地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 320-333.DOI: 10.13745/j.esf.sf.2025.3.21
王鑫宇1(), 徐海1,2,*(
), 王晶2, 杨妍1, 王福3, 刘丛强1
收稿日期:
2025-01-09
修回日期:
2025-02-20
出版日期:
2025-03-25
发布日期:
2025-04-20
通信作者:
*徐 海(1975—),男,博士,教授,博士生导师,主要从事湖沼环境过程、记录与全球变化研究。E-mail: 作者简介:
王鑫宇(2000—),男,硕士研究生,主要从事有机地球化学研究。E-mail: 1677246138@qq.com
基金资助:
WANG Xinyu1(), XU Hai1,2,*(
), WANG Jing2, YANG Yan1, WANG Fu3, Liu Cong-Qiang1
Received:
2025-01-09
Revised:
2025-02-20
Online:
2025-03-25
Published:
2025-04-20
摘要:
滨海湿地生态系统是重要的生态系统之一,对环境变化响应敏感。海平面变化会直接影响滨海湿地的物质来源,进而影响湿地生态系统演化。然而,由于可靠地质记录的相对稀缺,长时间尺度海平面变化对滨海湿地生态系统的影响尚未全面澄清。本文旨在从沉积物有机分子组成视角探讨末次盛冰期(约22 000 a BP)以来渤海西岸海平面变化对滨海湿地生态系统演化的影响。本文基于超高分辨率傅里叶变换离子回旋共振质谱(FT-ICR MS)技术分析了渤海西岸沉积物有机分子组成,结果表明末次盛冰期沉积物内源脂肪族化合物占比较高,在海平面较现代海平面平均低约130 m,在渤海西岸滨海湿地不发育情境下该区可能存在局部水系并发育湖沼环境。进入全新世,海平面快速上升,本文岩心的两个海相地层记录了约7 100~6 900 a BP和约6 000~5 650 a BP两次海侵事件;约5 650 a BP以后,海平面相对稳定但缓慢下降,海岸线逐渐后退,形成了6道古海岸线和6期潟湖洼地。本研究表明滨海沉积物有机质CHO组分对海平面变化引起的环境变迁响应灵敏,有机质H/C和O/C的变化趋势指示滨海湿地在约8 050~4 850 a BP经历了陆相—海相—陆相的环境转变。其中约8 050 a BP和约4 850 a BP较高的O/C和较低的H/C表明这两个时期渤海西岸可能发育潟湖洼地,有机质主要来自陆生、半水生植物及土壤微生物活动;约5 700 a BP内源脂肪族化合物占比明显较高,表明滨海湿地转变为海洋环境,有机质主要来源转变为水生藻类和浮游生物。约1 350 a BP内源有机组分占比15.68%,显著高于约8 050 a BP和约4 850 a BP,表明湿地生态演化可能受到较强人类活动的干扰。本文的研究结果为认识海平面变化对滨海湿地生态系统演化的影响提供了新的视角和证据。
中图分类号:
王鑫宇, 徐海, 王晶, 杨妍, 王福, 刘丛强. 有机分子组成揭示渤海西岸末次盛冰期以来海平面变化对滨海湿地生态演化的影响[J]. 地学前缘, 2025, 32(3): 320-333.
WANG Xinyu, XU Hai, WANG Jing, YANG Yan, WANG Fu, Liu Cong-Qiang. Organic matter molecular composition reveals the impact of sea level change on the evolution of coastal wetland ecosystem since the Last Glacial Maximum on the west coast of Bohai Sea[J]. Earth Science Frontiers, 2025, 32(3): 320-333.
