地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 93-102.DOI: 10.13745/j.esf.sf.2022.1.3
杨梓阳1,2,3,4(), 任登龙5, 贺志鹏6,*(
), 李学刚1,2,3,4,*(
), 宋金明1,2,3,4, 袁华茂1,2,3,4, 段丽琴1,2,3,4, 李宁1,2,3,4, 张倩1,4
收稿日期:
2021-09-10
修回日期:
2021-11-15
出版日期:
2022-07-25
发布日期:
2022-07-28
通信作者:
贺志鹏,李学刚
作者简介:
杨梓阳(1996—),男,硕士研究生,主要从事海洋生物地球化学研究。E-mail: yangziyang19@mails.ucas.ac.cn
基金资助:
YANG Ziyang1,2,3,4(), REN Denglong5, HE Zhipeng6,*(
), LI Xuegang1,2,3,4,*(
), SONG Jinming1,2,3,4, YUAN Huamao1,2,3,4, DUAN Liqin1,2,3,4, LI Ning1,2,3,4, ZHANG Qian1,4
Received:
2021-09-10
Revised:
2021-11-15
Online:
2022-07-25
Published:
2022-07-28
Contact:
HE Zhipeng,LI Xuegang
摘要:
甄别生源要素参与的海洋沉积物矿化过程对探析生源要素的生物地球化学循环有重要的作用,矿化作用包括有氧呼吸、硝酸盐还原、铁锰异化还原及硫酸盐还原等多个过程,但如何区分这些过程一直是海洋沉积物矿化研究的难点。本研究采用气相色谱-质谱(GC-MS)联用对热带西太平洋沉积物中的磷脂脂肪酸(phospholipid fatty acid, PLFA)的组成进行了解析,并分析不同矿化过程中的主要PLFA种类及其影响因素,探究PLFA对沉积物矿化的指示作用。结果表明,PLFA总量在有氧呼吸过程中最高,而在硝酸盐还原过程中最低;且14:0、i14:0、i15:0和i19:0是有氧呼吸过程中微生物PLFA的主要组成,当其含量明显降低时可以指示沉积物矿化从有氧呼吸转变为硝酸盐还原;而10:0、17:0、20:0和22:0含量之和显著增加时则指示了硫酸盐还原过程的发生。在热带西太平洋沉积物中,总有机碳(TOC)和总有机氮(TON)含量以及间隙水NO3-N含量是PLFA含量的重要影响因素,PLFA总量随着TOC和TON含量的减少而减少,并且TOC和TON的降解能够促进PLFA降解的发生,对PLFA组成有更直接的影响。
中图分类号:
杨梓阳, 任登龙, 贺志鹏, 李学刚, 宋金明, 袁华茂, 段丽琴, 李宁, 张倩. 基于磷脂脂肪酸的热带西太平洋沉积物生源要素矿化过程探析[J]. 地学前缘, 2022, 29(4): 93-102.
YANG Ziyang, REN Denglong, HE Zhipeng, LI Xuegang, SONG Jinming, YUAN Huamao, DUAN Liqin, LI Ning, ZHANG Qian. Exploring biomineralization in the tropical western Pacific sediments based on phospholipid fatty acid analysis[J]. Earth Science Frontiers, 2022, 29(4): 93-102.
脂肪酸种类 | 检出限/(μg·mL-1) | RSD/% | 特征离子 |
---|---|---|---|
8:0 | 0.032 | 2% | 74 115 158 |
10:0 | 0.027 | 2% | 74 143 186 |
12:0 | 0.023 | 2% | 74 171 214 |
14:0 | 0.034 | 2% | 74 199 242 |
i14:0 | 0.030 | 4% | 74 211 242 |
15:0 | 0.044 | 3% | 74 213 256 |
i15:0 | 0.033 | 4% | 74 213 256 |
a15:0 | 0.032 | 4% | 74 199 256 |
16:0 | 0.022 | 1% | 74 227 270 |
i16:0 | 0.028 | 4% | 74 227 270 |
17:0 | 0.031 | 2% | 74 284 241 |
i17:0 | 0.033 | 4% | 74 241 284 |
17:1ω7 | 0.039 | 3% | 55 250 282 |
18:0 | 0.068 | 5% | 74 298 255 |
i19:0 | 0.035 | 4% | 143 269 312 |
20:0 | 0.053 | 4% | 74 326 283 |
i20:1 | 0.035 | 4% | 55 292 324 |
24:0 | 0.110 | 7% | 74 382 339 |
13:0 | 0.022 | 1% | 74 185 228 |
14:1 | 0.028 | 2% | 55 208 240 |
16:1ω7 | 0.033 | 2% | 55 236 268 |
i16:1 | 0.034 | 4% | 55 194 236 |
18:1 | 0.071 | 5% | 55 264 296 |
18:2 | 0.087 | 6% | 67 294 263 |
20:3 | 0.077 | 5% | 79 320 289 |
20:5 | 0.250 | 17% | 79 287 316 |
22:1 | 0.080 | 5% | 55 320 352 |
11:0 | 0.024 | 2% | 74 157 200 |
20:4 | 0.093 | 6% | 79 287 318 |
表1 脂肪酸甲酯检出限、RSD和特征离子
Table 1 Detection limits, RSD and characteristic ions of fatty acid methyl esters
脂肪酸种类 | 检出限/(μg·mL-1) | RSD/% | 特征离子 |
---|---|---|---|
8:0 | 0.032 | 2% | 74 115 158 |
10:0 | 0.027 | 2% | 74 143 186 |
12:0 | 0.023 | 2% | 74 171 214 |
