地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 183-195.DOI: 10.13745/j.esf.sf.2025.3.19
弓耀奇1(), 岳甫均1,2,3,*(
), 刘鑫1, 郭田丽4, 王浩阳1, 李思亮1,2,3
收稿日期:
2024-12-30
修回日期:
2025-02-25
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*岳甫均(1985—),男,副教授,博士生导师,从事养分物质循环及环境效应研究。E-mail: 作者简介:
弓耀奇(2000—),女,硕士研究生,从事流域水环境模拟研究。E-mail: gongyaoqi@tju.edu.cn
基金资助:
GONG Yaoqi1(), YUE Fujun1,2,3,*(
), LIU Xin1, GUO Tianli4, WANG Haoyang1, LI Siliang1,2,3
Received:
2024-12-30
Revised:
2025-02-25
Online:
2025-03-25
Published:
2025-04-20
摘要:
在气候变化和强人类活动等多重因素的耦合影响下,活性氮输入过量,加剧了陆地生态系统氮素向水生生态系统的流失,影响了流域水环境质量。识别流域内氮素来源及其转化过程的时空变化特征,已成为防控流失及改善环境质量的首要任务。由于氮的来源多样、生物地球化学过程复杂,且受到诸多因素的耦合影响,限制了对流域系统氮循环的科学认知。在众多的研究方法中,模型模拟因具有灵活性高、系统性强、可多场景模拟分析等诸多优点,已成为揭示流域系统氮迁移转化及动态变化过程的重要手段。本文综述了流域水文模型及流域土壤、地表水与地下水氮素迁移模型的特征,对比了模型的原理、特点与研究范例。结果表明,在影响氮循环的诸多因素中,无序的强人为干扰、极端气候变化已成为扰动流域氮循环的重要因素。水文过程驱动下的水-氮耦合多过程、多机制研究尤为重要,基于此构建的水文生物地球化学模型(如CNMM-DNDC、PIHM等),已成为获取流域系统氮素时空分布规律及其预测分析的重要手段。此外,大数据与过程机理模型相结合已成为揭示氮循环过程中复杂问题的重要途径。通过综合诸多模型对空间格局、人为影响强度的适用性,梳理出针对受强人类干扰的滨海平原河网区氮循环适用模型,以加深对海陆交错带滨海流域地表水、地下水及海水相互作用下的氮循环科学认知,更全面、科学地评估滨海平原河网系统水环境质量与环境效应。
中图分类号:
弓耀奇, 岳甫均, 刘鑫, 郭田丽, 王浩阳, 李思亮. 基于流域系统水文水环境耦合模型的氮循环研究进展[J]. 地学前缘, 2025, 32(3): 183-195.
GONG Yaoqi, YUE Fujun, LIU Xin, GUO Tianli, WANG Haoyang, LI Siliang. Research progress of coupled hydrological and water environment models in nitrogen cycle of watershed system[J]. Earth Science Frontiers, 2025, 32(3): 183-195.
模型名称 | 分类 | 模块组成 | 参考文献 |
---|---|---|---|
EFDC | 集总式 | 水动力模块、水质模块、泥沙-污染物模块 | [ |
WASP | 集总式 | 水动力模块、污染物运移模块 | [ |
HYPE | 分布式 | 水动力模块、土壤水文模块、水质模块 | [ |
SWAT | 半分布式 | 气象模块、地形模块、土壤模块、植被模块、水文模块、水质模块 | [ |
表1 常见可用于流域地表水氮循环模型的对比
Table 1 Comparison of common models for nitrogen cycling in surface water of river basins
模型名称 | 分类 | 模块组成 | 参考文献 |
---|---|---|---|
EFDC | 集总式 | 水动力模块、水质模块、泥沙-污染物模块 | [ |
WASP | 集总式 | 水动力模块、污染物运移模块 | [ |
HYPE | 分布式 | 水动力模块、土壤水文模块、水质模块 | [ |
SWAT | 半分布式 | 气象模块、地形模块、土壤模块、植被模块、水文模块、水质模块 | [ |
图3 基于Web of science核心数据库的滨海流域氮循环研究关键词的共现网络图谱
Fig.3 Co-occurrence network map of key words for nitrogen cycle research in coastal watersheds based on Web of Science Core Collection
[1] | ZHI W, SHI Y, WEN H, et al. BioRT-Flux-PIHM v1.0: a biogeochemical reactive transport model at the watershed scale[J]. Geoscientific Model Development, 2022, 15(1): 315-333. |
[2] | 李新, 程国栋. 流域科学研究中的观测和模型系统建设[J]. 地球科学进展, 2008(7): 756-764. |
[3] | ZHANG S, HOU X, WU C, et al. Impacts of climate and planting structure changes on watershed runoff and nitrogen and phosphorus loss[J]. Science of the Total Environment, 2020, 706: 134489. |
[4] | CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of earth’s nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. |
[5] | WANG J, BOUWMAN A F, VILMIN L, et al. Global inland-water nitrogen cycling has accelerated in the Anthropocene[J]. Nature Water, 2024, 2(8): 729-740. |
