地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 105-117.DOI: 10.13745/j.esf.sf.2025.3.4
• 全球变化、圈层相互作用研究与地球系统科学 • 上一篇 下一篇
李磊(), 徐鹏, 曾昭, 赵丹丹, 马韶君, 刘丛强*(
)
收稿日期:
2025-02-06
修回日期:
2025-02-23
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*刘丛强(1955—),男,博士,教授,博士生导师,主要从事地表地球化学和表层地球系统科学方面的研究。E-mail:作者简介:
李 磊(1980—),男,教授,博士生导师,主要从事资源环境管理和城市可持续发展研究。E-mail:lilei@tju.edu.cn
基金资助:
LI Lei(), XU Peng, ZENG Zhao, ZHAO Dandan, MA Shaojun, Liu Cong-Qiang*(
)
Received:
2025-02-06
Revised:
2025-02-23
Online:
2025-03-25
Published:
2025-04-20
摘要:
社会-生态系统科学在“人类世”背景下,为应对全球可持续发展挑战提供了重要理论指导与实践路径。本文首先从社会、经济、环境与生态四个维度分析当前全球可持续发展目标面临的主要挑战;其次,梳理了社会-生态系统科学的理论框架及历史演进,阐明了这一跨学科整合框架在全球变化背景下的应用前景;第三,本文聚焦社会-生态系统科学在促进跨部门协作、优化资源配置和推动政策创新中的核心作用,揭示了其在推动全球可持续发展目标实现中的关键意义;最后,本文展望了社会-生态系统科学的未来研究方向,特别强调了跨学科合作、系统建模与技术创新在实现可持续发展目标中的决定性作用。
中图分类号:
李磊, 徐鹏, 曾昭, 赵丹丹, 马韶君, 刘丛强. 社会-生态系统科学与人类世可持续发展[J]. 地学前缘, 2025, 32(3): 105-117.
LI Lei, XU Peng, ZENG Zhao, ZHAO Dandan, MA Shaojun, Liu Cong-Qiang. Socio-ecological systems science and sustainable development in the Anthropocene[J]. Earth Science Frontiers, 2025, 32(3): 105-117.
[1] | VITOUSEK P M, MOONEY H A, LUBCHENCO J, et al. Human domination of Earth’s ecosystems[J]. Science, 1997, 277(5325): 494-499. |
[2] | ROCKSTRÖM J, KOTZÉ L, MILUTINOVIĆ S, et al. The planetary commons: A new paradigm for safeguarding Earth-regulating systems in the Anthropocene[J]. Proceedings of the National Academy of Sciences, 2024, 121(5): e2301531121. |
[3] | 托马斯·海兰德·埃里克森, 李丽琴. 人类世生物与文化维度的多样性丧失[J]. 青海民族研究, 2024, 35(3): 165-174. |
[4] | HENDERSON E D, VACHULA R S. Geologic limitations on a comprehensive Anthropocene[J]. Anthropocene, 2024, 46: 100434. |
[5] | LI L, ZHENG Y, MA S, et al. Unfavorable weather, favorable insights: exploring the impact of extreme climate on green total factor productivity[J]. Economic Analysis and Policy, 2025, 85: 626-640. |
[6] | VANN YAROSON E, CHOWDHURY S, MANGLA S K, et al. A systematic literature review exploring and linking circular economy and sustainable development goals in the past three decades (1991-2022)[J]. International Journal of Production Research, 2024, 62(4): 1399-1433. |
[7] | GAO Z, LI L, HAO Y. Resource industry dependence and high-quality economic development of Chinese style: reexamining the effect of the “Resource Curse”[J]. Structural Change and Economic Dynamics, 2024, 68: 1-16. |
[8] | BIERMANN F, ABBOTT K, ANDRESEN S, et al. Navigating the Anthropocene: improving earth system governance[J]. Science, 2012, 335(6074): 1306-1307. |
[9] | GRIGGS D, STAFFORD-SMITH M, GAFFNEY O, et al. Sustainable development goals for people and planet[J]. Nature, 2013, 495(7441): 305-307. |
[10] | UNITED NATIONS. Transforming our world: the 2030 Agenda for Sustainable Development[M]. New York: United Nations, 2015. |
[11] | UNITED NATIONS. The Sustainable Development Goals Report[EB/OL]. (2024-05-01)[2024-01-01]. https://www.un.org/sustainabledevelopment/sustainable-consumption-production/. |
[12] | BAZILIAN M, ROGNER H, HOWELLS M, et al. Considering the energy, water and food nexus: towards an integrated modelling approach[J]. Energy Policy, 2011, 39(12): 7896-7906. |