图1 研究区钻孔点位及全新世海侵最大范围与古海岸线示意图 DC01、QX01和QX03为研究区域三个平行钻孔(据文献[22]);虚线与数据代表古海岸线位置与年龄(据文献[23])。本图下载自国家测绘地理信息局标准地图服务网站(http://bzdt.ch.mnr.gov.cn),审图号为GS(2016)1609。
Fig.1 Sketch map of the core locations in the study area, and maximum extent of Holocene marine encroachment and location of palaeoshorelines. DC01, QX01 and QX03 are three parallel cores in the study area (adapted from [22]). The curves and data represent the position of the palaeoshorelines and their ages (adapted from [23]).
样品编号 | 深度/ m | 年代/ a BP | 分子数 | m/zw | Cw | Hw | Ow | Nw | Sw | H/Cw | O/Cw | N/Cw | S/Cw | DBEw | KMDw | AI-modw |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QX01-1.45 | 1.45 | 1 350 | 4 777 | 380.05 | 17.04 | 20.02 | 8.93 | 0.45 | 0.17 | 1.18 | 0.55 | 0.04 | 0.01 | 8.31 | 0.32 | 0.24 |
QX01-5.4 | 5.4 | 4 850 | 2 836 | 385.23 | 16.83 | 18.55 | 9.70 | 0.59 | 0.07 | 1.11 | 0.60 | 0.04 | 0.004 | 8.85 | 0.34 | 0.28 |
QX01-6.8 | 6.8 | 5 700 | 5 073 | 385.51 | 17.37 | 20.46 | 8.98 | 0.53 | 0.20 | 1.18 | 0.54 | 0.04 | 0.01 | 8.41 | 0.33 | 0.25 |
QX01-12.4 | 12.4 | 8 050 | 3 419 | 388.82 | 17.03 | 18.62 | 9.64 | 0.58 | 0.14 | 1.09 | 0.59 | 0.04 | 0.01 | 9.01 | 0.35 | 0.29 |
QX01-15.0 | 15.0 | 22 000 | 4 044 | 376.01 | 17.04 | 20.40 | 8.69 | 0.49 | 0.19 | 1.16 | 0.42 | 0.03 | 0.61 | 8.09 | 0.32 | 0.15 |
表1 QX01钻孔5个沉积物有质机分子特征
Table 1 Sedimentary organic matter molecular composition results of 5 samples from core QX01
样品编号 | 深度/ m | 年代/ a BP | 分子数 | m/zw | Cw | Hw | Ow | Nw | Sw | H/Cw | O/Cw | N/Cw | S/Cw | DBEw | KMDw | AI-modw |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QX01-1.45 | 1.45 | 1 350 | 4 777 | 380.05 | 17.04 | 20.02 | 8.93 | 0.45 | 0.17 | 1.18 | 0.55 | 0.04 | 0.01 | 8.31 | 0.32 | 0.24 |
QX01-5.4 | 5.4 | 4 850 | 2 836 | 385.23 | 16.83 | 18.55 | 9.70 | 0.59 | 0.07 | 1.11 | 0.60 | 0.04 | 0.004 | 8.85 | 0.34 | 0.28 |
QX01-6.8 | 6.8 | 5 700 | 5 073 | 385.51 | 17.37 | 20.46 | 8.98 | 0.53 | 0.20 | 1.18 | 0.54 | 0.04 | 0.01 | 8.41 | 0.33 | 0.25 |
QX01-12.4 | 12.4 | 8 050 | 3 419 | 388.82 | 17.03 | 18.62 | 9.64 | 0.58 | 0.14 | 1.09 | 0.59 | 0.04 | 0.01 | 9.01 | 0.35 | 0.29 |
QX01-15.0 | 15.0 | 22 000 | 4 044 | 376.01 | 17.04 | 20.40 | 8.69 | 0.49 | 0.19 | 1.16 | 0.42 | 0.03 | 0.61 | 8.09 | 0.32 | 0.15 |
样品编号 | 各元素组合类别占比/% | 各物质组合类占比/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CHO | CHON | CHOS | CHONS | 木质素类 | 单宁类 | 不饱和烃类 | 芳香族 | 脂质 | 蛋白质 | 碳水化合物 | ||