14:0 | 0.034 | 2% | 74 199 242 |
i14:0 | 0.030 | 4% | 74 211 242 |
15:0 | 0.044 | 3% | 74 213 256 |
i15:0 | 0.033 | 4% | 74 213 256 |
a15:0 | 0.032 | 4% | 74 199 256 |
16:0 | 0.022 | 1% | 74 227 270 |
i16:0 | 0.028 | 4% | 74 227 270 |
17:0 | 0.031 | 2% | 74 284 241 |
i17:0 | 0.033 | 4% | 74 241 284 |
17:1ω7 | 0.039 | 3% | 55 250 282 |
18:0 | 0.068 | 5% | 74 298 255 |
i19:0 | 0.035 | 4% | 143 269 312 |
20:0 | 0.053 | 4% | 74 326 283 |
i20:1 | 0.035 | 4% | 55 292 324 |
24:0 | 0.110 | 7% | 74 382 339 |
13:0 | 0.022 | 1% | 74 185 228 |
14:1 | 0.028 | 2% | 55 208 240 |
16:1ω7 | 0.033 | 2% | 55 236 268 |
i16:1 | 0.034 | 4% | 55 194 236 |
18:1 | 0.071 | 5% | 55 264 296 |
18:2 | 0.087 | 6% | 67 294 263 |
20:3 | 0.077 | 5% | 79 320 289 |
20:5 | 0.250 | 17% | 79 287 316 |
22:1 | 0.080 | 5% | 55 320 352 |
11:0 | 0.024 | 2% | 74 157 200 |
20:4 | 0.093 | 6% | 79 287 318 |
微生物 | PLFA标志物 |
---|---|
细菌 | 一些饱和或单不饱和脂肪酸:15:0,16:0,17:0,18:1ω5,18:1ω7,i19:0,a19:0 |
好氧细菌 | 16:1ω7,i14:0,a14:0,15:0 2OH,15:0 3OH,a15:0,i15:0 |
厌氧细菌 | cy17:0,cy19:0 |
革兰氏阳性菌 | a16:0,i16:0,a17:0,i17:0,i18:0 |
革兰氏阴性菌 | i15:0 3OH,16:1ω9,i17:0 3OH |
硫酸盐还原菌 | 17:1ω6,17:1ω7 |
放线菌 | 10Me16:0,10Me17:0,10Me18:0 |
假单胞菌 | 18:1ω7 |
真菌 | 18:3ω6 (6,9,12),18:1ω9 |
表2 微生物群落和PLFA生物标志物之间的对应关系[23⇓-25]
Table 2 Corresponding relationships between microbial groups and PLFA biomarkers [23⇓-25]
微生物 | PLFA标志物 |
---|---|
细菌 | 一些饱和或单不饱和脂肪酸:15:0,16:0,17:0,18:1ω5,18:1ω7,i19:0,a19:0 |
好氧细菌 | 16:1ω7,i14:0,a14:0,15:0 2OH,15:0 3OH,a15:0,i15:0 |
厌氧细菌 | cy17:0,cy19:0 |
革兰氏阳性菌 | a16:0,i16:0,a17:0,i17:0,i18:0 |
革兰氏阴性菌 | i15:0 3OH,16:1ω9,i17:0 3OH |
硫酸盐还原菌 | 17:1ω6,17:1ω7 |
放线菌 | 10Me16:0,10Me17:0,10Me18:0 |
假单胞菌 | 18:1ω7 |
真菌 | 18:3ω6 (6,9,12),18:1ω9 |
深度/ cm | 总 PLFA | 各种PLFA含量/(μg·g-1) | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8:0 | 10:0 | 12:0 | 14:0 | i14:0 | i15:0 | 15:0 | 16:0 | 17:0 | 17:1ω7 | 18:0 | i19:0 | 20:0 | 22:0 | 24:0 | i16:1 | i16:0 | 13:0 | 16:1ω7 | i20:1 | 14:1 | a15:0 | i17:0 | 18:1 | 20:3 | 20:5 | 22:4 | 20:4 | 11:0 | 18:2 | 22:1 | |||
0~<1 | 0.27 | 0.002 7 | 0.001 2 | 0.001 5 | 0.011 | 0.024 | 0.007 1 | 0.004 4 | 0.046 | 0.005 0 | 0.013 | 0.012 | 0.012 | 0.003 7 | 0.005 6 | 0.007 2 | - | 0.039 | 0.001 3 | 0.038 | 0.005 0 | 0.001 4 | 0.001 7 | 0.004 0 | 0.008 0 | 0.002 3 | 0.002 7 | 0.003 2 | - | 0.000 64 | 0.002 0 | 0.004 0 | |
1~<2 | 0.22 | 0.002 3 | 0.001 2 | 0.001 4 | 0.007 6 | 0.019 | 0.005 4 | 0.003 8 | 0.035 | 0.005 2 | 0.008 4 | 0.011 | 0.009 8 | 0.003 8 | 0.005 9 | - | 0.021 | 0.031 | 0.001 4 | 0.015 | 0.004 3 | 0.001 6 | 0.001 3 | 0.003 2 | 0.007 7 | 0.002 6 | 0.003 1 | 0.004 3 | - | - | - | - | |
2~<3 | 0.20 | 0.002 3 | 0.001 1 | 0.001 2 | 0.007 1 | 0.017 | 0.004 9 | 0.003 4 | 0.032 | 0.004 6 | 0.007 0 | 0.009 1 | 0.003 6 | 0.003 4 | 0.005 4 | 0.007 0 | 0.018 | 0.027 | 0.001 2 | 0.025 | - | 0.001 4 | 0.001 2 | 0.002 8 | 0.006 7 | 0.002 3 | 0.002 8 | 0.003 9 | 0.003 2 | - | - | - | |
