. |
[77] | SHELDON N D, TABOR N J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols[J]. Earth-Science Reviews, 2009, 95(1/2): 1-52. |
[78] | MORRIS J L, PUTTICK M N, CLARK J W, et al. The timescale of early land plant evolution[J]. Proceedings of the National Academy of Sciences, 2018, 115(10): E2274-E2283. |
[79] | WAN Z, ALGEO T J, GENSEL P G, et al. Environmental influences on the stable carbon isotopic composition of Devonian and Early Carboniferous land plants[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 109100. |
[80] | SVENNING J C, EISERHARDT W L, NORMAND S, et al. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems[J]. Annual Review of Ecology, Evolution, and Systematics, 2015, 46(1): 551-572. |
[81] |
周卫健, 赵雪, 陈宁, 等. 中国人类世科学研究新进展[J]. 地球科学进展, 2024, 39(1): 1-11.
DOI |
[82] | SHIVANNA K R. Climate change and its impact on biodiversity and human welfare[J]. Proceedings of the Indian National Science Academy, 2022, 88(2): 160-171. |
[83] | SOMERO G N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers”[J]. Journal of Experimental Biology, 2010, 213(6): 912-920. |
[84] | SUNDQVIST M K, SANDERS N J, WARDLE D A. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change[J]. Annual Review of Ecology, Evolution, and Systematics, 2013, 44(1): 261-280. |
[85] | SEDDON A W R, MACIAS-FAURIA M, LONG P R, et al. Sensitivity of global terrestrial ecosystems to climate variability[J]. Nature, 2016, 531(7593): 229-232. |
[86] | ALLISON S D, WALLENSTEIN M D, BRADFORD M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010, 3(5): 336-340. |
[87] |
PALUMBI S R, BARSHIS D J, TRAYLOR-KNOWLES N, et al. Mechanisms of reef coral resistance to future climate change[J]. Science, 2014, 344(6186): 895-898.
DOI PMID |
[88] | SMITH N G, MALYSHEV S L, SHEVLIAKOVA E, et al. Foliar temperature acclimation reduces simulated carbon sensitivity to climate[J]. Nature Climate Change, 2016, 6(4): 407-411. |
[89] | RYU T, VEILLEUX H D, DONELSON J M, et al. The epigenetic landscape of transgenerational acclimation to ocean warming[J]. Nature Climate Change, 2018, 8(6): 504-509. |
[90] | CHALLINOR A J, WATSON J, LOBELL D B, et al. A meta-analysis of crop yield under climate change and adaptation[J]. Nature Climate Change, 2014, 4(4): 287-291. |
[91] | HOFFMANN A A, SGRÒ C M. Climate change and evolutionary adaptation[J]. Nature, 2011, 470(7335): 479-485. |
[92] | LI Y. Climate feedback from plant physiological responses to increasing atmospheric CO2 in earth system models[J]. New Phytologist, 2024, 244(6): 2176-2182. |
[93] | PIAO S, WANG X, PARK T, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2020, 1(1): 14-27. |
[94] | KEENAN T F, HOLLINGER D Y, BOHRER G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499(7458): 324-327. |
[95] | SPERRY J S, VENTURAS M D, TODD H N, et al. The impact of rising CO2 and acclimation on the response of US forests to global warming[J]. Proceedings of the National Academy of Sciences, 2019, 116(51): 25734-25744. |
[96] | WANG S, ZHANG Y, JU W, et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis[J]. Science, 2020, 370(6522): 1295-1300. |
[97] | LUO X, ZHOU H, SATRIAWAN T W, et al. Mapping the global distribution of C4 vegetation using observations and optimality theory[J]. Nature Communications, 2024, 15(1): 1219. |
[98] | MAO K S, WANG Y, LIU J Q. Evolutionary origin of species diversity on the Qinghai—Tibet plateau[J]. Journal of Systematics and Evolution, 2021, 59: 1142-1158. |
[99] |
HOORN C, WESSELINGH F P, TERSTEEGE H, et al. Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity[J]. Science, 2010, 330: 927-931.
DOI PMID |
[100] | SUN Y, LIANG Y, LIU H, et al. Mid-Miocene sea level altitude of the Qaidam basin, northern Tibetan plateau[J]. Commun Earth Environ, 2023, 4: 1-10. |
[101] |
LEPRIEUR F, DESCOMBES P, GABORIAU T, et al. Plate tectonics drive tropical reef biodiversity dynamics[J]. Nature Communications, 2016, 7: 11461.
DOI PMID |
[102] |
ANTONELLI A, KISSLING W D, FLANTUA S G A, et al. Geological and climatic influences on mountain biodiversity[J]. Nature Geoscience, 2018, 11: 718-725.