QX01-1.45 | 45.59 | 40.36 | 12.61 | 1.44 | 50.84 | 25.17 | 0.93 | 7.38 | 1.8 | 7.75 | 6.13 | |
QX01-5.4 | 53.01 | 39.01 | 7.73 | 0.25 | 47.03 | 25.77 | 8.62 | 7.19 | 0.85 | 5.67 | 4.87 | |
QX01-6.8 | 40.18 | 34.93 | 20.77 | 4.12 | 61.87 | 7.06 | 3.98 | 4.05 | 2.4 | 13.28 | 7.36 | |
QX01-12.4 | 46.22 | 37.69 | 15.98 | 0.11 | 53.95 | 23.49 | 5.98 | 9.64 | 0.54 | 5.13 | 1.27 | |
QX01-15.0 | 41.88 | 30.37 | 24.46 | 3.29 | 52.82 | 18.34 | 3.11 | 9.17 | 3.07 | 9.97 | 3.52 |
表2 QX01钻孔5个沉积物有机质分子化合物类别及元素组成
Table 2 The compound groups and elemental composition of SOM molecular composition of 5 samples from core QX01
样品编号 | 各元素组合类别占比/% | 各物质组合类占比/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CHO | CHON | CHOS | CHONS | 木质素类 | 单宁类 | 不饱和烃类 | 芳香族 | 脂质 | 蛋白质 | 碳水化合物 | ||
QX01-1.45 | 45.59 | 40.36 | 12.61 | 1.44 | 50.84 | 25.17 | 0.93 | 7.38 | 1.8 | 7.75 | 6.13 | |
QX01-5.4 | 53.01 | 39.01 | 7.73 | 0.25 | 47.03 | 25.77 | 8.62 | 7.19 | 0.85 | 5.67 | 4.87 | |
QX01-6.8 | 40.18 | 34.93 | 20.77 | 4.12 | 61.87 | 7.06 | 3.98 | 4.05 | 2.4 | 13.28 | 7.36 | |
QX01-12.4 | 46.22 | 37.69 | 15.98 | 0.11 | 53.95 | 23.49 | 5.98 | 9.64 | 0.54 | 5.13 | 1.27 | |
QX01-15.0 | 41.88 | 30.37 | 24.46 | 3.29 | 52.82 | 18.34 | 3.11 | 9.17 | 3.07 | 9.97 | 3.52 |
图3 (a)各元素组合对应化合物的相对丰度;(b)各物质组合对应化合物的相对丰度
Fig.3 (a)Relative abundance of compounds corresponding to combinations of elements; (b)Relative abundance of compounds corresponding to each substance combination
图4 海平面变化及有机分子组成记录 (a)全球平均表面温度(据文献[36]);(b)65°N-6月太阳辐射强度(据文献[36]);(c)GISP2温度(据文献[41]);(d)30°~90°N温度(据文献[42]);(e)蓝色曲线—末次盛冰期以来全球相对海平面高度(据文献[37]),红色曲线—末次盛冰期中国黄海相对海平面高度(据文献[38]);(f)有机质内源组分和外源组分相对含量;(g),(h)有机质各种物质组分相对含量;(i)-(l)分别为有机分子的DBEw、AI-modw、Hw和Ow(本文)。
Fig.4 Records of sea level change and organic molecular composition
图5 渤海湾古海岸线变化与滨海湿地演化示意图 “古北大港”等蓝色区域为常年积水地区;浅蓝色区域为各期潟湖类洼地;深蓝色区域为海水淹没区域;实线和虚线代表古海岸线,数据代表古海岸线年代,改自文献[43]。
Fig.5 Paleo-coastline changes and coastal wetland evolution in Bohai Bay. Blue areas such as the ‘ancient Bei Da Gang’ are areas of perennial waterlogging. Light blue areas are lagoon type, and depressions of various phases. Dark blue areas are sea water inundation areas. Solid and dotted lines represent palaeoshorelines, and data represent palaeoshorelines ages (modified after [43]).
