地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 62-77.DOI: 10.13745/j.esf.sf.2025.3.5
• 全球变化、圈层相互作用研究与地球系统科学 • 上一篇 下一篇
李思亮1(), 王欣楚1, 戚羽霖1, 钟君1, 丁虎1, 文航1, 刘学炎1,2, 郎赟超1, 易沅壁3, 王宝利1, 刘丛强1,*(
)
收稿日期:
2025-02-05
修回日期:
2025-02-24
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*刘丛强(1955—),男,博士,教授,博士生导师,主要从事地表地球化学和表层地球系统科学方面的研究。E-mail:作者简介:
李思亮(1978—),男,教授,博士生导师,主要从事流域生物地球化学循环和地球关键带研究。E-mail:Siliang.li@tju.edu.cn
基金资助:
LI Siliang1(), WANG Xinchu1, QI Yulin1, ZHONG Jun1, DING Hu1, WEN Hang1, LIU Xueyan1,2, LANG Yunchao1, YI Yuanbi3, WANG Baoli1, Liu Cong-Qiang1,*(
)
Received:
2025-02-05
Revised:
2025-02-24
Online:
2025-03-25
Published:
2025-04-20
摘要:
流域是表层地球系统中相对独立的单元或子系统,通过对流域系统性和综合性的研究能更深刻地理解表层地球系统层圈相互作用。流域物质循环是全球生物地球化学循环的重要组成部分,反映了表层地球系统各层圈之间的能量和物质循环状态,同时也反作用于各层圈的运行和维持。本研究综述了流域生物地球化学循环与地球层圈相互作用之间的关联机制,重点探讨了人类世以来强烈人为活动和全球气候变化对流域物质循环和生态环境的影响。首先分析了流域生物地球化学循环特征及其与全球变化的相互关联,其次剖析了流域生物地球化学循环与全球环境变化之间的互馈作用,以及人类世人为活动对流域生物地球化学循环的强烈扰动,然后解析了流域过程与全球生态系统之间的相互联系和作用机制。综合分析表明人类世以来强烈的人为活动极大地扰动/加速了地表部分物质循环,导致流域系统多个关键变量参数超过生态环境突变临界点,也极大地影响多层圈物质循环和地球系统的稳定维持。最后根据当前流域科学发展态势与挑战,提出了流域生物地球化学循环的研究前沿,通过研究范式变革、人工智能和多同位素等多学科新方法技术融合,指明了微生物等多因素驱动新机制以及构建流域动态系统模型等新方向,最终为深刻理解表层地球系统层圈作用的运行机制和人类可持续发展提供科学基础。
中图分类号:
李思亮, 王欣楚, 戚羽霖, 钟君, 丁虎, 文航, 刘学炎, 郎赟超, 易沅壁, 王宝利, 刘丛强. 流域生物地球化学循环与表层地球系统层圈相互作用[J]. 地学前缘, 2025, 32(3): 62-77.
LI Siliang, WANG Xinchu, QI Yulin, ZHONG Jun, DING Hu, WEN Hang, LIU Xueyan, LANG Yunchao, YI Yuanbi, WANG Baoli, Liu Cong-Qiang. Watershed biogeochemical cycles and multi-sphere interactions in Earth’s surface system[J]. Earth Science Frontiers, 2025, 32(3): 62-77.
图1 表层地球系统层圈相互作用及不同尺度流域生物地球化学循环关联示意图
Fig.1 The schematic diagram of surface Earth system sphere interactions and the biogeochemical cycling connections across watersheds at different scales
图2 层圈作用影响下的流域生物地球化学概念示意图(关键带示意图修改自文献[15,17])
Fig.2 The schematic diagram of watershed biogeochemical cycling under the influence of sphere interactions (the critical zone diagram modified after literature [15,17])
图3 青藏高原流域金沙江(JSR)和雅砻江(YLR)季节性流动路径变化和气候变暖对浓度-流量(C-Q)关系的影响示意图(据文献[30]修改)
Fig.3 The conceptual diagram illustrating the seasonal flow path changes of the Jinsha River (JSR) and Yalong River (YLR) on the Tibetan Plateau watersheds, and the impact of climate warming on the concentration-discharge (C-Q) relationship. Modified after [30].