[6] | GRUBER N, GALLOWAY J N. An earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293-296. |
[7] | BAILEY R T, PARK S, BIEGER K, et al. Enhancing SWAT+ simulation of groundwater flow and groundwater-surface water interactions using MODFLOW routines[J]. Environmental Modelling & Software, 2020, 126: 104660. |
[8] | PEIFFER S, KAPPLER A, HADERLEIN S B, et al. A biogeochemical-hydrological framework for the role of redox-active compounds in aquatic systems[J]. Nature Geoscience, 2021, 14(5): 264-272. |
[9] | FENN M E, ALLEN E B, WEISS S B, et al. Nitrogen critical loads and management alternatives for N-impacted ecosystems in California[J]. Journal of Environmental Management, 2010, 91(12): 2404-2423. |
[10] | LIU X, YUE F J, WONG W W, et al. Unravelling nitrate transformation mechanisms in karst catchments through the coupling of high-frequency sensor data and machine learning[J]. Water Research, 2024, 267: 122507. |
[11] | MARGARITA N M, GIANLUIGI B, MICÒL M, et al. Modeling groundwater and surface water interaction: an overview of current status and future challenges[J]. Science of the Total Environment, 2022, 846: 157355. |
[12] | 张婷, 徐彬鑫, 康爱卿, 等. 流域水文、水动力、水质模型联合应用研究进展[J]. 水利水电科技进展, 2021, 41(3): 11-19. |
[13] | 郑循华, 李思琪, 张伟, 等. 陆地高分辨率水文-生物地球化学过程CNMM-DNDC三维模型的研发及应用进展[J]. 大气科学, 2024, 48(1): 92-107. |
[14] | SADAYAPPAN K, STEWART B, KERINS D, et al. BioRT-HBV 1.0: a biogeochemical reactive transport model at the watershed scale[J]. Journal of Advances in Modeling Earth Systems, 2024, 16(12): e2024MS004217. |
[15] | MAYORGA E, SEITZINGER S P, HARRISON J A, et al. Global nutrient export from watersheds 2 (NEWS 2): model development and implementation[J]. Environmental Modelling & Software, 2010, 25(7): 837-853. |
[16] | WANG Q, LI S, JIA P, et al. A review of surface water quality models[J]. The Scientific World Journal, 2013, 2013: 231768. |
[17] | TIM U S, JOLLY R. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model[J]. Journal of Environmental Quality, 1994, 23(1): 25-35. |
[18] | ESTERBY S R. Review of methods for the detection and estimation of trends with emphasis on water quality applications[J]. Hydrological Processes, 1996, 10(2): 127-149. |
[19] | 苟娇娇, 缪驰远, 徐宗学, 等. 大尺度水文模型参数不确定性分析的挑战与综合研究框架[J]. 水科学进展, 2022, 33(2): 327-335. |
[20] | 陈文君, 段伟利, 贺斌, 等. 基于WASP模型的太湖流域上游茅山地区典型乡村流域水质模拟[J]. 湖泊科学, 2017, 29(4): 836-847. |
[21] | KARMAKAR S, MUJUMDAR P P. Grey fuzzy optimization model for water quality management of a river system[J]. Advances in Water Resources, 2006, 29(7): 1088-1105. |
[22] | HAZRA U N, MAHATO A, DEB S, et al. Integration of GIS with RUSLE to estimate soil, organic matter and nutrient loss from a watershed of eastern Himalayan[J]. Environmental Earth Sciences, 2024, 83(24):668. |