图6 约4 850 a BP、约5 700 a BP和约8 050 a BP三个样品有机质CHO组分对比 韦恩图(a)展示了三个样品中的共有分子和独特分子的数量,三个样品的共有分子数有1 293个,独特分子数分别为42个、21个、553个;V-K图(b)展示了三个样品中的共同组分和特殊组分的分布。
Fig.6 Comparison of CHO fractions of three samples. Venn diagram (a) demonstrates the number of common and unique molecules in the three samples, with 1293 common molecules and 42, 21 and 553 unique molecules in the three samples, respectively. V-K diagram (b) demonstrates the distributions of common and unique components in the three samples.
图7 约4 850 a BP、约5 700 a BP和约8 050 a BP三个样品中高含氧量芳香性化合物(AI-modw<0.67,O/C>0.4) 红色实线为AI-modw=0.67;黑色虚线为O/C=0.4;黑色圆圈标记的为陆源有机质,据文献[21]。
Fig.7 Highly oxygenated aromatic compounds (AI-modw<0.67, O/C>0.4) in three samples. The red solid line is AI-modw=0.67. The black dashed line is O/C=0.4. The black circles mark land-based sources of organic matter (adapted from [21]).
图8 (a)-(c)约4 850 a BP、约5 700 a BP和约8 050 a BP三个样品中含硫有机分子在V-K图中的分布;(d)不同样品中含硫有机分子相对丰度
Fig.8 (a)-(c)Distribution of sulfur compounds in the V-K diagrams of the three samples;(d)Relative abundance of sulfur compounds in different samples
[1] | 雷茵茹, 崔丽娟, 李伟, 等. 气候变化对中国滨海湿地的影响及对策[J]. 湿地科学与管理, 2016, 12(2): 59-62. |
[2] | KIRWAN M L, MEGONIGAL J P. Tidal wetland stability in the face of human impacts and sea-level rise[J/OL]. Nature, 2013, 504(7478): 53-60. DOI:10.1038/nature12856. |
[3] | 2023年中国海平面公报[N]. 中国自然资源报, 2024-05-13(5). |
[4] | CHAMBERS L G, STEINMULLER H E, BREITHAUPT J L. Toward a mechanistic understanding of “peat collapse” and its potential contribution to coastal wetland loss[J/OL]. Ecology, 2019, 100(7): e02720. DOI:10.1002/ecy.2720. |
[5] | SUN F, CARSON R T. Coastal wetlands reduce property damage during tropical cyclones[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(11): 5719-5725. DOI:10.1073/pnas.1915169117. |
[6] | 李凤林, 阎玉忠, 商志文, 等. 渤海西岸全新世气候演化与海陆变迁[J]. 地质学刊, 2014, 38(2): 173-186. |
[7] | 王宏, 李建芬, 裴艳东, 等. 渤海湾西岸海岸带第四纪地质研究成果概述[J]. 地质调查与研究, 2011, 34(2): 81-97. |
[8] | 王福, 李建芬, 陈永胜, 等. QX01孔记录的渤海湾西岸沿海低地MIS3晚期以来的河道充填与环境演化[J/OL]. 地学前缘, 2016, 23(4): 301- 309. DOI:10.13745/j.esf.2016.04.026. |
[9] | 王福, 王宏, 王云生, 等. 黄骅港北侧潮间带及浅海区沉积物粒度特征[J]. 海洋地质与第四纪地质, 2011, 31(4): 69-74. |
[10] | 陈永胜, 李建芬, 王福, 等. 渤海湾西岸现代岸线钻孔记录的全新世沉积环境与相对海面变化[J/OL]. 吉林大学学报(地球科学版), 2016, 46(2): 499-517. DOI:10.13278/j.cnki.jjuese.201602116. |
[11] | SHE Z, LI Y, GE Y, et al. Late Holocene environmental evolution of Qilihai Lagoon, North China, based on a high-resolution multi-proxy sedimentary record[J/OL]. Catena, 2022, 210: 105942. DOI:10.1016/j.catena.2021.105942. |
[12] | 陈永胜, 王福, 姜兴钰, 等. 渤海湾西岸QX02孔Ⅱ海的识别及OSL年龄[J]. 地质通报, 2016, 35(10): 1600-1606. |
[13] |
CHEN M, KIM J H, CHOI J, et al. Biological early diagenesis and insolation-paced paleoproductivity signified in deep core sediment organic matter[J/OL]. Scientific Reports, 2017, 7: 1581. DOI:10.1038/s41598-017-01759-4.