3~<4 | 0.087 | 0.001 7 | 0.001 1 | 0.001 1 | 0.003 4 | 0.005 3 | 0.001 5 | 0.002 4 | 0.014 | 0.004 0 | - | 0.006 9 | 0.002 8 | 0.003 3 | 0.005 2 | 0.007 0 | 0.005 6 | 0.008 4 | 0.001 1 | 0.011 | 0.001 3 | - | - | - | - | - | - | - | - | - | - | - | |
4~<5 | 0.028 | 0.001 4 | 0.000 89 | 0.000 89 | 0.001 6 | 0.000 54 | 0.000 17 | 0.001 7 | 0.004 8 | 0.003 3 | - | 0.004 7 | 0.000 29 | 0.002 7 | 0.004 5 | - | - | 0.000 59 | |||||||||||||||
5~<6 | 0.028 | 0.001 5 | 0.000 91 | 0.000 91 | 0.001 5 | 0.000 39 | 0.000 13 | 0.001 7 | 0.004 6 | 0.003 4 | - | 0.004 9 | 0.000 23 | 0.002 8 | 0.004 6 | - | - | 0.000 44 | |||||||||||||||
6~<7 | 0.032 | 0.001 4 | 0.000 86 | 0.000 86 | 0.001 5 | 0.000 38 | 0.000 11 | 0.001 6 | 0.004 5 | 0.003 1 | - | 0.004 5 | 0.000 13 | 0.002 6 | 0.004 3 | 0.005 9 | - | 0.000 32 | |||||||||||||||
7~<8 | 0.035 | 0.001 9 | 0.000 92 | 0.000 97 | 0.001 6 | 0.000 30 | 8.1E-05 | 0.001 8 | 0.004 5 | 0.003 5 | - | 0.005 0 | 0.000 11 | 0.002 9 | 0.004 8 | 0.006 6 | - | - | |||||||||||||||
8~<9 | 0.022 | 0.001 4 | 0.000 74 | - | 0.001 2 | 0.000 10 | 2.2E-05 | 0.001 4 | 0.003 4 | 0.002 9 | - | 0.004 0 | 2.2E-05 | 0.002 3 | 0.003 9 | - | - | - | |||||||||||||||
9~<10 | 0.021 | 0.001 2 | 0.000 68 | - | 0.001 2 | 0.000 13 | 3.3E-05 | 0.001 4 | 0.003 3 | 0.002 9 | - | 0.004 0 | 4.4E-05 | 0.002 3 | 0.003 8 | - | - | - | |||||||||||||||
10~<11 | 0.056 | 0.004 6 | 0.002 2 | 0.001 5 | 0.002 5 | 0.000 98 | 0.000 20 | 0.002 8 | 0.008 4 | 0.005 3 | 0.007 5 | 0.008 0 | 0.000 14 | 0.004 3 | 0.007 2 | - | 0.000 84 | - | |||||||||||||||
11~<12 | 0.039 | 0.003 0 | 0.001 3 | 0.001 4 | 0.002 1 | 0.000 27 | 5.7E-05 | 0.002 5 | 0.005 9 | 0.004 9 | - | 0.006 8 | - | 0.004 0 | 0.006 7 | - | - | - | |||||||||||||||
12~<13 | 0.043 | 0.002 3 | 0.001 5 | - | 0.001 9 | 0.000 21 | 5.2E-05 | 0.002 2 | 0.005 4 | 0.004 5 | - | 0.006 2 | - | 0.003 7 | 0.006 1 | 0.008 4 | 0.000 14 | - | |||||||||||||||
13~<14 | 0.044 | 0.002 2 | 0.001 2 | 0.001 1 | 0.001 7 | 0.000 27 | 6.0E-05 | 0.002 0 | 0.005 2 | 0.003 9 | 0.004 1 | 0.005 6 | 7.5E-05 | 0.003 3 | 0.005 4 | 0.007 4 | - | - | |||||||||||||||
14~<15 | 0.042 | 0.002 2 | 0.001 1 | 0.001 2 | 0.001 9 | 0.000 38 | 9.8E-05 | 0.002 2 | 0.005 5 | 0.004 2 | - | 0.006 1 | 9.8E-05 | 0.003 5 | 0.005 8 | 0.007 9 | 0.000 18 | - | |||||||||||||||
15~<16 | 0.043 | 0.002 0 | 0.001 1 | 0.001 1 | 0.001 8 | 0.000 22 | 6.2E-05 | 0.002 0 | 0.005 4 | 0.004 0 | 0.003 4 | 0.005 8 | 9.2E-05 | 0.003 4 | 0.005 6 | 0.007 6 | - | - | |||||||||||||||
16~<17 | 0.050 | 0.002 9 | 0.001 3 | 0.001 4 | 0.002 2 | 0.000 20 | 4.0E-05 | 0.002 6 | 0.006 3 | 0.005 1 | - | 0.007 2 | 3.9E-05 | 0.004 2 | 0.007 0 | 0.009 6 | 5.9E-05 | - | |||||||||||||||
