[1] |
郑永飞, 郭正堂, 焦念志, 等. 地球系统科学研究态势[J]. 中国科学: 地球科学, 2024, 54(10): 3065-3090.
|
[2] |
CRUTZEN P J, STOERMER E F. The ‘Anthropocene’[J]. Global Change Newsletter, 2000, 41: 17-18.
|
[3] |
刘丛强, 李思亮, 刘学炎, 等. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466.
DOI
|
[4] |
GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1): 3-30.
|
[5] |
KUMP L R, BRANTLEY S L, ARTHUR M A. Chemical weathering, atmospheric CO2, and climate[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 611-667.
|
[6] |
REDFIELD A C. The biological control of chemical factors in the environment[J]. American Scientist, 1958, 46: 205-221.
|
[7] |
REDFIELD A C. On the proportions of organic derivatives in sea water and their relation to the composition of plankton[M]// James Johnstone memorial volume. Liverpool: University Press of Liverpool, 1934: 176-192.
|
[8] |
BRZEZINSKI M A. The Si∶C∶N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables[J]. Journal of Phycology, 1985, 21(3): 347-357.
|
[9] |
MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013, 6(9): 701-710.
|
[10] |
LI W, YANG M, WANG B, et al. Regulation strategy for nutrient-dependent carbon and nitrogen stoichiometric homeostasis in freshwater phytoplankton[J]. Science of the Total Environment, 2022, 823: 153797.
|
[11] |
MAAVARA T, AKBARZADEH Z, VAN CAPPELLEN P. Global dam-driven changes to riverine N∶P∶Si ratios delivered to the coastal ocean[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088288.
|
[12] |
刘乾, 米铁柱, 甄毓, 等. 硅藻C4固碳途径的研究进展[J]. 海洋科学, 2018, 42(7): 10.
|
[13] |
HAIMOVICH-DAYAN M, GARFINKEL N, EWE D, et al. The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum[J]. New Phytologist, 2013, 197(1): 177-185.
|
[14] |
WANG B, LIU C Q, MABERLY S C, et al. Coupling of carbon and silicon geochemical cycles in rivers and lakes[J]. Scientific Reports, 2016, 6(1): 35832.
|
[15] |
LI W, WANG B, LIU N, et al. Microbial regulation on refractory dissolved organic matter in inland waters[J]. Water Research, 2024, 262: 122100.
|
[16] |
YANG M, LIU N, WANG B, et al. Stepwise degradation of organic matters driven by microbial interactions in China’s coastal wetlands: evidence from carbon isotope analysis[J]. Water Research, 2024, 250: 121062.
|
[17] |
MABERLY S C. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake[J]. Freshwater Biology, 1996, 35(3): 579-598.
|
[18] |
STUMM W, MORGAN J J. Aquatic chemistry, an introduction emphasizing chemical equilibria in natural waters[J]. Ecological Modelling, 1983, 19(3): 227-230.
|
[19] |
HILLEBRAND H, DÜRSELEN C D, KIRSCHTEL D, et al. Biovolume calculation for pelagic and benthic microalgae[J]. Journal of Phycology, 1999, 35(2): 403-424.
|
[20] |
LI W, WANG B, XIAO J, et al. Phytoplankton cell size control can be affected by photosynthetic light energy utilization[J]. Frontiers in Microbiology, 2022, 13: 1008606.
|
[21] |
MABERLY S C, GONTERO B. Ecological imperatives for aquatic CO2-concentrating mechanisms[J]. Journal of Experimental Botany, 2017, 68(14): 3797-3814.
DOI
PMID
|
[22] |
GIORDANO M, BEARDALL J, RAVEN J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution[J]. Annual Review of Plant Biology, 2005, 56: 99-131.
|
[23] |
CONLEY D J, KILHAM S S, THERIOT E. Differences in silica content between marine and freshwater diatoms[J]. Limnology and Oceanography, 1989, 34(1): 205-212.
|
[24] |
MENDEN-DEUER S, LESSARD E J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton[J]. Limnology and Oceanography, 2000, 45(3): 569-579.
|
[25] |
WENTZKY V C, TITTEL J, JÄGER C G, et al. Seasonal succession of functional traits in phytoplankton communities and their interaction with trophic state[J]. Journal of Ecology, 2020, 108(4): 1649-1663.
|
[26] |
PAINTER S C, HARTMAN S E, KIVIMÄE C, et al. The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export[J]. Progress in Oceanography, 2017, 159: 154-177.
|
[27] |
XIAO W, LIU X, IRWIN A J, et al. Warming and eutrophication combine to restructure diatoms and dinoflagellates[J]. Water Research, 2018, 128: 206-216.
DOI
PMID
|
[28] |
REINFELDER J R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton[J]. Annual Review of Marine Science, 2011, 3: 291-315.
PMID
|
[29] |
MOON S, HUH Y, QIN J, et al. Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors[J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1411-1430.
|
[30] |
BI R, CAO Z, ISMAR-REBITZ S M H, et al. Responses of marine diatom-dinoflagellate competition to multiple environmental drivers: abundance, elemental, and biochemical aspects[J]. Frontiers in Microbiology, 2021, 12: 731786.
|
[31] |
ZHANG X, YU K, LI M, et al. Diatom-dinoflagellate succession in the Bohai Sea: the role of N/P ratios and dissolved organic nitrogen components[J]. Water Research, 2024, 251: 121150.
|
[32] |
GARCIA N S, SEXTON J, RIGGINS T, et al. High variability in cellular stoichiometry of carbon, nitrogen, and phosphorus within classes of marine eukaryotic phytoplankton under sufficient nutrient conditions[J]. Frontiers in Microbiology, 2018, 9: 00543.
|
[33] |
王宝茹, 王旭, 王伟波, 等. Cu-NiR与Cd1-NiR两类反硝化亚硝酸还原酶研究进展[J]. 植物科学学报, 2021, 39(3): 324-334.
|
[34] |
BERNER R A, LASAGA A C, GARRELS R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 288(7): 641-683.
|
[35] |
RAYMOND P A, HARTMANN J, LAUERWALD R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476): 355-359.
|