地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 156-167.DOI: 10.13745/j.esf.sf.2025.3.50
杨毅1,2(), 钟音3, 汪善全4, 王红岩1, 廖恒毅1,5, 王欣6
收稿日期:
2025-03-02
修回日期:
2025-03-09
出版日期:
2025-03-25
发布日期:
2025-04-20
作者简介:
杨 毅(1986—),男,研究员,博士生导师,主要从事有机卤呼吸厌氧微生物及其应用研究。E-mail:yangyi@iae.ac.cn
基金资助:
YANG Yi1,2(), ZHONG Yin3, WANG Shanquan4, WANG Hongyan1, LIAO Hengyi1,5, WANG Xin6
Received:
2025-03-02
Revised:
2025-03-09
Online:
2025-03-25
Published:
2025-04-20
摘要:
地球宜居性的演化与大气和海洋中氧气含量的变化密切相关,特别是大氧化事件(Great Oxidation Event,GOE)和新元古代氧化事件(Neoproterozoic Oxygenation Event,NOE)这两个关键的氧化事件。这些事件不仅影响地球的铁矿物形成过程,还对氮循环产生深远影响,如通过增加氧气浓度促进硝酸盐的生物可利用性。同样,卤素循环,包括卤化和脱卤过程,也可能受到早期地球氧化环境的影响。卤化酶,如卤过氧化物酶和卤化酶,需要氧气来氧化卤族元素并产生有机卤化物。因此,氧化事件可能在非生物产生卤化物以及卤化酶的增加和扩散中扮演了重要角色,从而促进地球上成千上万有机卤化物的生产。随着天然有机卤化物数量的增加,脱卤微生物的进化和脱卤基因(例如,还原脱卤酶基因)的水平转移速率可能加速。以脱卤球菌纲微生物为代表的专性脱卤微生物,包括Dehalococcoides和Dehalogenimonas菌株,被推断在寒武系时期出现。此类微生物在有机卤化物的生物地球化学循环中扮演着关键角色,然而关于它们的起源与进化及脱卤基因的演化信息仍然有限,限制了我们对地质时间尺度上卤素循环的理解。本研究旨在探讨地球宜居性演化过程中卤素的角色,特别是有机卤化物的起源和有机卤呼吸微生物的进化。我们将从地质时间尺度的角度,结合生物地球化学循环的视角,分析有机卤化物的生产、脱卤微生物的分布和演化,以及卤化酶和脱卤酶在地球氧化事件中的作用。通过这项研究,我们希望能够更深入地理解卤素循环在地球宜居性演化中的重要性,并为未来的环境管理和生物修复提供科学依据。
中图分类号:
杨毅, 钟音, 汪善全, 王红岩, 廖恒毅, 王欣. 地球宜居性演化中的卤素角色:从地质时间尺度看有机卤起源与有机卤呼吸微生物进化[J]. 地学前缘, 2025, 32(3): 156-167.
YANG Yi, ZHONG Yin, WANG Shanquan, WANG Hongyan, LIAO Hengyi, WANG Xin. The role of halogens in Earth’s habitability evolution: The origin of organohalogens and the evolution of organohalide-respiring microorganisms over geological time scales[J]. Earth Science Frontiers, 2025, 32(3): 156-167.
[1] | 朱日祥, 侯增谦, 郭正堂, 等. 宜居地球的过去、现在与未来: 地球科学发展战略概要[J]. 科学通报, 2021, 66(35): 4485-4490. |
[2] | MARTIN R. Earth’s evolving systems: the history of planet Earth[M]. Burlington, MA: Jones & Bartlett Publishers, 2013. |
[3] | HARLOV D E, ARANOVICH L. The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle[M]. Cham: Springer, 2018. |
[4] | PETERS D G. Halogenated organic compounds[M] //HAMMERICHO, LUNDH.Organic electrochemistry. Boca Raton, FL: CRC Press, 2000: 353-395. |
[5] |
AGARWAL V, MILES Z D, WINTER J M, et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse[J]. Chemical Reviews, 2017, 117(8): 5619-5674.