17~<18 | 0.043 | 0.002 5 | 0.001 6 | - | 0.002 1 | 0.000 30 | 3.8E-05 | 0.002 5 | 0.005 8 | 0.004 9 | 0.005 7 | 0.006 8 | 3.8E-05 | 0.004 0 | 0.006 7 | - | - | - | |||||||||||||||
18~<19 | 0.046 | 0.002 8 | 0.001 4 | 0.001 3 | 0.002 0 | 0.000 27 | 5.4E-05 | 0.002 3 | 0.006 0 | 0.004 7 | - | 0.006 6 | - | 0.003 8 | 0.006 4 | 0.008 7 | 0.000 13 | - | |||||||||||||||
19~≤20 | 0.028 | 0.001 7 | 0.000 80 | 0.000 78 | 0.001 2 | 0.000 14 | 3.2E-05 | 0.001 4 | 0.003 5 | 0.002 8 | - | 0.004 1 | - | 0.002 3 | 0.003 8 | 0.005 3 | - | - |
表3 沉积物中各种PLFA含量
Table 3 Content of various PLFAs in the sediment
深度/ cm | 总 PLFA | 各种PLFA含量/(μg·g-1) | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8:0 | 10:0 | 12:0 | 14:0 | i14:0 | i15:0 | 15:0 | 16:0 | 17:0 | 17:1ω7 | 18:0 | i19:0 | 20:0 | 22:0 | 24:0 | i16:1 | i16:0 | 13:0 | 16:1ω7 | i20:1 | 14:1 | a15:0 | i17:0 | 18:1 | 20:3 | 20:5 | 22:4 | 20:4 | 11:0 | 18:2 | 22:1 | |||
0~<1 | 0.27 | 0.002 7 | 0.001 2 | 0.001 5 | 0.011 | 0.024 | 0.007 1 | 0.004 4 | 0.046 | 0.005 0 | 0.013 | 0.012 | 0.012 | 0.003 7 | 0.005 6 | 0.007 2 | - | 0.039 | 0.001 3 | 0.038 | 0.005 0 | 0.001 4 | 0.001 7 | 0.004 0 | 0.008 0 | 0.002 3 | 0.002 7 | 0.003 2 | - | 0.000 64 | 0.002 0 | 0.004 0 | |
1~<2 | 0.22 | 0.002 3 | 0.001 2 | 0.001 4 | 0.007 6 | 0.019 | 0.005 4 | 0.003 8 | 0.035 | 0.005 2 | 0.008 4 | 0.011 | 0.009 8 | 0.003 8 | 0.005 9 | - | 0.021 | 0.031 | 0.001 4 | 0.015 | 0.004 3 | 0.001 6 | 0.001 3 | 0.003 2 | 0.007 7 | 0.002 6 | 0.003 1 | 0.004 3 | - | - | - | - | |
2~<3 | 0.20 | 0.002 3 | 0.001 1 | 0.001 2 | 0.007 1 | 0.017 | 0.004 9 | 0.003 4 | 0.032 | 0.004 6 | 0.007 0 | 0.009 1 | 0.003 6 | 0.003 4 | 0.005 4 | 0.007 0 | 0.018 | 0.027 | 0.001 2 | 0.025 | - | 0.001 4 | 0.001 2 | 0.002 8 | 0.006 7 | 0.002 3 | 0.002 8 | 0.003 9 | 0.003 2 | - | - | - | |
3~<4 | 0.087 | 0.001 7 | 0.001 1 | 0.001 1 | 0.003 4 | 0.005 3 | 0.001 5 | 0.002 4 | 0.014 | 0.004 0 | - | 0.006 9 | 0.002 8 | 0.003 3 | 0.005 2 | 0.007 0 | 0.005 6 | 0.008 4 | 0.001 1 | 0.011 | 0.001 3 | - | - | - | - | - | - | - | - | - | - | - | |
4~<5 | 0.028 | 0.001 4 | 0.000 89 | 0.000 89 | 0.001 6 | 0.000 54 | 0.000 17 | 0.001 7 | 0.004 8 | 0.003 3 | - | 0.004 7 | 0.000 29 | 0.002 7 | 0.004 5 | - | - | 0.000 59 | |||||||||||||||
5~<6 | 0.028 | 0.001 5 | 0.000 91 | 0.000 91 | 0.001 5 | 0.000 39 | 0.000 13 | 0.001 7 | 0.004 6 | 0.003 4 | - | 0.004 9 | 0.000 23 | 0.002 8 | 0.004 6 | - | - | 0.000 44 | |||||||||||||||
6~<7 | 0.032 | 0.001 4 | 0.000 86 | 0.000 86 | 0.001 5 | 0.000 38 | 0.000 11 | 0.001 6 | 0.004 5 | 0.003 1 | - | 0.004 5 | 0.000 13 | 0.002 6 | 0.004 3 | 0.005 9 | - | 0.000 32 | |||||||||||||||
7~<8 | 0.035 | 0.001 9 | 0.000 92 | 0.000 97 | 0.001 6 | 0.000 30 | 8.1E-05 | 0.001 8 | 0.004 5 | 0.003 5 | - | 0.005 0 | 0.000 11 | 0.002 9 | 0.004 8 | 0.006 6 | - | - | |||||||||||||||