DOI |
[103] |
MIAO Y, FANG X, SUN J, et al. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet plateau[J]. Science, 2022, 378: 1074-1079.
DOI PMID |
[104] | DAVIES N S, GIBLING M R. Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants[J]. Earth-Science Reviews, 2010, 98: 171-200. |
[105] | HOLLAND H D. The oxygenation of the atmosphere and oceans[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361: 903-915. |
[106] | CANFIELD D E. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396: 450-453. |
[107] | MADIGAN M T, BENDER K S, SATTLEY W M. Brock biology of microorganisms[M]. London: Pearson, 2009. |
[108] | XIONG L, LIU X, VINCI G, et al. Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2 enrichment and warming of canopy air[J]. Soil Biology and Biochemistry, 2019, 137: 107544. |
[109] |
DUNBAR J, EICHORST S A, GALLEGOS-GRAVES L V, et al. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide[J]. Environmental Microbiology, 2012, 14: 1145-1158.
DOI PMID |
[110] | FALKOWSKI P G, FENCHEL T, DELONG E F. The microbial engines that drive Earth’s biogeochemical cycles[J]. Science, 2008, 320: 1034-1039. |
[111] |
FALKOWSKI P G, BARBER R T, SMETACEK V. Biogeochemical controls and feedbacks on ocean primary production[J]. Science, 1998, 281: 200-206.
PMID |
[112] |
PEÑUELAS J, STAUDT M. BVOCs and global change[J]. Trends in Plant Science, 2010, 15: 133-144.
DOI PMID |
[113] | INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Climate Change 2014: Mitigation of climate change: working Group III contribution to the IPCC fifth assessment report[R]. Cambridge: Cambridge University Press, 2015. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf. |
[114] |
傅伯杰. 地理学: 从知识、科学到决策[J]. 地理学报, 2017, 72: 1923-1932.
DOI |
[115] | TILMAN D, CASSMAN K G, MATSON P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418: 671-677. |
[116] |
BRADSHAW C J A. Little left to lose: deforestation and forest degradation in Australia since European colonization[J]. Journal of Plant Ecology, 2012, 5: 109-120.
DOI |
[117] | INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Climate Change 2007:the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2007. https://www.ipcc.ch/site/assets/uploads/2018/05/ar4_wg1_full_report-1.pdf |
[118] | ALLOWAY B J. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability[M]. Dordrecht: Springer, 2013. |
[119] | BHOWMIK A K, PADMANABAN R, CABRAL P, et al. Global mangrove deforestation and its interacting social-ecological drivers: a systematic review and synthesis[J]. Sustainability, 2022, 14: 4433. |
[120] | ORTH R J, LEFCHECK J S, MCGLATHERY K S, et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services[J]. Science Advances, 2020, 6: eabc6434. |
[121] | MITSCH W J, BERNAL B, NAHLIK A M, et al. Wetlands, carbon, and climate change[J]. Landscape Ecology, 2013, 28: 583-597. |
[122] | LAL R. Soil conservation and ecosystem services[J]. International Soil and Water Conservation Research, 2014, 2: 36-47. |
[123] | IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem Services[R]. Bonn: IPBES Secretariat, 2019. |
[124] | 于贵瑞, 王秋凤, 方华军. 陆地生态系统碳-氮-水耦合循环的基本科学问题、理论框架与研究方法[J]. 第四纪研究, 2014, 34(4): 683-698. |
[125] | 杨伟华, 郝倩, 夏少攀. 湖泊-流域系统硅循环及其对碳和养分循环的影响[J]. 生态学杂志, 2018, 37(3): 624-633. |
[126] | XIA S, SONG Z, FAN Y, LI Z, et al. Spatial distribution patterns and controls of bioavailable silicon in coastal wetlands of China[J]. Plant Soil, 2023, 493: 187-205. |
[127] |
韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333.