DOI PMID |
[6] |
ATASHGAHI S, HÄGGBLOM M M, SMIDT H. Organohalide respiration in pristine environments: implications for the natural halogen cycle[J]. Environmental Microbiology, 2018, 20(3): 934-948.
DOI PMID |
[7] | HUG L A, MAPHOSA F, LEYS D, et al. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1616): 20120322. |
[8] | 杨毅, 张耀之, 李秀颖, 等. 脱卤球菌纲(Dehalococcodia Class)在有机卤化物生物地球化学循环中的作用[J]. 环境科学学报, 2019, 39(10): 3207-3214. |
[9] | 徐义刚, 黄小龙, 王强, 等. 地球宜居性的深部驱动机制[J]. 科学通报, 2024, 69(2): 169-183. |
[10] | LÉCUYER C. Water on Earth: physicochemical and biological properties[M]. Hoboken, NJ: John Wiley & Sons, 2013. |
[11] | JACKSON R B, CARPENTER S R, DAHM C N, et al. Water in a changing world[J]. Ecological Applications, 2001, 11(4): 1027-1045. |
[12] | BADA J L. How life began on Earth: a status report[J]. Earth and Planetary Science Letters, 2004, 226(1/2): 1-15. |
[13] | ABE Y, OHTANI E, OKUCHI T, et al. Water in the early Earth[M] //CANUPR M, RIGHTERK. Origin of the Earth and Moon. Tucson: University of Arizona Press, 2000: 413-433. |
[14] | BALL P. Life’s matrix: a biography of water[M]. Berkeley, CA: University of California Press, 2001. |
[15] | MACDOUGALL D. Frozen earth: the once and future story of ice ages[M]. Berkeley, CA: University of California Press, 2013. |
[16] | SUMMERHAYES C P. Paleoclimatology: from snowball Earth to the anthropocene[M]. Hoboken, NJ: John Wiley & Sons, 2020. |
[17] | BAO P, LI G X, SUN G X, et al. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling[J]. Science of The Total Environment, 2018, 613-614: 398-408. |
[18] |
MARGESIN R, MITEVA V. Diversity and ecology of psychrophilic microorganisms[J]. Research in Microbiology, 2011, 162(3): 346-361.
DOI PMID |
[19] | RABUS R, RUEPP A, FRICKEY T, et al. The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments[J]. Environmental Microbiology, 2004, 6(9): 887-902. |
[20] | WILLIAMS T J, LIAO Y, YE J, et al. Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi[J]. Environmental Microbiology, 2017, 19(6): 2210-2227. |
[21] | SAXENA A K, YADAV A N, RAJAWAT M V S, et al. Microbial diversity of extreme regions: an unseen heritage and wealth[J]. Indian Journal of Plant Genetic Resources, 2016, 29(3): 246-248. |
[22] | SINGH P, JAIN K, DESAI C, et al. Microbial community dynamics of extremophiles/extreme environment[M] //DASS, DASHH R.Microbial diversity in the genomic era. New York, NY: Academic Press, 2019: 323-332. |
[23] | RIZZOTTI M. The earliest anaerobic and aerobic life[M] //MINELLIA, CONTRAFATTOG. Biological science fundamentals and systematics. Vol. I. Oxford: Eolss Publishers, 2009: 212-230. |
[24] | TAVERNE Y J, MERKUS D, BOGERS A J, et al. Reactive oxygen species: radical factors in the evolution of animal life: a molecular timescale from Earth’s earliest history to the rise of complex life[J]. BioEssays, 2018, 40(3): 1700158. |
[25] | KNOLL A H. The multiple origins of complex multicellularity[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 217-239. |
[26] |
FUGE R. Fluorine in the environment, a review of its sources and geochemistry[J]. Applied Geochemistry, 2019, 100: 393-406.