8~<9 | 0.022 | 0.001 4 | 0.000 74 | - | 0.001 2 | 0.000 10 | 2.2E-05 | 0.001 4 | 0.003 4 | 0.002 9 | - | 0.004 0 | 2.2E-05 | 0.002 3 | 0.003 9 | - | - | - | |||||||||||||||
9~<10 | 0.021 | 0.001 2 | 0.000 68 | - | 0.001 2 | 0.000 13 | 3.3E-05 | 0.001 4 | 0.003 3 | 0.002 9 | - | 0.004 0 | 4.4E-05 | 0.002 3 | 0.003 8 | - | - | - | |||||||||||||||
10~<11 | 0.056 | 0.004 6 | 0.002 2 | 0.001 5 | 0.002 5 | 0.000 98 | 0.000 20 | 0.002 8 | 0.008 4 | 0.005 3 | 0.007 5 | 0.008 0 | 0.000 14 | 0.004 3 | 0.007 2 | - | 0.000 84 | - | |||||||||||||||
11~<12 | 0.039 | 0.003 0 | 0.001 3 | 0.001 4 | 0.002 1 | 0.000 27 | 5.7E-05 | 0.002 5 | 0.005 9 | 0.004 9 | - | 0.006 8 | - | 0.004 0 | 0.006 7 | - | - | - | |||||||||||||||
12~<13 | 0.043 | 0.002 3 | 0.001 5 | - | 0.001 9 | 0.000 21 | 5.2E-05 | 0.002 2 | 0.005 4 | 0.004 5 | - | 0.006 2 | - | 0.003 7 | 0.006 1 | 0.008 4 | 0.000 14 | - | |||||||||||||||
13~<14 | 0.044 | 0.002 2 | 0.001 2 | 0.001 1 | 0.001 7 | 0.000 27 | 6.0E-05 | 0.002 0 | 0.005 2 | 0.003 9 | 0.004 1 | 0.005 6 | 7.5E-05 | 0.003 3 | 0.005 4 | 0.007 4 | - | - | |||||||||||||||
14~<15 | 0.042 | 0.002 2 | 0.001 1 | 0.001 2 | 0.001 9 | 0.000 38 | 9.8E-05 | 0.002 2 | 0.005 5 | 0.004 2 | - | 0.006 1 | 9.8E-05 | 0.003 5 | 0.005 8 | 0.007 9 | 0.000 18 | - | |||||||||||||||
15~<16 | 0.043 | 0.002 0 | 0.001 1 | 0.001 1 | 0.001 8 | 0.000 22 | 6.2E-05 | 0.002 0 | 0.005 4 | 0.004 0 | 0.003 4 | 0.005 8 | 9.2E-05 | 0.003 4 | 0.005 6 | 0.007 6 | - | - | |||||||||||||||
16~<17 | 0.050 | 0.002 9 | 0.001 3 | 0.001 4 | 0.002 2 | 0.000 20 | 4.0E-05 | 0.002 6 | 0.006 3 | 0.005 1 | - | 0.007 2 | 3.9E-05 | 0.004 2 | 0.007 0 | 0.009 6 | 5.9E-05 | - | |||||||||||||||
17~<18 | 0.043 | 0.002 5 | 0.001 6 | - | 0.002 1 | 0.000 30 | 3.8E-05 | 0.002 5 | 0.005 8 | 0.004 9 | 0.005 7 | 0.006 8 | 3.8E-05 | 0.004 0 | 0.006 7 | - | - | - | |||||||||||||||
18~<19 | 0.046 | 0.002 8 | 0.001 4 | 0.001 3 | 0.002 0 | 0.000 27 | 5.4E-05 | 0.002 3 | 0.006 0 | 0.004 7 | - | 0.006 6 | - | 0.003 8 | 0.006 4 | 0.008 7 | 0.000 13 | - | |||||||||||||||
19~≤20 | 0.028 | 0.001 7 | 0.000 80 | 0.000 78 | 0.001 2 | 0.000 14 | 3.2E-05 | 0.001 4 | 0.003 5 | 0.002 8 | - | 0.004 1 | - | 0.002 3 | 0.003 8 | 0.005 3 | - | - |
矿化过程 | 化学反应 |
---|---|
有氧呼吸 | (CH2O)106(NH3)16(H3PO4)+138O2→106CO2+16HNO3+H3PO4+122H2O |
硝酸盐还原 | ① (CH2O)106(NH3)16(H3PO4)+94.4HNO3→H3PO4+177.2H2O+106CO2+55.2N2 ② (CH2O)106(NH3)16(H3PO4)+84.8HNO3→H3PO4+148.4H2O+106CO2+42.4N2+16NH3 |
铁还原 | ① (CH2O)106(NH3)16(H3PO4)+212Fe2O3+848H+→H3PO4+530H2O+106CO2+16NH3+424Fe2+ ② (CH2O)106(NH3)16(H3PO4)+424FeOOH+848H+→424Fe2++106CO2+16NH3+H3PO4+742H2O |
锰还原 | (CH2O)106(NH3)16(H3PO4)+472H++236MnO2→H3PO4+106CO2+236Mn2++8N2+366H2O |
硫酸盐还原 | (CH2O)106(NH3)16(H3PO4) +53S |
表4 沉积物矿化过程及其化学反应[37]
Table 4 Sediment mineralization and related chemical reactions. Adapted from [37].