图4 人为活动对流域生物地球化学循环影响示意图 红色环状代表人为扰动下的元素循环,绿色环状代表“自然(未受干扰)”的元素循环,环宽幅度代表影响程度及通量水平差异强度,不同流域受人为活动影响程度有较大不确定性。
Fig.4 Schematic representation of anthropogenic impacts on biogeochemical cycling in watersheds
图5 流域综合监测与决策系统示意图 下方流域示意图基于大语言模型(DeepSeek-DALL·E 3,2025)生成,关键提示词包括流域生物地球化学循环、关键带、人类世等。
Fig.5 Schematic diagram of the Integrated Watershed Monitoring and Decision-making System
[1] |
刘丛强, 李思亮, 刘学炎, 等. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466.
DOI |
[2] | ROCKSTRÖM J, GUPTA J, QIN D, et al. Safe and just Earth system boundaries[J]. Nature, 2023, 619(7968): 102-111. |
[3] | BROWN A. Catchment interactions[J]. Nature Climate Change, 2012, 2(7): 486. |
[4] | MARKEWITZ D, DAVIDSON E A, FIGUEIREDO R D O, et al. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed[J]. Nature, 2001, 410(6830): 802-805. |
[5] | RICHARDS C E, TZACHOR A, AVIN S, et al. Rewards, risks and responsible deployment of artificial intelligence in water systems[J]. Nature Water, 2023, 1(5): 422-432. |
[6] | 王建, 张茂恒, 白世彪. 圈层相互作用与自然地理学[J]. 地理教育, 2008(4): 4-7. |
[7] | HUGGETT R. Earth’s spheres: Conceptual and definitional debates[J]. Progress in Physical Geography: Earth and Environment, 2024, 48(5/6): 651-670. |
[8] | MUSOLFF A, FLECKENSTEIN J H, RAO P S C, et al. Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments[J]. Geophysical Research Letters, 2017, 44(9): 4143-4151. |
[9] | LOHSE K A, BROOKS P D, MCINTOSH J C, et al. Interactions between biogeochemistry and hydrologic systems[J]. Annual Review of Environment and Resources, 2009, 34: 65-96. |
[10] | LIKENS G E. Biogeochemistry, the watershed approach: some uses and limitations[J]. Marine and Freshwater Research, 2001, 52(1): 5-12. |
[11] | STEFFEN W, RICHARDSON K, ROCKSTRÖM J, et al. The emergence and evolution of Earth System Science[J]. Nature Reviews Earth & Environment, 2020, 1(1): 54-63. |
[12] | KUHN A, HECKELEI T. Anthroposphere[M]//Impacts of global change on the hydrological cycle in West and Northwest Africa. Berlin: Springer. 2010: 282-341. |
[13] | LI L, SULLIVAN P L, BENETTIN P, et al. Toward catchment hydro-biogeochemical theories[J]. WIREs Water, 2021, 8(1): e1495. |
[14] | LIU M, RAYMOND P A, LAUERWALD R, et al. Global riverine land-to-ocean carbon export constrained by observations and multi-model assessment[J]. Nature Geoscience, 2024, 17(9): 896-904. |
[15] | NAYLOR L A, DUNGAIT J A J, ZHENG Y, et al. Achieving sustainable earth futures in the anthropocene by including local communities in critical zone science[J]. Earth’s Future, 2023, 11(9): e2022EF003448. |
[16] | HUANG J, ZHANG Y, BING H, et al. Characterizing the river water quality in China: recent progress and on-going challenges[J]. Water Research, 2021, 201: 117309. |
[17] | CHOROVER J, KRETZSCHMAR R, GARCIA-PICHEL F, et al. Soil biogeochemical processes within the critical zone[J]. Elements, 2007, 3(5): 321-326. |
[18] | STEFFEN W, JÄGER J, CARSON D J, et al. Challenges of a changing Earth: proceedings of the global change open science conference, Amsterdam, Netherlands, 10-13 July 2001[C]. Berlin: Springer, 2002. |
[19] |
高扬, 于贵瑞. 流域生物地球化学循环与水文耦合过程及其调控机制[J]. 地理学报, 2018, 73(7): 1381-1393.