DOI |
[27] | WINTERTON N. Chlorine: the only green element-towards a wider acceptance of its role in natural cycles[J]. Green Chemistry, 2000, 2(5): 173-225. |
[28] | BARNUM T P, COATES J D. The biogeochemical cycling of chlorine[J]. Geobiology, 2022, 20(5): 634-649. |
[29] | VAINIKKA P, HUPA M. Review on bromine in solid fuels. Part 1: natural occurrence[J]. Fuel, 2012, 95: 1-14. |
[30] | SANYAOLU O M, MOURI H, SELINUS O, et al. Sources, pathways, and health effects of iodine in the environment[M] //SIEGELM, SELINUSO, FINKELMANR. Practical applications of medical geology. Cham: Springer, 2021: 565-613. |
[31] | ANTONYAK H L, PANAS N E, PERSHYN O I, et al. Iodine in abiotic and biotic environments[J]. Studia Biologica, 2018, 12(2): 117-134. |
[32] | BOGASHOVA L G. Influence of halogen processes on the hydrosphere, lithosphere, and biosphere[J]. Geochemistry International, 2011, 49(9): 925-936. |
[33] | EPP T. Halogen (F, Cl, Br, I) cycling in the critical zone: formation of primary ore deposits, their supergene weathering and the fate of halogens in soil and along the hydrological flow path[D]. Tübingen: University of Tübingen, 2020. |
[34] | PENG X, WANG W, XIA M, et al. An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality[J]. National Science Review, 2021, 8(7): nwaa304. |
[35] | YU H, KONG B, DU R X, et al. The distribution characteristics of halogen elements in soil under the impacts of geographical backgrounds and human disturbances[J]. Geoderma, 2017, 305: 236-249. |
[36] | LU Q B. Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: culprits for atmospheric ozone depletion and global climate change[J]. International Journal of Modern Physics B, 2013, 27(17): 1350073. |
[37] | LEYS D, ADRIAN L, SMIDT H. Organohalide respiration: microbes breathing chlorinated molecules[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1616): 20120316. |
[38] | LIAO H, WANG X, WANG X, et al. Organohalide respiration: retrospective and perspective through bibliometrics[J]. Frontiers in Microbiology, 2024, 15: 1490849. |
[39] |
BLANCHETTE M, KENT W J, RIEMER C, et al. Aligning multiple genomic sequences with the threaded blockset aligner[J]. Genome Research, 2004, 14(4): 708-715.
DOI PMID |
[40] |
YANG Z. PAML 4: phylogenetic analysis by maximum likelihood[J]. Molecular Biology and Evolution, 2007, 24(8): 1586-1591.
DOI PMID |
[41] | 袁巍, 毕欢, 张雨丹, 等. 基于比较基因组分析猪特有基因家族及其进化[J]. 基因组学与应用生物学, 2023, 42(7): 726-735. |
[42] |
KUMAR S, STECHER G, SULESKI M, et al. TimeTree: a resource for timelines, timetrees, and divergence times[J]. Molecular Biology and Evolution, 2017, 34(7): 1812-1819.
DOI PMID |
[43] |
MARIN J, BATTISTUZZI F U, BROWN A C, et al. The timetree of prokaryotes: new insights into their evolution and speciation[J]. Molecular Biology and Evolution, 2017, 34(2): 437-446.
DOI PMID |
[44] | KASTING J F, HOWARD M T. Atmospheric composition and climate on the early Earth[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1474): 1733-1742. |
[45] | BARNES C R. Paleoceanography and paleoclimatology: an Earth system perspective[J]. Chemical Geology, 1999, 161(1/2/3): 17-35. |
[46] | CLAY P L, BURGESS R, BUSEMANN H, et al. Halogens in chondritic meteorites and terrestrial accretion[J]. Nature, 2017, 551(7682): 614-618. |
[47] | KENDRICK M A. Halogen cycling in the solid Earth[J]. Annual Review of Earth and Planetary Sciences, 2024, 52: 195-220. |
[48] | XIAO X, ZHANG Y. Life in extreme environments: approaches to study life-environment co-evolutionary strategies[J]. Science China Earth Sciences, 2014, 57(5): 869-877. |
[49] | YANG Y, ZHANG Y, CÁPIRO N L, et al. Genomic characteristics distinguish geographically distributed Dehalococcoidia[J]. Frontiers in Microbiology, 2020, 11: 546063. |
[50] |
LUDEWIG H, MOLYNEUX S, FERRINHO S, et al. Halogenases: structures and functions[J]. Current Opinion in Structural Biology, 2020, 65: 51-60.