矿化过程 | 化学反应 |
---|---|
有氧呼吸 | (CH2O)106(NH3)16(H3PO4)+138O2→106CO2+16HNO3+H3PO4+122H2O |
硝酸盐还原 | ① (CH2O)106(NH3)16(H3PO4)+94.4HNO3→H3PO4+177.2H2O+106CO2+55.2N2 ② (CH2O)106(NH3)16(H3PO4)+84.8HNO3→H3PO4+148.4H2O+106CO2+42.4N2+16NH3 |
铁还原 | ① (CH2O)106(NH3)16(H3PO4)+212Fe2O3+848H+→H3PO4+530H2O+106CO2+16NH3+424Fe2+ ② (CH2O)106(NH3)16(H3PO4)+424FeOOH+848H+→424Fe2++106CO2+16NH3+H3PO4+742H2O |
锰还原 | (CH2O)106(NH3)16(H3PO4)+472H++236MnO2→H3PO4+106CO2+236Mn2++8N2+366H2O |
硫酸盐还原 | (CH2O)106(NH3)16(H3PO4) +53S |
PLFA种类 | TON | TOC | TOC/TON | NO3-N | NO2-N | NH4-N | pH值 |
---|---|---|---|---|---|---|---|
总PLFA | 0.933** | 0.942** | 0.769** | 0.698** | 0.464 | 0.198 | -0.334 |
SSFA | 0.822** | 0.840** | 0.692** | 0.622** | 0.346 | 0.162 | -0.444 |
BSFA | 0.955** | 0.956** | 0.774** | 0.674** | 0.515 | 0.179 | -0.272 |
MUFA | 0.951** | 0.958** | 0.779** | 0.740** | 0.485 | 0.228 | -0.298 |
PUFA | 0.910** | 0.945** | 0.796** | 0.747** | 0.433 | 0.257 | -0.247 |
表5 PLFA与沉积物理化性质之间的相关性
Table 5 Correlation coefficients between sediment physio-chemical properties and PLFAs
PLFA种类 | TON | TOC | TOC/TON | NO3-N | NO2-N | NH4-N | pH值 |
---|---|---|---|---|---|---|---|
总PLFA | 0.933** | 0.942** | 0.769** | 0.698** | 0.464 | 0.198 | -0.334 |
SSFA | 0.822** | 0.840** | 0.692** | 0.622** | 0.346 | 0.162 | -0.444 |
BSFA | 0.955** | 0.956** | 0.774** | 0.674** | 0.515 | 0.179 | -0.272 |
MUFA | 0.951** | 0.958** | 0.779** | 0.740** | 0.485 | 0.228 | -0.298 |
PUFA | 0.910** | 0.945** | 0.796** | 0.747** | 0.433 | 0.257 | -0.247 |
[1] | PROVOOST P, BRAECKMAN U, VAN GANSBEKE D, et al. Modelling benthic oxygen consumption and benthic-pelagic coupling at a shallow station in the southern North Sea[J]. Estuarine, Coastal and Shelf Science, 2013, 120: 1-11. |
[2] | GUO J, YUAN H, SONG J, et al. Hypoxia, acidification and nutrient accumulation in the Yellow Sea Cold Water of the South Yellow Sea[J]. Science of the Total Environment, 2020, 745: 141050. |
[3] | 宋金明, 李学刚. 海洋沉积物/颗粒物在生源要素循环中的作用及生态学功能[J]. 海洋学报, 2018, 40(10): 1-13. |
[4] | 朱茂旭, 史晓宁, 杨桂朋, 等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364. |
[5] | TOUSSAINT E, DE BORGER E, BRAECKMAN U, et al. Faunal and environmental drivers of carbon and nitrogen cycling along a permeability gradient in shallow North Sea sediments[J]. Science of the Total Environment, 2021, 767: 144994. |
[6] | GUO J, YUAN H, SONG J, et al. Evaluation of sedimentary organic carbon reactivity and burial in the Eastern China Marginal Seas[J]. Journal of Geophysical Research: Oceans, 2021, 126(4): e2021JC017207. |
[7] | 尹美玲, 段丽琴, 宋金明, 等. 长江口邻近海域表层沉积物中的细菌藿多醇及对低氧区的响应判别[J]. 环境科学, 2021, 42(3): 1343-1353. |
[8] | SINKKO H, LUKKARI K, SIHVONEN L M, et al. Bacteria contribute to sediment nutrient release and reflect progressed eutrophication-driven hypoxia in an organic-rich continental sea[J]. PLoS One, 2013, 8(6): e67061. |