[13] | FUSO NERINI F, SOVACOOL B, HUGHES N, et al. Connecting climate action with other Sustainable Development Goals[J]. Nature Sustainability, 2019, 2(9): 674-680. |
[14] | NAIDOO R, FISHER B. Reset sustainable development goals for a pandemic world[J]. Nature, 2020, 583(7818): 198-201. |
[15] | YIN C, ZHAO W, CHERUBINI F, et al. Integrate ecosystem services into socio-economic development to enhance achievement of sustainable development goals in the post-pandemic era[J]. Geographical Sustainability, 2021, 2: 68-73. |
[16] | EMILIO G F. The Global Risks Report 2020[R]. Geneva: World Economic Forum, 2020. |
[17] | OSENDARP S, VERBURG G, BHUTTA Z, et al. Act now before Ukraine war plunges millions into malnutrition[J]. Nature, 2022, 604(7906): 620-624. |
[18] | LEAL FILHO W, KOVALEVA M, TSANI S, et al. Promoting gender equality across the sustainable development goals[J]. Environmental Development and Sustainability, 2023, 25(16): 14177-14198. |
[19] | SCHMIDT-TRAUB G, KROLL C, TEKSOZ K, et al. National baselines for the sustainable development goals assessed in the SDG Index and Dashboards[J]. Nature Geoscience, 2017, 10: 547-555. |
[20] | TANSLEY A G. The use and abuse of vegetational concepts and terms[J]. Ecology, 1935, 16(3): 284-307. |
[21] | HOLLING C S. Resilience and stability of ecological systems[EB/OL]. (1973-11-1) [2024-12-25] https://www.annualreviews.org/content/journals/10.1146/annurev.es.04.110173.000245 |
[22] | BRONFENBRENNER U. Toward an experimental ecology of human development[J]. American Psychologist, 1977, 32(7): 513. |
[23] | MORALES A T, SHEAFOR B W, SCOTT M. Social work: a profession of many faces (updated edition)[M]. London: Pearson Higher Ed, 2011. |
[24] | BERKES F, KISLALIOGLU M, FOLKE C, et al. Minireviews: exploring the basic ecological unit: ecosystem-like concepts in traditional societies[J]. Ecosystems, 1998, 1: 409-415. |
[25] | BERKES F, COLDING J, FOLKE C. Rediscovery of traditional ecological knowledge as adaptive management[J]. Ecological Applications, 2000, 10(5): 1251-1262. |
[26] | GUNDERSON L H. Ecological resilience—in theory and application[J]. Annual Review of Ecology and Systematics, 2000, 31(1): 425-439. |
[27] | BERKES F. Community-based conservation in a globalized world[J]. Proceedings of the National Academy of Sciences, 2007, 104(39): 15188-15193. |
[28] |
LIU J, DIETZ T, CARPENTER S R, et al. Complexity of coupled human and natural systems[J]. Science, 2007, 317(5844): 1513-1516.
DOI PMID |
[29] | LIU J, DIETZ T, CARPENTER S R, et al. Coupled human and natural systems[J]. Ambio: a journal of the human environment, 2007, 36(8): 639-649. |
[30] | 马世骏, 王如松. 社会-经济-自然复合生态系统[J]. 生态学报, 1984(1): 1-9. |
[31] | 赵景柱. 社会—经济—自然复合生态系统持续发展评价指标的理论研究[J]. 生态学报, 1995(3): 327-330. |
[32] | 王如松, 欧阳志云. 社会-经济-自然复合生态系统与可持续发展[J]. 中国科学院院刊, 2012, 27(3): 337-345, 403-404, 254. |
[33] | JOHNSON J E, WELCH D J, MAYNARD J A, et al. Assessing and reducing vulnerability to climate change: moving from theory to practical decision-support[J]. Marine Policy, 2016, 74: 220-229. |
[34] | 葛怡, 史培军, 徐伟, 等. 恢复力研究的新进展与评述[J]. 灾害学, 2010, 25(3): 119-124, 129. |
[35] |
史培军, 汪明, 胡小兵, 等. 社会——生态系统综合风险防范的凝聚力模式[J]. 地理学报, 2014, 69(6): 863-876.