DOI PMID |
[51] |
LATHAM J, BRANDENBURGER E, SHEPHERD S A, et al. Development of halogenase enzymes for use in synthesis[J]. Chemical Reviews, 2018, 118(1): 232-269.
DOI PMID |
[52] | VAN PÉE K H, DONG C, FLECKS S, et al. Biological halogenation has moved far beyond haloperoxidases[J]. Advances in Applied Microbiology, 2006, 59: 127-157. |
[53] |
VAN PÉE K H. Microbial biosynthesis of halometabolites[J]. Archives of Microbiology, 2001, 175(4): 250-258.
PMID |
[54] |
RICHARDSON R E. Genomic insights into organohalide respiration[J]. Current Opinion in Biotechnology, 2013, 24(3): 498-505.
DOI PMID |
[55] |
BOMMER M, KUNZE C, FESSELER J, et al. Structural basis for organohalide respiration[J]. Science, 2014, 346(6208): 455-458.
DOI PMID |
[56] |
SUFLITA J M, HOROWITZ A, SHELTON D R, et al. Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds[J]. Science, 1982, 218(4577): 1115-1117.
PMID |
[57] | TEMME H R, NOVAK P J. Diverse dechlorinators and dechlorination genes enriched through amendment of chlorinated natural organic matter fractions[J]. Environmental Science: Processes & Impacts, 2020, 22(3): 595-605. |
[58] | KRZMARZICK M J, CRARY B B, HARDING J J, et al. Natural niche for organohalide-respiring Chloroflexi[J]. Applied and Environmental Microbiology, 2012, 78(2): 393-401. |
[59] | YANG Y, SANFORD R, YAN J, et al. Roles of organohalide-respiring Dehalococcoidia in carbon cycling[J]. mSystems, 2020, 5(3): e00757-19. |
[60] | ADRIAN L, LÖFFLER F E. Organohalide-respiring bacteria[M]. Berlin:Springer, 2016. |
[61] | MAYMÓ-GATELL X, CHIEN Y T, GOSSETT J M, et al. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene[J]. Science, 1997, 276(5318): 1568-1571. |
[62] | KRASPER L, LILIE H, KUBLIK A, et al. The MarR-type regulator Rdh2R regulates rdh gene transcription in Dehalococcoides mccartyi strain CBDB1[J]. Journal of Bacteriology, 2016, 198(23): 3130-3141. |
[63] | OGATA H, LUBITZ W, HIGUCHI Y. Structure and function of [NiFe] hydrogenases[J]. The Journal of Biochemistry, 2016, 160(5): 251-258. |
[64] | MORTAN S H, MARTÍN-GONZÁLEZ L, VICENT T, et al. Detoxification of 1, 1, 2-trichloroethane to ethene in a bioreactor co-culture of Dehalogenimonas and Dehalococcoides mccartyi strains[J]. Journal of Hazardous Materials, 2017, 331: 218-225. |
[65] | BUCHNER D, MARTIN P R, SCHECKENBACH J, et al. Effects of bacterial growth conditions on carbon and chlorine isotope fractionation associated with TCE biotransformation[J]. ACS ES&T Water, 2022, 2(12): 2510-2518. |
[66] | TOMITA R, YOSHIDA N, MENG L. Formate: a promising electron donor to enhance trichloroethene-to-ethene dechlorination in Dehalococcoides-augmented groundwater ecosystems with minimal bacterial growth[J]. Chemosphere, 2022, 307: 136080. |
[67] | SUNG Y, FLETCHER K E, RITALAHTI K M, et al. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium[J]. Applied and Environmental Microbiology, 2006, 72(4): 2775-2782. |
[68] | YANG Y, SCHUBERT T, LV Y, et al. Comparative genomic analysis reveals preserved features in organohalide-respiring Sulfurospirillum strains[J]. mSphere, 2022, 7(1): e00931-21. |
[69] | OCH L M, SHIELDS-ZHOU G A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 26-57. |
[70] | KNOLL A H, NOWAK M A. The timetable of evolution[J]. Science Advances, 2017, 3(5): e1603076. |
[71] | CANFIELD D E. THe early history of atmospheric oxygen: homage to Robert M. Garrels[J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 1-36. |
[72] | LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315. |
[73] |
HUG L A, THOMAS B C, SHARON I, et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages[J]. Environmental Microbiology, 2016, 18(1): 159-173.