[9] | WUNDERLICH A, HEIPIEPER H J, ELSNER M, et al. Solvent stress-induced changes in membrane fatty acid composition of denitrifying bacteria reduce the extent of nitrogen stable isotope fractionation during denitrification[J]. Geochimica et Cosmochimica Acta, 2018, 239: 275-283. |
[10] | ATASHGAHI S, SANCHEZ-ANDREA I, HEIPIEPER H J, et al. Prospects for harnessing biocide resistance for bioremediation and detoxification[J]. Science, 2018, 360(6390): 743-746. |
[11] | FOSTER A L, MUNK L, KOSKI R A, et al. Relationships between microbial communities and environmental parameters at sites impacted by mining of volcanogenic massive sulfide deposits, Prince William Sound, Alaska[J]. Applied Geochemistry, 2008, 23(2): 279-307. |
[12] | 李冬梅, 施雪华, 孙丽欣, 等. 磷脂脂肪酸谱图分析方法及其在环境微生物学领域的应用[J]. 科技导报, 2012, 30(2): 65-69. |
[13] | 张一鸣, 黄咸雨, 谢树成. 微生物磷脂脂肪酸单体碳同位素示踪碳循环过程[J]. 第四纪研究, 2021, 41(4): 877-892. |
[14] | 郭景腾. 15万年来热带西太平洋表层pH和pCO2演化及其影响因素[D]. 青岛: 中国科学院研究生院(海洋研究所), 2015. |
[15] |
马骏, 宋金明, 李学刚, 等. 西太平洋Y3海山对营养盐的影响及其生态环境效应[J]. 地学前缘, 2020, 27(4): 322-331.
DOI |
[16] | 李学刚, 宋金明, 牛丽凤, 等. 近海沉积物中氮磷的同时测定及其在胶州湾沉积物中的应用[J]. 岩矿测试, 2007, 2: 87-92. |
[17] | 王丽莎, 石晓勇, 张传松. 东海赤潮高发区沉积物中有机碳、有机氮的分布及其来源[J]. 海洋环境科学, 2010, 29: 165-169. |
[18] | 卢凤艳, 安芷生. 鹤庆钻孔沉积物总有机碳、氮含量测定的前处理方法及其环境意义[J]. 地质力学学报, 2010, 16(4): 393-401. |
[19] | HU B, LI J, ZHAO J, et al. Late Holocene elemental and isotopic carbon and nitrogen records from the East China Sea inner shelf: implications for monsoon and upwelling[J]. Marine Chemistry, 2014, 162: 60-70. |
[20] | LUPWAYI N Z, LARNEY F J, BLACKSHAW R E, et al. Phospholipid fatty acid biomarkers show positive soil microbial community responses to conservation soil management of irrigated crop rotations[J]. Soil and Tillage Research, 2017, 168: 1-10. |
[21] | PETERSEN S O, KLUG M J. Effects of sieving, storage, and incubation temperature on the phospholipid Fatty Acid profile of a soil microbial community[J]. Applied Environmental Microbiology, 1994, 60(7): 2421-2430. |
[22] | VESTAL J R, WHITE D C. Lipid analysis in microbial ecology[J]. BioScience, 1989, 39(8): 535-541. |
[23] | 孙和泰, 华伟, 祁建民, 等. 利用磷脂脂肪酸(PLFAs)生物标记法分析人工湿地根际土壤微生物多样性[J]. 环境工程, 2020, 38(11): 103-109. |
[24] | 颜慧, 蔡祖聪, 钟文辉. 磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J]. 土壤学报, 2006, 5: 851-859. |
[25] | 陈振翔, 于鑫, 夏明芳, 等. 磷脂脂肪酸分析方法在微生物生态学中的应用[J]. 生态学杂志, 2005(7): 828-832. |
[26] | SHI Y, XIANG X, SHEN C, et al. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities[J]. Applied Environmental Microbiology, 2015, 81(2): 492-501. |
[27] | WU H, LI Y, ZHANG J, et al. Sediment bacterial communities in a eutrophic lake influenced by multiple inflow-rivers[J]. Environmental Science and Pollution Research, 2017, 24(24): 19795-19806. |
[28] | 邓延慧, 丁润楠. 湖泊沉积物氮矿化及其影响因素研究进展[J]. 环境生态学, 2020, 2(11): 91-95. |
[29] | 欧阳媛, 王圣瑞, 金相灿, 等. 外加氮源对滇池沉积物氮矿化影响的研究[J]. 中国环境科学, 2009, 29(8): 879-884. |
[30] | 张嘉雯, 魏健, 刘利, 等. 衡水湖沉积物营养盐形态分布特征及污染评价[J]. 环境科学, 2020, 41(12): 5389-5399. |
[31] |
田东凡, 李学刚, 宋金明, 等. 海洋最小含氧带氮流失过程与机制[J]. 应用生态学报, 2019, 30(3): 1047-1056.