DOI |
[36] | 金校名, 李博. 中国沿海地区海洋渔业产业生态系统适应性循环过程及驱动机制[J]. 生态学报, 2021, 41(14): 5857-5867. |
[37] | 李嘉艺, 孙璁, 郑曦. 基于适应性循环理论的区域生态风险时空演变评估——以长江三角洲城市群为例[J]. 生态学报, 2021, 41(7): 2609-2621. |
[38] | ONYENEKE R U, IGBERI C O, ALIGBE J O, et al. Climate change adaptation actions by fish farmers: evidence from the Niger Delta Region of Nigeria[J]. Australian Journal of Agricultural and Resource Economics, 2020, 64(2): 347-375. |
[39] | MAJA M M, AYANO S F. The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries[J]. Earth Systems and Environment, 2021, 5(2): 271-283. |
[40] | ROCKSTRÖM J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263): 472-475. |
[41] | VALENTE S, VELOSO-GOMES F. Coastal climate adaptation in port-cities: adaptation deficits, barriers, and challenges ahead[J]. Journal of Environmental Planning and Management, 2020, 63(3): 389-414. |
[42] | EKOH S S, TERON L, AJIBADE I. Climate change and coastal megacities: adapting through mobility[J]. Global Environmental Change, 2023, 80: 102666. |
[43] | 常玮, 郑开雄, 运迎霞. 滨海城市空间结构气候复杂适应研究——基于CAS的厦门城市空间结构优化探讨[J]. 城市发展研究, 2018, 25(4): 78-85, 153. |
[44] | CASEY G, FRIED S, GIBSON M. Understanding climate damages: Consumption versus investment[J]. European Economic Review, 2024, 167: 104799. |
[45] | KANG N, KIM S, KIM Y, et al. Urban drainage system improvement for climate change adaptation[J]. Water, 2016, 8(7): 268. |
[46] | WEN J, ZHAO X X, FU Q, et al. The impact of extreme weather events on green innovation: which ones bring to the most harm?[J]. Technological Forecasting and Social Change, 2023, 188: 122322. |
[47] | 蔡榕硕, 许炜宏. 未来中国滨海城市海岸洪水灾害的社会经济损失风险[J]. 中国人口·资源与环境, 2022, 32(8): 174-184. |
[48] | MANSELL R. Adjusting to the digital: societal outcomes and consequences[J]. Research Policy, 2021, 50(9): 104296. |
[49] | PAN S Y, GAO M, KIM H, et al. Advances and challenges in sustainable tourism toward a green economy[J]. Science of the Total Environment, 2018, 635: 452-469. |
[50] | RAMYAR R, ACKERMAN A, JOHNSTON D M. Adapting cities for climate change through urban green infrastructure planning[J]. Cities, 2021, 117: 103316. |
[51] |
温晓金, 杨新军, 王子侨. 多适应目标下的山地城市社会—生态系统脆弱性评价[J]. 地理研究, 2016, 35(2): 299-312.
DOI |
[52] | 吴文菁, 陈佳颖, 叶润宇, 等. 台风灾害下海岸带城市社会-生态系统脆弱性评估——大数据视角[J]. 生态学报, 2019, 39(19): 7079-7086. |
[53] | 雷诚, 范凌云. 国外沿海开发对中国滨海地区发展的启示[J]. 国际城市规划, 2010, 25(1): 107-111. |
[54] | 秦鹏, 张志辉, 刘庆. 人为扰动对滨海城市湿地演变的影响——以青岛市为例[J]. 城市问题, 2020(3): 4-12. |
[55] | CARTER J G, CAVAN G, CONNELLY A, et al. Climate change and the city: building capacity for urban adaptation[J]. Progress in Planning, 2015, 95: 1-66. |
[56] | DHIMAN R, VISHNURADHAN R, ELDHO T I, et al. Flood risk and adaptation in Indian coastal cities: recent scenarios[J]. Applied Water Science, 2019, 9(1): 5. |
[57] | SIERRA L A, PELLICER E, YEPES V. Method for estimating the social sustainability of infrastructure projects[J]. Environmental Impact Assessment Review, 2017, 65: 41-53. |
[58] | 郑开雄, 运迎霞, 常玮. 滨海城市“气候承载—空间适应”方法研究——厦门气候承载空间模拟分析[J]. 城市发展研究, 2018, 25(8): 51-58, 82. |
[59] | SMITH G S, ANJUM E, FRANCIS C, et al. Climate change, environmental disasters, and health inequities: the underlying role of structural inequalities[J]. Current Environmental Health Reports, 2022, 9(1): 80-89. |
[60] |
赵瑞东, 方创琳, 刘海猛. 城市韧性研究进展与展望[J]. 地理科学进展, 2020, 39(10): 1717-1731.