DOI PMID |
[74] | LIU J, HARDISTY D S, KASTING J F, et al. Evolution of the iodine cycle and the late stabilization of the Earth’s ozone layer[J]. Proceedings of the National Academy of Sciences, 2025, 122(2): e2412898121. |
[75] | 谢烨婷, 张晓艳, 邓招超, 等. 海洋环境中卤代有机化合物的厌氧微生物还原脱卤研究进展[J/OL]. 微生物学通报, 2024, 1-17 [2025-03-01].https://link.cnki.net/doi/10.13344/j.microbiol.china.240446. |
[76] | 唐斌. 卤代持久性有机污染物和有机磷系阻燃剂在鱼体内的生物富集、食物链传递及生物转化[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019. |
[77] | ZHU X, YANG F, LI Z, et al. Substantial halogenated organic chemicals stored in permafrost soils on the Tibetan Plateau[J]. Nature Geoscience, 2023, 16(11): 989-996. |
[78] | HE J, BEDARD D L. The microbiology of anaerobic PCB dechlorination[M] //ADRIANL, LÖFFLERF E.Organohalide-respiring bacteria. Berlin: Springer, 2016: 541-562. |
[79] | CHEN R, QIN R, BAI H, et al. Recent advances and optimization strategies for the microbial degradation of PCBs: from monocultures to microbial consortia[J]. Critical Reviews in Environmental Science and Technology, 2024, 54(14): 1023-1049. |
[80] | WANG S, CHNG K R, WILM A, et al. Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls[J]. Proceedings of the National Academy of Sciences, 2014, 111(33): 12103-12108. |
[81] |
ATASHGAHI S, LIEBENSTEINER M G, JANSSEN D B, et al. Microbial synthesis and transformation of inorganic and organic chlorine compounds[J]. Frontiers in Microbiology, 2018, 9: 3079.
DOI PMID |
[82] |
LU Q, QIU L, YU L, et al. Microbial transformation of chiral organohalides: distribution, microorganisms and mechanisms[J]. Journal of Hazardous Materials, 2019, 368: 849-861.
DOI PMID |
[83] |
LÖFFLER F E, EDWARDS E A. Harnessing microbial activities for environmental cleanup[J]. Current Opinion in Biotechnology, 2006, 17(3): 274-284.
PMID |
[84] | FRIIS A K, HEIMANN A C, JAKOBSEN R, et al. Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture[J]. Water Research, 2007, 41(2): 355-364. |
[85] | FLETCHER K E, COSTANZA J, CRUZ-GARCIA C, et al. Effects of elevated temperature on Dehalococcoides dechlorination performance and DNA and RNA biomarker abundance[J]. Environmental Science & Technology, 2011, 45(2): 712-718. |
[86] | WU Q, BEDARD D L, WIEGEL J. Effect of incubation temperature on the route of microbial reductive dechlorination of 2, 3, 4, 6-tetrachlorobiphenyl in polychlorinated biphenyl (PCB)-contaminated and PCB-free freshwater sediments[J]. Applied and Environmental Microbiology, 1997, 63(7): 2836-2843. |
[87] |
WIEGEL J, WU Q. Microbial reductive dehalogenation of polychlorinated biphenyls[J]. FEMS Microbiology Ecology, 2000, 32(1): 1-15.