DOI |
[20] | MCCARTHY F M, PATTERSON R T, HEAD M J, et al. The varved succession of Crawford Lake, Milton, Ontario, Canada as a candidate global boundary stratotype section and point for the Anthropocene Series[J]. The Anthropocene Review, 2023, 10(1): 146-176. |
[21] | GALY V, PEUCKER-EHRENBRINK B, EGLINTON T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7551): 204-207. |
[22] | YANG X, PAVELSKY T M, ALLEN G H. The past and future of global river ice[J]. Nature, 2020, 577(7788): 69-73. |
[23] |
TABARI H. Climate change impact on flood and extreme precipitation increases with water availability[J]. Scientific Reports, 2020, 10(1): 13768.
DOI PMID |
[24] | KALCIC M M, MUENICH R L, BASILE S, et al. Climate change and nutrient loading in the Western Lake Erie Basin: warming can counteract a wetter future[J]. Environmental Science & Technology, 2019, 53(13): 7543-7550. |
[25] | LAUDON H, SPONSELLER R A. How landscape organization and scale shape catchment hydrology and biogeochemistry: insights from a long-term catchment study[J]. WIREs Water, 2018, 5(2): e1265. |
[26] | ZHONG J, LI S L, LIU J, et al. Climate variability controls on CO2 consumption fluxes and carbon dynamics for monsoonal rivers: evidence from Xijiang River, Southwest China[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(8): 2553-2567. |
[27] | ZHONG J, LI S L, IBARRA D E, et al. Solute production and transport processes in chinese monsoonal rivers: implications for global climate change[J]. Global Biogeochemical Cycles, 2020, 34(9): e2020GB006541. |
[28] | CHEN H, JU P, ZHU Q, et al. Carbon and nitrogen cycling on the Qinghai-Tibetan Plateau[J]. Nature Reviews Earth & Environment, 2022, 3(10): 701-716. |
[29] | XU S, BUFE A, LI S L, et al. Erosional modulation of the balance between alkalinity and acid generation from rock weathering[J]. Geochimica et Cosmochimica Acta, 2024, 368: 126-146. |
[30] | XU S, LI S L, BUFE A, et al. Escalating carbon export from high-elevation rivers in a warming climate[J]. Environmental Science & Technology, 2024, 58(16): 7032-7044. |
[31] | RAYMOND P A, OH N H, TURNER R E, et al. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River[J]. Nature, 2008, 451(7177): 449-452. |
[32] | ROSENTRETER J A, LARUELLE G G, BANGE H W, et al. Coastal vegetation and estuaries are collectively a greenhouse gas sink[J]. Nature Climate Change, 2023, 13: 579-587. |
[33] | ROCHER-ROS G, STANLEY E H, LOKEN L C, et al. Global methane emissions from rivers and streams[J]. Nature, 2023. |
[34] | GREAVER T L, CLARK C M, COMPTON J E, et al. Key ecological responses to nitrogen are altered by climate change[J]. Nature Climate Change, 2016, 6(9): 836-843. |
[35] | EVANS C D, GOODALE C L, CAPORN S J M, et al. Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments[J]. Biogeochemistry, 2008, 91(1): 13-35. |
[36] | FISCHER W W, HEMP J, JOHNSON J E. Manganese and the evolution of photosynthesis[J]. Origins of Life and Evolution of Biospheres, 2015, 45(3): 351-357. |
[37] | MORENO-JIMÉNEZ E, MAESTRE F T, FLAGMEIER M, et al. Soils in warmer and less developed countries have less micronutrients globally[J]. Global Change Biology, 2023, 29(2): 522-532. |
[38] |
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
DOI PMID |
[39] | HEIMANN M. Charles david keeling 1928-2005[J]. Nature, 2005, 437(7057): 331. |
[40] | REGNIER P, FRIEDLINGSTEIN P, CIAIS P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6(8): 597-607. |
[41] | REGNIER P, RESPLANDY L, NAJJAR R G, et al. The land-to-ocean loops of the global carbon cycle[J]. Nature, 2022, 603(7901): 401-410. |