DOI |
[32] | TIAN D, WANG Y, XING J, et al. Nitrogen loss process in hypoxic seawater based on the culture experiment[J]. Marine Pollution Bulletin, 2020, 152: 110912. |
[33] | WAKEHAM S G. Organic biogeochemistry in the oxygen-deficient ocean: a review[J]. Organic Geochemistry, 2020, 149: 104096. |
[34] | ZHANG X, CHEN Q, WANG C, et al. Characteristic analysis of phospholipid fatty acids (PLFAs) in typical nutrient polluted lake sediment in Wuhan[J]. International Journal of Sediment Research, 2021, 36(2): 221-228. |
[35] | WIESENBERG G L B, DORODNIKOV M, KUZYAKOV Y. Source determination of lipids in bulk soil and soil density fractions after four years of wheat cropping[J]. Geoderma, 2010, 156(3/4): 267-277. |
[36] | ESPINOSA L F, PANTOJA S, PINTO L A, et al. Water column distribution of phospholipid-derived fatty acids of marine microorganisms in the Humboldt Current system off northern Chile[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2009, 56(16): 1063-1072. |
[37] | FROELICH P N, KLINKHAMMER G P, BENDER M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1075-1090. |
[38] | 吴雪停, 刘丽华, 吴能友, 等. 海洋沉积物中早期成岩作用地球化学研究进展[J]. 海洋地质前沿, 2015, 31(12): 17-26. |
[39] | PIMENOV N V, LUNINA O N, PRUSAKOVA T S, et al. Biological fractionation of stable carbon isotopes at the aerobic/anaerobic water interface of meromictic water bodies[J]. Microbiology, 2008, 77(6): 751-759. |
[40] | LEHMANN M F, BERNASCONI S M, BARBIERI A, et al. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis[J]. Geochimica et Cosmochimica Acta, 2002, 66: 3573-3584. |
[41] | RAVENSCHLAG K, SAHM K, AMANN R. Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard)[J]. Applied Environmental Microbiology, 2001, 67(1): 387-395. |
[42] | 高爱国, 陈皓文, 林学政. 加拿大海盆与楚科奇海柱状沉积物中硫酸盐还原菌的分布状况[J]. 环境科学学报, 2008(5): 1014-1020. |
[43] | WILLERS C, JANSEN VAN RENSBURG P J, CLAASSENS S. Phospholipid fatty acid profiling of microbial communities: a review of interpretations and recent applications[J]. Journal of Applied Microbiology, 2015, 119(5): 1207-1218. |
[44] | MILLS C T, DIAS R F, GRAHAM D, et al. Determination of phospholipid fatty acid structures and stable carbon isotope compositions of deep-sea sediments of the Northwest Pacific, ODP site 1179[J]. Marine Chemistry, 2006, 98(2/3/4): 197-209. |
[45] | SUN H, WU Y, BING H, et al. Available forms of nutrients and heavy metals control the distribution of microbial phospholipid fatty acids in sediments of the Three Gorges Reservoir, China[J]. Environmental Science and Pollution Research, 2018, 25(6): 5740-5751. |
[46] | ZHAO J, WANG P, YU X, et al. Structure and composition of sediment: associated bacterial and eukaryotic communities in the river-lake system of Poyang Lake, China[J]. Geomicrobiology Journal, 2019, 36(8): 727-736. |
[47] | LI S, XIAO X, YIN X, et al. Bacterial community along a historic lake sediment core of Ardley Island, west Antarctica[J]. Extremophiles, 2006, 10(5): 461-467. |
[1] | 黄思宇, 蒲俊兵, 潘谋成, 李建鸿, 张陶. 岩溶水库藻源性有机质来源对表层沉积物有机碳矿化过程的影响[J]. 地学前缘, 2024, 31(5): 387-396. |
[2] | 陈天, 贾永刚, 刘涛, 刘晓磊, 单红仙, 孙中强. 海底沉积物孔隙压力原位长期观测技术回顾和展望[J]. 地学前缘, 2022, 29(5): 229-245. |
[3] | 黄冉笑, 王果胜, 袁国礼, 邱坤峰, Hounkpe Jechonias BIDOSSESSI. 伟晶质岩浆的同化混染与分离结晶(AFC)作用及铀成矿效应:以纳米比亚湖山铀矿为例[J]. 地学前缘, 2022, 29(1): 377-402. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||