DOI |
[61] | CAMPANELLA T J. Urban resilience and the recovery of New Orleans[J]. Journal of the American Planning Association, 2006, 72(2): 141-146. |
[62] | BUDIHARTA S, MEIJAARD E, WELLS J A, et al. Enhancing feasibility: Incorporating a socio-ecological systems framework into restoration planning[J]. Environmental Science & Policy, 2016, 64: 83-92. |
[63] | LEICHENKO R. Climate change and urban resilience[J]. Current Opinion in Environmental Sustainability, 2011, 3(3): 164-168. |
[64] |
CHANG S E, MCDANIELS T, FOX J, et al. Toward disaster-resilient cities: Characterizing resilience of infrastructure systems with expert judgments[J]. Risk Analysis, 2014, 34(3): 416-434.
DOI PMID |
[65] | 杨敏行, 黄波, 崔翀, 等. 基于韧性城市理论的灾害防治研究回顾与展望[J]. 城市规划学刊, 2016(1): 48-55. |
[66] | HERNANTES J, LABAKA L, TUROFF M, et al. Moving forward to disaster resilience: Perspectives on increasing resilience for future disasters[J]. Technological Forecasting and Social Change, 2017, 121: 1-6. |
[67] |
赵文武, 尹彩春, 张军泽, 等. 地理学支撑SDGs研究进展与展望——兼议“可持续地理学”理论框架[J]. 地理学报, 2024, 79(11): 2699-2720.
DOI |
[68] | 方创琳, 石培华, 余丹林. 区域可持续发展与区域发展规划[J]. 地理科学进展, 1997(3): 50-55. |
[69] |
邢祖哥, 贺灿飞. 区域不平衡: 理论回顾、研究进展与未来展望[J]. 地理科学进展, 2024, 43(9): 1839-1852.
DOI |
[70] |
CHEN B, WU S, SONG Y, et al. Contrasting inequality in human exposure to greenspace between cities of Global North and Global South[J]. Nature Communications, 2022, 13(1): 4636.
DOI PMID |
[71] | RAMMELT C F, GUPTA J, LIVERMAN D, et al. Impacts of meeting minimum access on critical earth systems amidst the Great Inequality[J]. Nature Sustainability, 2023, 6(2): 212-221. |
[72] | UN. Sustainable Development Report 2021: The Decade of Action for the Sustainable Development Goals[R]. New York: UN, 2021. |
[73] |
BASHEER M, NECHIFOR V, CALZADILLA A, et al. Balancing national economic policy outcomes for sustainable development[J]. Nature Communications, 2022, 13(1): 5041.
DOI PMID |
[74] | WOLLBURG P, HALLEGATTE S, MAHLER D G. Ending extreme poverty has a negligible impact on global greenhouse gas emissions[J]. Nature, 2023, 623(7989): 982-986. |
[75] |
FUSO NERINI F, SOVACOOL B, HUGHES N, et al. Connecting climate action with other Sustainable Development Goals[J]. Nature Sustainability, 2019, 2(8): 674-680.