[23] | REN J N, HANAN E J, GREENE A, et al. Simulating the role of biogeochemical hotspots in driving nitrogen export from dryland watersheds[J]. Water Resources Research, 2024, 60(3): e2023WR036008. |
[24] | GAO L and LI D. A review of hydrological/water-quality models[J]. Frontiers of Agricultural Science and Engineering, 2014, 1(4): 267-276. |
[25] | 李思亮, 王浩阳, 晏智锋, 等. 地球关键带过程和生态环境效应研究进展[J]. 矿物岩石地球化学通报, 2024. DOI: 10.3724/j.issn.1007-2802.20240119. |
[26] | 李新, 程国栋, 康尔泗, 等. 数字黑河的思考与实践3:模型集成[J]. 地球科学进展, 2010, 25(8): 851-865. |
[27] | 夏智宏, 周月华, 许红梅. 基于SWAT模型的汉江流域水资源对气候变化的响应[J]. 长江流域资源与环境, 2010, 19(2): 158-163. |
[28] | 赵超. 基于MIKE模型的水华应急处理情景分析[J]. 水利水电技术, 2015, 46(4): 47-49. |
[29] | XUE B, ZHANG H, WANG Y, et al. Modeling water quantity and quality for a typical agricultural plain basin of northern China by a coupled model[J]. Science of The Total Environment, 2021, 790: 148139. |
[30] | CHEN X, LAO Y, WANG J, et al. Submarinegroundwater-borne nutrients in a tropical bay (Maowei Sea, China) and their impacts on the oyster aquaculture[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(3): 932-951. |
[31] | QU W J, LI H L, HUANG H, et al. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China[J]. Journal of Hydrology, 2017, 555: 185-197. |
[32] | SHEN M, WANG S, JIANG N, et al. Plant phenology changes and drivers on the Qinghai-Tibetan Plateau[J]. Nature Reviews Earth & Environment, 2022, 3(10): 633-651. |
[33] | CHEN H, JU P, ZHU Q, et al. Carbon and nitrogen cycling on the Qinghai-Tibetan Plateau[J]. Nature Reviews Earth & Environment, 2022, 3(10): 701-716. |
[34] | LIU S, ZAMANIAN K, SCHLEUSS P-M, et al. Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles[J]. Agriculture, Ecosystems & Environment, 2018, 252: 93-104. |
[35] | ZHANG Z C, CHEN X, CHENG Q B, et al. Coupled hydrological and biogeochemical modelling of nitrogen transport in the karst critical zone[J]. Science of the Total Environment, 2020, 732: 138902. |
[36] | LIN G, GAO D, YANG P, et al. Editorial: linking microbial-driven key processes with carbon and nitrogen cycling in estuarine, coastal, and the nearshore areas[J]. Frontiers in Microbiology, 2024, 15: 1382148. |
[37] | 骆永明. 中国海岸带可持续发展中的生态环境问题与海岸科学发展[J]. 中国科学院院刊, 2016, 31(10): 1133-1142. |
[38] | LIU M, HOU L J, YANG Y, et al. The case for a critical zone science approach to research on estuarine and coastal wetlands in the anthropocene[J]. Estuaries and Coasts, 2021, 44: 911-920. |
[39] | 王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1): 1-10. |
[40] | 姜德娟, 毕晓丽. 流域-河口-近海系统氮、磷营养盐输移研究综述[J]. 水科学进展, 2010, 21(3): 421-429. |
[41] | 曹天正, 韩冬梅, 宋献方, 等. 滨海地区地表水-地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166. |
[42] | 冯起, 尹振良, 席海洋. 流域生态水文模型研究和问题[J]. 第四纪研究, 2014, 34(5): 1082-1093. |
[43] | KELLER AA, GARNER K, RAO N, et al. Hydrological models for climate-based assessments at the watershed scale: a critical review of existing hydrologic and water quality models[J]. Science of the total environment, 2022, 867: 161209. |