[42] | XU W, WANG G, LIU S, et al. Globally elevated greenhouse gas emissions from polluted urban rivers[J]. Nature Sustainability, 2024, 7(7): 938-948. |
[43] | ZHANG W, LI H, XIAO Q, et al. Urban rivers are hotspots of riverine greenhouse gas (N2O, CH4, CO2) emissions in the mixed-landscape chaohu lake basin[J]. Water Research, 2021, 189: 116624. |
[44] | VELTHUIS M, VERAART A J. Temperature sensitivity of freshwater denitrification and N2O emission: a meta-analysis[J]. Global Biogeochemical Cycles, 2022, 36(6): e2022GB007339. |
[45] | YVON-DUROCHER G, ALLEN A P, BASTVIKEN D, et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales[J]. Nature, 2014, 507(7493): 488-491. |
[46] | YUE F J, LI S L, WALDRON S, et al. Source availability and hydrological connectivity determined nitrate-discharge relationships during rainfall events in karst catchment as revealed by high-frequency nitrate sensing[J]. Water Research, 2023, 231: 119616. |
[47] | GALLO E L, MEIXNER T, AOUBID H, et al. Combined impact of catchment size, land cover, and precipitation on streamflow and total dissolved nitrogen: a global comparative analysis[J]. Global Biogeochemical Cycles, 2015, 29(7): 1109-1121. |
[48] | YUE F J, LI S L, WALDRON S, et al. Rainfall and conduit drainage combine to accelerate nitrate loss from a karst agroecosystem: insights from stable isotope tracing and high-frequency nitrate sensing[J]. Water Research, 2020, 186: 116388. |
[49] | WANG X C, YUE F J, LI S L, et al. Spatial variations in water chemical components in a coastal zone of northern China: insights from environmental isotopes[J]. Journal of Hydrology, 2022, 612: 128054. |
[50] | LI S L, LIU X, YUE F J, et al. Nitrogen dynamics in the Critical Zones of China[J]. Progress in Physical Geography: Earth and Environment, 2022, 46(6): 869-888. |
[51] | LI S L, XU S, WANG T J, et al. Effects of agricultural activities coupled with karst structures on riverine biogeochemical cycles and environmental quality in the karst region[J]. Agriculture, Ecosystems & Environment, 2020, 303: 107120. |
[52] | HE F, ZARFL C, TOCKNER K, et al. Hydropower impacts on riverine biodiversity[J]. Nature Reviews Earth & Environment, 2024, 5(11): 755-772. |
[53] | MAAVARA T, CHEN Q, VAN METER K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment, 2020, 1(2): 103-116. |
[54] | WANG W, LI S L, ZHONG J, et al. Carbonate mineral dissolution and photosynthesis-induced precipitation regulate inorganic carbon cycling along the karst river-reservoir continuum, SW China[J]. Journal of Hydrology, 2022, 615: 128621. |
[55] | YI Y, LI S L, ZHONG J, et al. The influence of the deep subtropical reservoir on the karstic riverine carbon cycle and its regulatory factors: insights from the seasonal and hydrological changes[J]. Water Research, 2022, 226: 119267. |
[56] | LIANG X, XING T, LI J, et al. Control of the hydraulic load on nitrous oxide emissions from cascade reservoirs[J]. Environmental Science & Technology, 2019, 53(20): 11745-11754. |
[57] | ERIYAGAMA N, SMAKHTIN V, UDAMULLA L. How much artificial surface storage is acceptable in a river basin and where should it be located: a review[J]. Earth-Science Reviews, 2020, 208: 103294. |
[58] | WWF. WWF (2024) Living Planet Report 2024: a system in Peril[R]. Zurich: WWF, 2024. |
[59] |
BLOWES S A, SUPP S R, ANTÃO L H, et al. The geography of biodiversity change in marine and terrestrial assemblages[J]. Science, 2019, 366(6463): 339-345.