DOI |
[76] | UN-Habitat. World Cities Report 2022: Envisaging the Future of Cities[R]. 2022. . |
[77] | ALMULHIM A I, SHARIFI A, AINA Y A, et al. Charting sustainable urban development through a systematic review of SDG11 research[J]. Nature Cities, 2024, 1(10): 677-685. |
[78] | 王浩, 姜珊, 朱永楠, 等. 中国水-能-粮耦合系统协同安全发展战略研究[J]. 中国水利, 2024(17): 5-12. |
[79] | XU Z, CHEN X, LIU J, et al. Impacts of irrigated agriculture on food-energy-water-CO2 nexus across metacoupled systems[J]. Nature Communications, 2020, 11(1): 5837. |
[80] | PASTOR A V, PALAZZO A, HAVLIK P, et al. The global nexus of food-trade-water sustaining environmental flows by 2050[J]. Nature Sustainability, 2019, 2(6): 499-507. |
[81] | BARRON-GAFFORD G A, PAVAO-ZUCKERMAN M A, MINOR R L, et al. Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands[J]. Nature Sustainability, 2019, 2(9): 848-855. |
[82] | ZHANG S, CHEN W, ZHANG Q, et al. Targeting net-zero emissions while advancing other sustainable development goals in China[J]. Nature Sustainability, 2024, 7(9): 1107-1119. |
[83] | YANG R, XU C, ZHANG H, et al. Urban rooftops for food and energy in China[J]. Nature Cities, 2024, 1(11): 741-750. |
[84] | UN. Transforming Our World: The 2030 Agenda for Sustainable Development[R]. New York: UN, 2015. |
[85] | DICK J, MILLER J D, CARRUTHERS-JONES J, et al. How are nature based solutions contributing to priority societal challenges surrounding human well-being in the United Kingdom: a systematic map protocol[J]. Environmental Evidence, 2019, 8: 1-11. |
[86] | GRAETZ N, FRIEDMAN J, OSGOOD-ZIMMERMAN A, et al. Mapping local variation in educational attainment across Africa[J]. Nature, 2018, 555(7694): 48-53. |
[87] | FRIEDMAN J, YORK H, GRAETZ N, et al. Measuring and forecasting progress towards the education-related SDG targets[J]. Nature, 2020, 580(7805): 636-639. |
[88] | LAU J D, KLEIBER D, LAWLESS S, et al. Gender equality in climate policy and practice hindered by assumptions[J]. Nature climate change, 2021, 11(3): 186-192. |
[89] |
ANDRIJEVIC M, CRESPO CUARESMA J, LISSNER T, et al. Overcoming gender inequality for climate resilient development[J]. Nature Communications, 2020, 11(1): 6261.
DOI PMID |
[90] | LIU Z, DENG Z, HE G, et al. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth & Environment, 2022, 3(2): 141-155. |
[91] | MIRANDA J J, IMME S, JOHN A, et al. Times of crisis, times of change science for accelerating transformations to sustainable development[R]. New York: Global Sustainable Development Report, 2023. |
[92] |
王一超. 基于多源数据融合的可持续发展目标监测与评估研究进展[J]. 地球科学进展, 2024, 39(2): 181-192.
DOI |
[93] | 郭华东, 梁栋, 陈方, 等. 地球大数据促进联合国可持续发展目标实现[J]. 中国科学院院刊, 2021, 36(8): 874-884. |
[94] | 黄磊, 贾根锁, 房世波, 等. 地球大数据支撑联合国可持续发展目标: 气候变化与应对[J]. 中国科学院院刊, 2021, 36(8): 923-931. |
[95] |
VINUESA R, AZIZPOUR H, LEITE I, et al. The role of artificial intelligence in achieving the Sustainable Development Goals[J]. Nature communications, 2020, 11(1): 233.
DOI PMID |
[96] | 方恺, 朱思睿, 刘潇, 等. 面向可持续发展目标的中国城市气候治理绩效评估[J]. 环境保护, 2023, 51(23): 39-44. |
[97] | KERAMITSOGLOU I, CARTALIS C, KIRANOUDIS C T. Automatic identification of oil spills on satellite images[J]. Environmental modelling & software, 2006, 21(5): 640-652. |
[98] | HUANG L, SWAIN R B, JEPPESEN E, et al. Harnessing science, technology, and innovation to drive synergy between climate goals and the SDGs[J]. The Innovation, 2024, 5(6). |
[99] |
郑舒元, 刘国华, 万凌凡, 等. 生物多样性保护与可持续发展背景下的生态安全[J]. 科技导报, 2024, 42(18): 46-57.
DOI |
[100] |
蒋卫国, 王晓雅, 荔琢, 等. 国际湿地城市可持续发展历程与未来研究趋势[J]. 自然资源学报, 2024, 39(6): 1241-1261.
DOI |
[101] |
高阳, 沈振, 张中浩, 等. 生态系统服务视角下的社会—生态系统耦合模拟研究进展[J]. 地理学报, 2024, 79(1): 134-146.