PMID |
[88] | YANG Y, MCCARTY P L. Biologically enhanced dissolution of tetrachloroethene DNAPL[J]. Environmental Science & Technology, 2000, 34(14): 2979-2984. |
[89] | HUANG D, BECKER J G. Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations[J]. Environmental Science & Technology, 2011, 45(3): 1093-1099. |
[90] | YAN J, IM J, YANG Y, et al. Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1616): 20120320. |
[91] | ÖBERG G. The natural chlorine cycle-fitting the scattered pieces[J]. Applied Microbiology and Biotechnology, 2002, 58(5): 565-581. |
[1] | 刘丛强. 全球变化、层圈相互作用研究与地球系统科学[J]. 地学前缘, 2025, 32(3): 1-6. |
[2] | 陈玖斌, 郑旺, 刘羿, 孙若愚, 袁玮, 孟梅, 蔡虹明, 刘丛强. 同位素地球化学与地球系统圈层相互作用和全球变化研究[J]. 地学前缘, 2025, 32(3): 137-155. |
[3] | 弓耀奇, 岳甫均, 刘鑫, 郭田丽, 王浩阳, 李思亮. 基于流域系统水文水环境耦合模型的氮循环研究进展[J]. 地学前缘, 2025, 32(3): 183-195. |
[4] | 王鑫宇, 徐海, 王晶, 杨妍, 王福, 刘丛强. 有机分子组成揭示渤海西岸末次盛冰期以来海平面变化对滨海湿地生态演化的影响[J]. 地学前缘, 2025, 32(3): 320-333. |
[5] | 谢显刚, 赵文斌, 张茂亮, 郭正府, 徐胜. 青藏高原典型时段火山活动碳释放规模及其环境意义[J]. 地学前缘, 2025, 32(3): 350-361. |
[6] | 何晟, 蔡虹明, 袁玮, 陈玖斌. 河流汞同位素研究进展[J]. 地学前缘, 2025, 32(3): 375-391. |
[7] | 杨睿涵, 杨业, 曹振平, 徐胜. 大气宇宙成因核素10Be在地球科学研究中的应用:进展与展望[J]. 地学前缘, 2025, 32(3): 392-407. |
[8] | 李思亮, 王欣楚, 戚羽霖, 钟君, 丁虎, 文航, 刘学炎, 郎赟超, 易沅壁, 王宝利, 刘丛强. 流域生物地球化学循环与表层地球系统层圈相互作用[J]. 地学前缘, 2025, 32(3): 62-77. |
[9] | 刘君安, 朱意萍, 姜瀚涛, César De La Cruz POMA, Oliberth Pascual GODOY, Luis Enrique Vargas RODRÍGUEZ, 郭维民, 姚春彦, 王天刚, 张明, 姚仲友. 秘鲁中部曼塔罗盆地土壤地球化学特征及质量评价[J]. 地学前缘, 2025, 32(1): 219-235. |
[10] | 周念清, 郭梦申, 蔡奕, 陆帅帅, 刘晓群, 赵文刚. 湿地关键带碳循环与碳源碳汇转化机制及碳交换量化模式[J]. 地学前缘, 2024, 31(6): 436-449. |
[11] | 李亮, 姜志伟, 吴秉津, 韦栋文, 王文海. 开放系统下铅锌对地质碳汇的影响研究[J]. 地学前缘, 2024, 31(5): 421-429. |
[12] | 马建华, 刘金锋, 周永章, 郑益军, 陆可飞, 林星雨, 王汉雨, 张灿. 面向地质封存及其泄漏风险评价的CO2物联网在线监测[J]. 地学前缘, 2024, 31(4): 139-146. |
[13] | 王汉雨, 周永章, 许娅婷, 王维曦, 曹伟, 刘永强, 贺炬翔, 陆可飞. 基于微服务架构的城市土壤污染物联网监测及可视化系统研发[J]. 地学前缘, 2024, 31(4): 165-182. |
[14] | 王野, 陈旸, 陈骏. 岩石有机碳风化及其控制因素[J]. 地学前缘, 2024, 31(2): 402-409. |
[15] | 徐蓉桢, 魏世博, 李成业, 程旭学, 周翔宇. 基于水化学与环境同位素的额济纳平原区域地下水循环规律解析[J]. 地学前缘, 2023, 30(4): 440-450. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||