DOI PMID |
[60] | YU Q, HE C, ANTHONY M A, et al. Decoupled responses of plants and soil biota to global change across the world’s land ecosystems[J]. Nature Communications, 2024, 15(1): 10369. |
[61] | 王艳芬, 陈怡平, 王厚杰, 等. 黄河流域生态系统变化及其生态水文效应[J]. 中国科学基金, 2021, 35(4): 520-528. |
[62] | BATTIN T J, LAUERWALD R, BERNHARDT E S, et al. River ecosystem metabolism and carbon biogeochemistry in a changing world[J]. Nature, 2023, 613(7944): 449-459. |
[63] | XU S Q, LIU X Y, SUN Z C, et al. Isotopic elucidation of microbial nitrogen transformations in forest soils[J]. Global Biogeochemical Cycles, 2021, 35(12): e2021GB007070. |
[64] | HU C C, LEI Y B, TAN Y H, et al. Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China[J]. Journal of Ecology, 2019, 107(1): 372-386. |
[65] | HU C C, LIU X Y, DRISCOLL A W, et al. Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants[J]. Nature Communications, 2024, 15(1): 6407. |
[66] | SARDANS J, JANSSENS I A, CIAIS P, et al. Recent advances and future research in ecological stoichiometry[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 50: 125611. |
[67] | HESSEN D O, ELSER J J, STERNER R W, et al. Ecological stoichiometry: an elementary approach using basic principles[J]. Limnology and Oceanography, 2013, 58(6): 2219-2236. |
[68] |
MANZONI S, JACKSON R B, TROFYMOW J A, et al. The global stoichiometry of litter nitrogen mineralization[J]. Science, 2008, 321(5889): 684-686.
DOI PMID |
[69] | VAN DE WAAL D B, VERSCHOOR A M, VERSPAGEN J M, et al. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems[J]. Frontiers in Ecology and the Environment, 2010, 8(3): 145-152. |
[70] | TAUCHER J, BACH L T, PROWE A E F, et al. Enhanced silica export in a future ocean triggers global diatom decline[J]. Nature, 2022, 605(7911): 696-700. |
[71] | GARNIER J, BEUSEN A, THIEU V, et al. N:P: Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach[J]. Global Biogeochemical Cycles, 2010, 24(4): e2009GB003583. |
[72] | WAN L, LIU G, CHENG H, et al. Global warming changes biomass and C:N:P stoichiometry of different components in terrestrial ecosystems[J]. Glob Chang Biol, 2023, 29(24): 7102-7116. |
[73] | ZHANG Z, SUN X, DAI M, et al. Impact of human disturbance on the biogeochemical silicon cycle in a coastal sea revealed by silicon isotopes[J]. Limnology and Oceanography, 2020, 65(3): 515-528. |
[74] | SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462(7274): 795-798. |
[75] | ROCKSTRÖM J, DONGES J F, FETZER I, et al. Planetary boundaries guide humanity’s future on Earth[J]. Nature Reviews Earth & Environment, 2024, 5(11): 773-788. |
[76] | ROCKSTRÖM J, STEFFEN W, NOONE K, et al. Planetary boundaries: exploring the safe operating space for humanity[J]. Ecology and Society, 2009, 14(2): 32. |
[77] | ROCKSTRÖM J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263): 472-475. |
[78] |
LIU L, BAI Z, YANG J, et al. An optimized crop-livestock system can achieve a safe and just planetary boundary for phosphorus at the sub-basin level in China[J]. Nature Food, 2024, 5(6): 499-512.