DOI |
[102] | DU W, YAN H, FENG Z, et al. Zoning for the sustainable development mode of global social-ecological systems: From the supply-production-demand perspective[J]. Resources, Conservation and Recycling, 2024, 203: 107447. |
[103] | 王昊晟, 李恒威. 人技共生: 人类世、技术圈与赛博格[J]. 浙江学刊, 2024(5): 55-66. |
[104] |
ELMQVIST T, ANDERSSON E, FRANTZESKAKI N, et al. Sustainability and resilience for transformation in the urban century[J]. Nature Sustainability, 2019, 2(4): 267-273.
DOI |
[105] | FARLEY J, MELGAR R E M, ANSARI D H, et al. Rethinking ecosystem services from the anthropocene to the Ecozoic: Nature’s benefits to the biotic community[J]. Ecosystem Services, 2024, 67: 101624. |
[1] | 刘丛强. 全球变化、层圈相互作用研究与地球系统科学[J]. 地学前缘, 2025, 32(3): 1-6. |
[2] | 陈玖斌, 郑旺, 刘羿, 孙若愚, 袁玮, 孟梅, 蔡虹明, 刘丛强. 同位素地球化学与地球系统圈层相互作用和全球变化研究[J]. 地学前缘, 2025, 32(3): 137-155. |
[3] | 徐胜, 杨业, 张茂亮, 邵延秀, 李云帅, 徐海, 刘静, 刘丛强. 构造-地貌-气候-生态系统动力学研究进展[J]. 地学前缘, 2025, 32(3): 23-34. |
[4] | 李婉珠, 王宝利, 刘丛强. 水体硅碳化学计量趋同的浮游植物驱动机制[J]. 地学前缘, 2025, 32(3): 311-319. |
[5] | 滕辉, 余光辉, 陈春梅, 郝丽萍, 张坚超, 朱翔宇, 孙富生, 王钺博, 刘丛强. 表层地球系统界面过程与土壤圈演化研究[J]. 地学前缘, 2025, 32(3): 35-51. |
[6] | 桑丽源, 郭威, 张静文, 刘艺轩, 章同坤, 张竹卿, 岳展鹏, 李丹阳, 张润, 张旭, 唐伟平, 刘展航, 丁虎, 郎赟超, 刘丛强. 城市地球关键带水文过程与水环境和水资源研究:现状、挑战与未来[J]. 地学前缘, 2025, 32(3): 445-461. |
[7] | 陈喜, 董建志, 王礼春, 张永根, 王学静, 狄崇利, 高满, 刘丛强. 全球变化下生态水文学发展与展望[J]. 地学前缘, 2025, 32(3): 52-61. |
[8] | 刘静, 孙照通, 王文鑫, 李云帅, 姚文倩, 崔凤珍, 刘丛强. 表层地球系统的深部过程响应与地表自然灾害[J]. 地学前缘, 2025, 32(3): 7-22. |
[9] | 王铁军, 晏智锋, 宋照亮, 周浩然, 孙新超, 陈伟, 李攀, 刘丛强. 表层地球系统科学视角下的生态系统科学研究[J]. 地学前缘, 2025, 32(3): 78-91. |
[10] | Michael H. STEPHENSON, Hassina MOURI, Gbenga OKUNLOLA, 程丽, 王猛, 赵宇, 顾立平, 王成善. Future China-Africa research collaboration in geoscience: Challenges and opportunities[J]. 地学前缘, 2025, 32(1): 459-465. |
[11] | 刘丛强, 李思亮, 刘学炎, 王宝利, 郎赟超, 丁虎, 郝丽萍, 张琼予. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466. |
[12] | 邢智峰, 张湘赟, 李婉颖, 齐永安, 郑伟, 吴盼盼, 张立军. PTME后华北板块南缘生物复苏后期古环境特征:来自豫西登封中三叠统二马营组的证据[J]. 地学前缘, 2023, 30(5): 491-509. |
[13] | 毛龙, 汪胜兰, 邱晓峄, 陶卓琳, 冯永忠, 黄银洲. 生态系统恢复力理论在甘肃省国土空间生态修复规划编制中的应用[J]. 地学前缘, 2023, 30(4): 504-513. |
[14] | 谢立军, 白中科, 杨博宇, 陈美景, 付帅, 毛艳超. 碳中和背景下国内外陆地生态系统碳汇评估方法研究进展[J]. 地学前缘, 2023, 30(2): 447-462. |
[15] | 吴立新, 荆钊, 陈显尧, 李才文, 张国良, 王师, 董波, 庄光超. 我国海洋科学发展现状与未来展望[J]. 地学前缘, 2022, 29(5): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||