[44] | 王凌河, 严登华, 龙爱华, 等. 流域生态水文过程模拟研究进展[J]. 地球科学进展, 2009, 24(8): 891-898. |
[45] | LIU Y, HEUVELINK G B M, BAI Z, et al. Uncertainty quantification of nitrogen use efficiency prediction in China using Monte Carlo simulation and quantile regression forests[J]. Computers and Electronics in Agriculture, 2023, 204: 107533. |
[46] | REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. |
[47] | SUN Q, CHANG S, WANG J, et al. Assessing the impact of rainfall on water quality in a coastal urban river utilizing the environmental fluid dynamics code[J]. Urban Climate, 2024, 56: 102082. |
[48] | 宋轩宇, 许民, 康世昌, 等. 基于机器学习的冰冻圈典型流域水文过程模拟研究[J]. 地学前缘, 2023, 30(4): 451-469. |
[49] | FUJITA Y, BODEGOM P M V, VENTERINK H O, et al. Towards a proper integration of hydrology in predicting soil nitrogen mineralization rates along natural moisture gradients[J]. Soil Biology and Biochemistry, 2013, 58: 302-312. |
[50] | STOCKER B D, PRENTICE I C, CORNELL S E, et al. Terrestrial nitrogen cycling in Earth system models revisited[J]. New Phytologist, 2016, 210(4): 1165-1168. |
[51] | DENG J, ZHOU Z, ZHU B, et al. Modeling nitrogen loading in a small watershed in southwest China using a DNDC model with hydrological enhancements[J]. Biogeosciences, 2011, 8(97): 2999-3009. |
[52] | 张新宇, 方昭, 焦峰. 基于DNDC模型分析氮添加对内蒙古草甸和荒漠草地碳动态的影响[J]. 水土保持研究, 2024, 31(5): 84-92. |
[53] | 万佳静, 景元书, 吉梦宇, 等. DNDC模型在稻田水肥管理中的应用研究进展[J]. 生态学杂志, 2024, 43(7): 2198-2207. |
[54] | 贾晓楠, 张美玲, 朱美婷, 等. 基于CENTURY模型的甘南高寒草甸土壤氮动态模拟研究[J]. 草原与草坪, 2023, 43(3): 28-38. |
[55] | 刘夏明, 李俊清, 豆小敏, 等. EFDC模型在河口水环境模拟中的应用及进展[J]. 环境科学与技术, 2011, 34(S1): 136-140. |
[56] | GONG R, XU L, WANG D, et al. Water quality modeling for a typical urban lake based on the EFDC model[J]. Environmental Modeling & Assessment, 2016, 21(5): 643-655. |
[57] | HAN F, ZHENG Y, TIAN Y, et al. Accounting for field-scale heterogeneity in the ecohydrological modeling of large arid river basins: strategies and relevance[J]. Journal of Hydrology, 2021, 595: 126045. |
[58] | 戴天骄. 桃林口水库水质评价与预测研究[D]. 天津: 天津大学, 2019. |
[59] | PHILLIPS A K, MANDAL S, MOHAMED M, et al. Is comprehensive event sampling necessary for constraining process models of water quality? A comparison of high and low frequency phosphorus sampling programs for constraining the HYPE water quality model[J]. Journal of Hydrology, 2024, 639: 131502. |
[60] | 杨雨潇, 李家科. 基于HYPE模型的汉江安康断面以上流域非点源污染模拟[J]. 水资源保护, 2024, 40(3): 140-148. |
[61] | 孙雪纯, 宁少尉, 宋凡, 等. HYPE水文模型在中国不同气候区域的应用研究[J]. 水文, 2021, 41(3): 57-62. |
[62] | DAI J, CUI Y, CAI X, et al. Influence of water management on the water cycle in a small watershed irrigation system based on a distributed hydrologic model[J]. Agricultural Water Management, 2016, 174: 52-60. |