PMID |
[14] | SCHMIDT F, KOCH B P, WITT M, et al. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction[J/OL]. Geochimica et Cosmochimica Acta, 2014, 141: 83-96. DOI:10.1016/j.gca.2014.06.009. |
[15] | ZHOU C, LIU Y, LIU C, et al. Compositional changes of dissolved organic carbon during its dynamic desorption from hyporheic zone sediments[J/OL]. Science of the Total Environment, 2019, 658: 16-23. DOI:10.1016/j.scitotenv.2018.12.189. |
[16] | TREMBLAY L B, DITTMAR T, MARSHALL A G, et al. Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier transform-ion cyclotron resonance mass spectrometry and excitation/emission spectroscopy[J/OL]. Marine Chemistry, 2007, 105(12): 15-29. DOI:10.1016/j.marchem.2006.12.015. |
[17] | LU Q, HE D, PANG Y, et al. Processing of dissolved organic matter from surface waters to sediment pore waters in a temperate coastal wetland[J/OL]. Science of the Total Environment, 2020, 742: 140491. DOI:10.1016/j.scitotenv.2020.140491. |
[18] | EINSIEDL F, HERTKORN N, WOLF M, et al. Rapid biotic molecular transformation of fulvic acids in a karst aquifer[J/OL]. Geochimica et Cosmochimica Acta, 2007, 71(22): 5474-5482. DOI:10.1016/j.gca.2007.09.024. |
[19] | HU C, XU H, SHI S, et al. Sedimentary organic matter molecular composition reveals the eutrophication of the past 500 years in Lake Daihai, Inner Mongolia[J/OL]. Environmental Research, 2023, 227: 115753. DOI:10.1016/j.envres.2023.115753. |
[20] | SHI S, XU H, SHUI Y, et al. Sedimentary organic molecular compositions reveal the influence of glacier retreat on ecology on the Tibetan Plateau[J/OL]. Science of the Total Environment, 2023, 882: 163629. DOI:10.1016/j.scitotenv.2023.163629. |
[21] | SCHMIDT F, ELVERT M, KOCH B P, et al. Molecular characterization of dissolved organic matter in pore water of continental shelf sediments[J/OL]. Geochimica et Cosmochimica Acta, 2009, 73(11): 3337-3358. DOI:10.1016/j.gca.2009.03.008. |
[22] | WANG F, LI J, CHEN Y, et al. The record of mid-Holocene maximum landward marine transgression in the west coast of Bohai Bay, China[J/OL]. Marine Geology, 2015, 359: 89-95. DOI:10.1016/j.margeo.2014.11.013. |
[23] | 王福, 王宏, 李建芬, 等. 中国海岸20 ka以来的演替过程及趋势分析:对现代海岸生态保护修复的启示[J]. 中国地质, 2023, 50(1): 61-83. |
[24] | PAN L, FANG J, WANG F, et al. Sedimentary environment and relative sea level changes revealed by marine biological membrane[J/OL]. Chemosphere, 2022, 305: 135378. DOI:10.1016/j.chemosphere.2022.135378. |
[25] | 薛春汀, 周永青, 朱雄华. 晚更新世末至公元前7世纪的黄河流向和黄河三角洲[J]. 海洋学报, 2004(1): 48-61. |
[26] | 李建芬, 王福, 陈永胜, 等. 渤海湾西南部平原DC01孔晚更新世以来的地质环境变化[J]. 地质通报, 2016, 35(10): 1590-1599. |
[27] | WANG F, ZONG Y, MAUZ B, et al. Holocene sea-level change on the central coast of Bohai Bay, China[J/OL]. Earth Surface Dynamics, 2020, 8(3): 679-693. DOI:10.5194/esurf-8-679-2020. |
[28] | REIMER P J, AUSTIN W E N, BARD E, et al. The Intcal20 northern hemisphere radiocarbon age calibration curve (0-55 Cal Kbp)[J/OL]. Radiocarbon, 2020, 62(4): 725-757. DOI:10.1017/RDC.2020.41. |
[29] |
HE W, CHEN M, PARK J E, et al. Molecular diversity of riverine alkaline-extractable sediment organic matter and its linkages with spectral indicators and molecular size distributions[J/OL]. Water Research, 2016, 100: 222-231. DOI:10.1016/j.watres.2016.05.023.