DOI |
[128] | KRAUSS K W, ZHU Z, STAGG C L. Wetland Carbon and Environmental Management[M]. New Jersey: Wiley, 2022: 33-72. |
[129] | BAUER J E, CAI W J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504: 61-70. |
[130] | KIRWAN M L, MEGONIGAL J P. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 2013, 504: 53-60. |
[131] | TÖRNQVIST T E, JANKOWSKI K L, LI Y X, et al. Tipping points of Mississippi Delta marshes due to accelerated sea-level rise[J]. Science Advances, 2020, 6: eaaz5512. |
[132] | OSLAND M J, CHIVOIU B, ENWRIGHT N M, et al. Migration and transformation of coastal wetlands in response to rising seas[J]. Science Advances, 2022, 8: eabo5174. |
[133] | WANG L, ZHAO M, WEI S, et al. Inundation depth controls leaf photosynthetic capacity by regulating leaf area and N content in an estuarine wetland[J]. Plant Soil, 2024, 496: 375-390. |
[134] | 曹磊, 宋金明, 李学刚, 等. 中国滨海盐沼湿地碳收支与碳循环过程研究进展[J]. 生态学报, 2013, 33: 5141-5152. |
[135] | LIU Q, LIU J, LIU H, et al. Vegetation dynamics under water-level fluctuations: implications for wetland restoration[J]. Journal of Hydrology, 2020, 581: 24418. |
[136] | HAO Q, SONG Z, ZHANG X, et al. Organic blue carbon sequestration in vegetated coastal wetlands: processes and influencing factors[J]. Earth-Science Reviews, 2024, 255: 104853. |
[137] | DAILY G C, MATSON, P A. Ecosystem services: from theory to implementation[J]. Proceedings of the National Academy of Sciences, 2008, 105(28): 9455-9456. |
[138] | 李双成, 刘金龙, 张才玉, 等. 生态系统服务研究动态及地理学研究范式[J]. 地理学报, 2011, 66(12): 1618-1630. |
[139] | DE ARAUJO BARBOSA C C, ATKINSON P M, DEARING J A. Remote sensing of ecosystem services: a systematic review[J]. Ecological Indicators, 2015, 52: 430-443. |
[140] | ADHIKARI K, HARTEMINK A E. Linking soils to ecosystem services: a global review[J]. Geoderma, 2016, 262: 101-111. |
[141] | ANDERSEN T, CARSTENSEN J, HERNÁNDEZ-GARCÍA E, et al. Ecological thresholds and regime shifts: approaches to identification[J]. Trends in Ecology & Evolution, 2009, 24(1): 49-57. |
[1] | 傅平青, 胡伟, 赵曦, 徐占杰, 丁士元, 吴礼彬, 邓君俊, 姜哲, 李晓东, 朱佳雷, 刘丛强. 地-气界面科学与全球变化研究[J]. 地学前缘, 2025, 32(3): 92-104. |
[2] | 李思亮, 王欣楚, 戚羽霖, 钟君, 丁虎, 文航, 刘学炎, 郎赟超, 易沅壁, 王宝利, 刘丛强. 流域生物地球化学循环与表层地球系统层圈相互作用[J]. 地学前缘, 2025, 32(3): 62-77. |
[3] | 陈喜, 董建志, 王礼春, 张永根, 王学静, 狄崇利, 高满, 刘丛强. 全球变化下生态水文学发展与展望[J]. 地学前缘, 2025, 32(3): 52-61. |
[4] | 崔灏, 韦刚健. 青藏高原周缘始新世—渐新世气候转换期风化演变及其对全球及区域气候环境变化的响应[J]. 地学前缘, 2025, 32(3): 274-287. |
[5] | 肖昀廷, 蔡晨康, 黄亦心, 朱佳雷. 海表温度日变化特征对海陆风模拟的影响研究[J]. 地学前缘, 2025, 32(3): 218-230. |
[6] | 陈玖斌, 郑旺, 刘羿, 孙若愚, 袁玮, 孟梅, 蔡虹明, 刘丛强. 同位素地球化学与地球系统圈层相互作用和全球变化研究[J]. 地学前缘, 2025, 32(3): 137-155. |
[7] | 刘丛强. 全球变化、层圈相互作用研究与地球系统科学[J]. 地学前缘, 2025, 32(3): 1-6. |
[8] | 刘丛强, 李思亮, 刘学炎, 王宝利, 郎赟超, 丁虎, 郝丽萍, 张琼予. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466. |
[9] | 谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕. 小小地质微生物演绎跨圈层的相互作用[J]. 地学前缘, 2024, 31(1): 446-454. |
[10] | 刘志飞, 陈建芳, 石学法. 深海沉积与全球变化研究的前缘与挑战[J]. 地学前缘, 2022, 29(4): 1-9. |
[11] | 向武, Jiasong Fang, 万翔, 贺灵, 孙兴庭, 闭向阳. 全球变化背景下北方泥炭地释放溶解有机碳的驱动机制[J]. 地学前缘, 2011, 18(6): 72-78. |
[12] | 杨忠芳, 夏学齐, 余涛, 侯青叶, 冯海艳. 内蒙古中北部土壤碳库构成及其影响因素[J]. 地学前缘, 2011, 18(6): 1-10. |
[13] | 刘丛强 郎赟超 李思亮 朴何春 涂成龙 刘涛泽 张伟 朱书法. 喀斯特生态系统生物地球化学过程与物质循环研究:重要性、现状与趋势[J]. 地学前缘, 2009, 16(6): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||