[63] | WHITE K L and CHAUBEY I. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model[J]. Journal of the American Water Resources Association, 2005, 41(5): 1077-1089. |
[64] | 张展羽, 司涵, 孔莉莉. 基于SWAT模型的小流域非点源氮磷迁移规律研究[J]. 农业工程学报, 2013, 29(2): 93-100. |
[65] | SALIM AOUBID H and OPP C. Nitrogen and phosphorus discharge loads assessment using the SWAT model: a case study of the Shatt Al-Arab river basin[J]. Applied Sciences, 2023, 13(14): 8376. |
[66] | KIM N W, CHUNG I M, WON Y S, et al. Development and application of the integrated SWAT-MODFLOW model[J]. Journal of Hydrology, 2008, 356(1/2): 1-16. |
[67] | ZHI W, LI L. The shallow and deep hypothesis: subsurface vertical chemical contrasts shape nitrate export patterns from different land uses[J]. Environmental Science & Technology, 2020, 54(19): 11915-11928. |
[68] | GONZáLEZ A C, BEDOLLA J H, CINCO M A M, et al. Assessment of nitrate in groundwater from diffuse sources considering spatiotemporal patterns of hydrological systems using a coupled SWAT/MODFLOW/MT3DMS model[J]. Hydrology, 2023, 10(11): 209. |
[69] | 陈新明, 马腾, 蔡鹤生, 等. 地下水氮污染的区域性调控策略[J]. 地质科技情报, 2013, 32(6): 130-143. |
[70] | 张广禄, 刘海燕, 郭华明, 等. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485-503. |
[71] | 周妍, 白国营, 赵洪岩, 等. 分布式地表水-地下水耦合数值模型研究进展[J]. 南水北调与水利科技(中英文), 2023, 21(3): 435-446. |
[72] | 高志鹏, 郭华明, 屈吉鸿. 卫河流域河流-地下水流系统氮素运移的数值模拟[J]. 地学前缘, 2018, 25(3): 273-284. |
[73] | 王蕊, 王中根, 夏军. 地表水和地下水耦合模型研究进展[J]. 地理科学进展, 2008, (4): 37-41. |
[74] | POHLERT T, HUISMAN J A, BREUER L, et al. Integration of a detailed biogeochemical model into SWAT for improved nitrogen predictions: model development, sensitivity, and GLUE analysis[J]. Ecological Modelling, 2007, 203(3): 215-228. |
[75] | YANG Q, ZHANG X, ABRAHA M, et al. Enhancing the soil and water assessment tool model for simulating N2O emissions of three agricultural systems[J]. Ecosystem Health and Sustainability, 2017, 3(2): e01259. |
[76] | FENG H, YI Z, YONG T, et al. Accounting for field-scale heterogeneity in the ecohydrological modeling of large arid river basins: strategies and relevance[J]. Journal of Hydrology, 2021, 595: 126045. |
[77] | BAO C, LI L, SHI Y, et al. Understanding watershed hydrogeochemistry: 1. development of RT-Flux-PIHM[J]. Water Resources Research, 2017, 53(3): 2328-2345. |
[78] | LI L, BAO C, SULLIVAN P L, et al. Understanding watershed hydrogeochemistry: 2. synchronized hydrological and geochemical processes drive stream chemostatic behavior[J]. Water Resources Research, 2017, 53(3): 2346-2367. |
[79] | JIANG J, ZHANG L, WANG Z, et al. Spatial consistency of co-exposure to air and surface water pollution and cancer in China[J]. Nature Communications, 2024, 15: 7813. |
[80] | WANG S, PENG H, LIANG S. Prediction of estuarine water quality using interpretable machine learning approach[J]. Journal of Hydrology, 2022, 605: 127320. |