PMID |
[30] | BAHUREKSA W, TFAILY M M, BOITEAU R M, et al. Soil organic matter characterization by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS): a critical review of sample preparation, analysis, and data interpretation[J/OL]. Environmental Science & Technology, 2021, 55(14): 9637-9656. DOI:10.1021/acs.est.1c01135. |
[31] | HERTKORN N, BENNER R, FROMMBERGER M, et al. Characterization of a major refractory component of marine dissolved organic matter[J/OL]. Geochimica et Cosmochimica Acta, 2006, 70(12): 2990-3010. DOI:10.1016/j.gca.2006.03.021. |
[32] | KOCH B P, DITTMAR T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter[J/OL]. Rapid Communications in Mass Spectrometry, 2006, 20(5): 926-932. DOI:10.1002/rcm.2386. |
[33] | ANTONY R, GRANNAS A M, WILLOUGHBY A S, et al. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet[J/OL]. Environmental Science & Technology, 2014, 48(11): 6151-6159. DOI:10.1021/es405246a. |
[34] | 商志文, 田立柱, 范昌福, 等. 渤海湾4.2 ka事件初步研究[J]. 地质通报, 2016, 35(10): 1614-1621. |
[35] | NEVERMANN H, AGHAKOUCHAK A, SHOKRI N. Sea level rise implications on future inland migration of coastal wetlands[J/OL]. Global Ecology and Conservation, 2023, 43: e02421. DOI:10.1016/j.gecco.2023.e02421. |
[36] | OSMAN M B, TIERNEY J E, ZHU J, et al. Globally resolved surface temperatures since the Last Glacial Maximum[J/OL]. Nature, 2021, 599(7884): 239-244. DOI:10.1038/s41586-021-03984-4. |
[37] | ROY K, PELTIER W R. Glacial isostatic adjustment, relative sea level history and mantle viscosity: reconciling relative sea level model predictions for the US east coast with geological constraints[J/OL]. Geophysical Journal International, 2015, 201(2): 1156-1181. DOI:10.1093/gji/ggv066. |
[38] | LI G, LI P, LIU Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the Last Glacial Maximum[J/OL]. Earth-Science Reviews, 2014, 139: 390-405. DOI:10.1016/j.earscirev.2014.09.007. |
[39] | XU Y, LAI Z, LI C. Sea-level change as the driver for lake formation in the Yangtze Plain: a review[J/OL]. Global and Planetary Change, 2019, 181: 102980. DOI:10.1016/j.gloplacha.2019.102980. |
[40] | 赵松龄, 于洪军, 刘敬圃. 晚更新世末期陆架沙漠化环境演化模式的探讨[J]. 中国科学(D辑:地球科学), 1996(2): 142-146. |
[41] | SEERSHOLM F V, WERNDLY D J, GREALY A, et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change[J/OL]. Nature Communications, 2020, 11(1): 2770. DOI:10.1038/s41467-020-16502-3. |