DOI PMID |
[79] | STEFFEN W, RICHARDSON K, ROCKSTRÖM J, et al. Planetary boundaries: guiding human development on a changing planet[J]. Science, 2015, 347(6223): 1259855. |
[80] | RICHARDSON K, STEFFEN W, LUCHT W, et al. Earth beyond six of nine planetary boundaries[J]. Science Advances, 2023, 9(37): eadh2458. |
[81] | SCIENCES N A O, STUDIES D O E L, SCIENCES B O E, et al. A vision for NSF Earth sciences 2020-2030: Earth in time[M]. Alexandria: National Academies Press, 2020. |
[82] | GOU L F, HUANG F, YANG S, et al. Cation isotopes trace chemical weathering[J/OL]. Fundamental Research, 2024. https://doi.org/10.1016/j.fmre.2023.12.005. |
[83] | BROOKFIELD A E, AJAMI H, CARROLL R W H, et al. Recent advances in integrated hydrologic models: integration of new domains[J]. Journal of Hydrology, 2023, 620: 129515. |
[84] | WEN H, PERDRIAL J, ABBOTT B W, et al. Temperature controls production but hydrology regulates export of dissolved organic carbon at the catchment scale[J]. Hydrology and Earth System Sciences, 2020, 24(2): 945-966. |
[85] | ZHI W, SHI Y, WEN H, et al. BioRT-Flux-PIHM v1.0: a biogeochemical reactive transport model at the watershed scale[J]. Geoscientific Model Development, 2022, 15(1): 315-333. |
[86] | WEN H, LI S L, CHEN X, et al. Amplified production and export of dissolved inorganic carbon during hot and wet subtropical monsoon[J]. Water Resources Research, 2024, 60(1): e2023WR035292. |
[1] | 刘丛强. 全球变化、层圈相互作用研究与地球系统科学[J]. 地学前缘, 2025, 32(3): 1-6. |
[2] | 陈玖斌, 郑旺, 刘羿, 孙若愚, 袁玮, 孟梅, 蔡虹明, 刘丛强. 同位素地球化学与地球系统圈层相互作用和全球变化研究[J]. 地学前缘, 2025, 32(3): 137-155. |
[3] | 弓耀奇, 岳甫均, 刘鑫, 郭田丽, 王浩阳, 李思亮. 基于流域系统水文水环境耦合模型的氮循环研究进展[J]. 地学前缘, 2025, 32(3): 183-195. |
[4] | 肖昀廷, 蔡晨康, 黄亦心, 朱佳雷. 海表温度日变化特征对海陆风模拟的影响研究[J]. 地学前缘, 2025, 32(3): 218-230. |
[5] | 崔灏, 韦刚健. 青藏高原周缘始新世—渐新世气候转换期风化演变及其对全球及区域气候环境变化的响应[J]. 地学前缘, 2025, 32(3): 274-287. |
[6] | 陈喜, 董建志, 王礼春, 张永根, 王学静, 狄崇利, 高满, 刘丛强. 全球变化下生态水文学发展与展望[J]. 地学前缘, 2025, 32(3): 52-61. |
[7] | 刘静, 孙照通, 王文鑫, 李云帅, 姚文倩, 崔凤珍, 刘丛强. 表层地球系统的深部过程响应与地表自然灾害[J]. 地学前缘, 2025, 32(3): 7-22. |
[8] | 王铁军, 晏智锋, 宋照亮, 周浩然, 孙新超, 陈伟, 李攀, 刘丛强. 表层地球系统科学视角下的生态系统科学研究[J]. 地学前缘, 2025, 32(3): 78-91. |
[9] | 傅平青, 胡伟, 赵曦, 徐占杰, 丁士元, 吴礼彬, 邓君俊, 姜哲, 李晓东, 朱佳雷, 刘丛强. 地-气界面科学与全球变化研究[J]. 地学前缘, 2025, 32(3): 92-104. |
[10] | 褚宴佳, 何宝南, 陈珍, 何江涛. 基于随机森林模型识别浅层地下水TDS异常的方法研究[J]. 地学前缘, 2025, 32(2): 456-468. |
[11] | 于涛, 韩鹏飞, 王旭升, 蒋小伟, 张志远, 万力. 基于Budyko模式的白洋淀流域不同时间尺度径流对气候变化的响应研究[J]. 地学前缘, 2025, 32(1): 449-458. |
[12] | 赵增锋, 王楚尤, 邱小琮, 周瑞娟, 杨强强, 赵睿智. 宁夏清水河流域地表水水化学特征及高氟水成因机制[J]. 地学前缘, 2024, 31(6): 462-473. |
[13] | 原雅琼, 孙平安, 于奭, 何师意. 长江流域水体稳定同位素分馏特征及碳水循环[J]. 地学前缘, 2024, 31(5): 409-420. |
[14] | 陈发家, 肖琼, 胡祥云, 郭永丽, 孙平安, 张宁. 典型岩溶小流域碳酸盐岩风化过程及其碳汇效应[J]. 地学前缘, 2024, 31(5): 449-459. |
[15] | 涂春霖, 和成忠, 马一奇, 尹林虎, 陶兰初, 杨明花. 珠江流域沉积物重金属污染特征、生态风险及来源解析[J]. 地学前缘, 2024, 31(3): 410-419. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||