[81] | 高志炜, 吴电明, 陈曦, 等. 机器学习在氮循环领域的应用研究进展[J]. 土壤, 2023, 55(4): 689-698. |
[82] | 余镒琦, 陈能汪, 余其彪, 等. 基于XGBoost选择迁移条件提升LSTM模型河流水质预测能力[J]. 环境工程, 2024, 42(1): 223-234. |
[83] | CHEN Z, XU H, JIANG P, et al. A transfer Learning-Based LSTM strategy for imputing large-scale consecutive missing data and its application in a water quality prediction system[J]. Journal of Hydrology, 2021, 602: 126573. |
[84] | WANG K, ONODERA S-I, and SAITO M. Evaluation of nitrogen loading in the last 80 years in an urbanized Asian coastal catchment through the reconstruction of severe contamination period[J]. Environmental Research Letters, 2022, 17: 014010. |
[85] | DUMONT E, HARRISON J A, KROEZE C, et al. Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: results from a spatially explicit, global model[J]. Global Biogeochemical Cycles, 2005, 19(4): GB4S02. |
[86] | CHEN S Y, HUANG J L, HUANG J C. Improving daily streamflow simulations for data-scarce watersheds using the coupled SWAT-LSTM approach[J]. Journal of Hydrology, 2023, 622: 129734. |
[87] | 赵良杰, 王莹, 周妍, 等. 基于SWAT模型的珠江流域地下水资源评价[J]. 地球科学, 2024, 49(5): 1876-1890. |
[88] | 梁文翔, 骆震, 陈伏龙, 等. 基于CMIP6多模式集合的内陆河径流模拟及预估[J]. 地学前缘, 2024, 31(6): 450-461. |
[89] | GALAL U M, STEPHEN N, AZIZUR R, et al. A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment[J]. Water research, 2022, 219: 118532. |
[1] | 吴礼彬, 白景淇, 赵青茈, 傅平青. 大气中氨基酸的研究进展与展望[J]. 地学前缘, 2025, 32(3): 196-206. |
[2] | 张艳利, 冉浩汎, 曾建强, 鲁钰婷, 庞伟华, 郭昊, 王新明. 全球变化背景下天然源痕量活性有机气体研究进展与展望[J]. 地学前缘, 2025, 32(3): 288-310. |
[3] | 李思亮, 王欣楚, 戚羽霖, 钟君, 丁虎, 文航, 刘学炎, 郎赟超, 易沅壁, 王宝利, 刘丛强. 流域生物地球化学循环与表层地球系统层圈相互作用[J]. 地学前缘, 2025, 32(3): 62-77. |
[4] | 张晓飞, 唐相伟, 庞振山, 薛建玲, 陈辉, 王珺璐, 隗含涛, 雷晓力. 河南桐柏围山城地区金矿找矿预测综合信息模型构建与靶区预测[J]. 地学前缘, 2025, 32(2): 357-370. |
[5] | 褚宴佳, 何宝南, 陈珍, 何江涛. 基于随机森林模型识别浅层地下水TDS异常的方法研究[J]. 地学前缘, 2025, 32(2): 456-468. |
[6] | 于涛, 韩鹏飞, 王旭升, 蒋小伟, 张志远, 万力. 基于Budyko模式的白洋淀流域不同时间尺度径流对气候变化的响应研究[J]. 地学前缘, 2025, 32(1): 449-458. |
[7] | 张晶, 李天虎, 王志华, Naghmah HAIDER, 洪俊, 张辉善, 梁楠. 巴基斯坦斑岩型铜矿地球化学特征与成矿潜力分析[J]. 地学前缘, 2025, 32(1): 91-104. |
[8] | 石鸿蕾, 王婉丽, 王贵玲, 邢林啸, 陆川, 赵佳怡, 刘禄, 宋嘉佳. 典型高温地热系统水热循环及锂同位素分馏过程模拟研究[J]. 地学前缘, 2024, 31(6): 104-119. |
[9] | 赵增锋, 王楚尤, 邱小琮, 周瑞娟, 杨强强, 赵睿智. 宁夏清水河流域地表水水化学特征及高氟水成因机制[J]. 地学前缘, 2024, 31(6): 462-473. |
[10] | 刘艳祥, 吕文雅, 曾联波, 李睿琦, 董少群, 王兆生, 李彦录, 王磊飞, 冀春秋. 鄂尔多斯盆地庆城油田长7页岩油储层多尺度裂缝三维地质建模[J]. 地学前缘, 2024, 31(5): 103-116. |
[11] | 曹建华, 杨慧, 黄芬, 张春来, 张连凯, 朱同彬, 周孟霞, 袁道先. 岩溶碳汇原理、过程与计量[J]. 地学前缘, 2024, 31(5): 358-376. |
[12] | 原雅琼, 孙平安, 于奭, 何师意. 长江流域水体稳定同位素分馏特征及碳水循环[J]. 地学前缘, 2024, 31(5): 409-420. |
[13] | 杨化菊, 李灿锋, 杨克好, 张熙璐, 王传宇, 王兴荣, 何旭, 彭雪峰, 张连凯. 滇南喀斯特地区不同石漠化程度下优势灌木生物量及分配特征[J]. 地学前缘, 2024, 31(5): 440-448. |
[14] | 陈发家, 肖琼, 胡祥云, 郭永丽, 孙平安, 张宁. 典型岩溶小流域碳酸盐岩风化过程及其碳汇效应[J]. 地学前缘, 2024, 31(5): 449-459. |
[15] | 牛露佳, 石成岳, 王占刚, 周永章. 三维复杂地质结构模型的InterfaceGrid表达方法[J]. 地学前缘, 2024, 31(4): 129-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||