[42] | MARCOTT S A, SHAKUN J D, CLARK P U, et al. A reconstruction of regional and global temperature for the past 11300 years[J/OL]. Science, 2013, 339(6124): 1198-1201. DOI:10.1126/science.1228026. |
[43] | 王宏. 渤海湾障壁岛-潟湖型成陆过程及对今后海岸带可持续发展的启示:纪念天津地质调查中心第四纪地质调查与研究转入海岸带方向40年[J/OL]. 华北地质, 2022, 45(1): 1-17. DOI:10.19948/j.12-1471/P.2022.01.01. |
[44] | CAO Y, GE Y, WANG S, et al. Reconstructing the rapid transitions of ecosystems during the mid-late Holocene: a pollen record from Haixing wetland in Bohai Bay, North China[J/OL]. Quaternary Science Reviews, 2024, 344: 108973. DOI:10.1016/j.quascirev.2024.108973. |
[45] | SLEIGHTER R L, HATCHER P G. Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J/OL]. Marine Chemistry, 2008, 110(3/4): 140-152. DOI:10.1016/j.marchem.2008.04.008. |
[46] | KOCH B P, WITT M, ENGBRODT R, et al. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J/OL]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3299-3308. DOI:10.1016/j.gca.2005.02.027. |
[47] | HOCKADAY W C, GRANNAS A M, KIM S, et al. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil[J/OL]. Organic Geochemistry, 2006, 37(4): 501-510. DOI:10.1016/j.orggeochem.2005.11.003. |
[48] | KRAMER R W, KUJAWINSKI E B, HATCHER P G. Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry[J/OL]. Environmental Science & Technology, 2004, 38(12): 3387-3395. DOI:10.1021/es030124m. |
[49] | KIM S W, KAPLAN L A, BENNER R, et al. Hydrogen-deficient molecules in natural riverine water samples: evidence for the existence of black carbon in DOM[J/OL]. Marine Chemistry, 2004, 92(1/2/3/4): 225-234. DOI:10.1016/j.marchem.2004.06.042. |
[50] | SINNINGHE DAMSTE J S, DE LEEUW J W. Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research[J/OL]. Organic Geochemistry, 1990, 16(4): 1077-1101. DOI:10.1016/0146-6380(90)90145-P. |
[1] | 梁晨, 姜涛, 匡增桂, 胡亦潘, 杨承志, 任金锋, 赖洪飞. 琼东南盆地天然气水合物储层沉积时间及成因机制[J]. 地学前缘, 2025, 32(2): 140-152. |
[2] | 沈禄银, 潘仁芳, 吕海涛, 段太忠, 贺婷婷, 刘义生, 赵磊. 基于沉积模拟的总可容空间定量分析[J]. 地学前缘, 2024, 31(2): 391-401. |
[3] | 沈禄银, 潘仁芳, 段太忠, 刘彦锋, 李蒙, 廉培庆, 黄渊, 张德民. 基于地层沉积反演的深时海平面变化曲线恢复方法[J]. 地学前缘, 2023, 30(2): 109-121. |
[4] | 胡钊彬, 尉建功, 谢志远, 张伙带, 钟广法. 国际大洋钻探全球海平面变化研究进展[J]. 地学前缘, 2022, 29(4): 10-24. |
[5] | 张振,程日辉,许中杰,李双林. 下扬子区上石炭统船山组碳酸盐台地层序与相对海平面变化控制:以句容剖面为例[J]. 地学前缘, 2018, 25(2): 232-245. |
[6] | 武思琴,颜佳新,刘柯,严雅娟. 黔西南二叠纪早期陆源碎屑沉积体系对冈瓦纳冰川发育的响应[J]. 地学前缘, 2016, 23(6): 299-311. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||