地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 229-245.DOI: 10.13745/j.esf.sf.2021.9.30
陈天1,2(), 贾永刚1,3,*(
), 刘涛1,3, 刘晓磊1,3, 单红仙1,3, 孙中强1
收稿日期:
2021-01-05
修回日期:
2021-03-27
出版日期:
2022-09-25
发布日期:
2022-08-24
通信作者:
贾永刚
作者简介:
陈 天(1993—),男,博士研究生,主要从事海洋工程地质方面的研究工作。E-mail: chentian@stu.ouc.edu.cn
基金资助:
CHEN Tian1,2(), JIA Yonggang1,3,*(
), LIU Tao1,3, LIU Xiaolei1,3, SHAN Hongxian1,3, SUN Zhongqiang1
Received:
2021-01-05
Revised:
2021-03-27
Online:
2022-09-25
Published:
2022-08-24
Contact:
JIA Yonggang
摘要:
海底沉积物孔隙压力对海底地质灾害过程反应敏感,是表征海床稳定性的一个重要指标,通过海底沉积物的孔隙压力观测可以判断海床的稳定状态,对于海底地质灾害预测预警具有重要意义。海底沉积物孔隙压力观测存在(1)超高背景压力下的高精度测量;(2)贯入过程传感器超量程破坏;(3)系统长期供电及传感器漂移;(4)深海海底布放和回收等技术难点。国际上海底孔隙压力观测技术从20世纪60年代开始发展,逐渐形成了系列核心监测技术和成熟的商业化设备产品。挪威岩土工程研究所NGI与美国伊利诺伊大学共同研发的NGI-Illinois压差式孔隙压力观测系统,是已知最早的海底沉积物孔隙压力观测设备。此后,美国地质调查局USGS、美国桑迪亚国家实验室、英国牛津大学等相继研发了不同结构的观测设备,覆盖浅海到深海。其中,英国海洋科学研究所研发成功的深海孔隙压力原位长期观测设备PUPPI是一个重要的历史节点,该设备能够在6 000 m水深的环境中连续运行一年,成为当时最成功的海底孔隙压力观测设备,其现代化的设备结构和设计理念被后续的观测设备广为借鉴。21世纪以来,得益于海洋科学技术的整体进步,国际孔隙压力观测技术发展呈现加速趋势。法国海洋开发研究院IFREMER研发的Piezometer系列孔隙压力观测探杆,代表了当今世界的先进水平,可能是目前应用次数最多的海底孔隙压力观测设备。我国在深海探测、观测技术领域起步较晚,在深海沉积物孔隙压力原位长期观测技术方面几乎空白,发展很不成熟。其中,中国海洋大学、自然资源部第一海洋研究所等单位进行了较多的探索性研发工作。近年来,以港珠澳大桥建设、南海天然气水合物试采等为标志的大批国家级海洋建设项目如火如荼,深海油气矿产资源开发、深海天然气水合物开采利用等海洋新兴产业快速起步,深海孔隙压力原位长期监测关键核心技术等“卡脖子”问题仍然突出,严重制约了我国海洋工程产业发展的步伐。因此,迫切需要发展具有自主知识产权和关键核心技术的国产深海沉积物孔隙压力原位长期监测技术。本文回顾了国际、国内海底孔隙压力观测技术的相关研究进展,旨在分析总结孔隙压力观测技术及其应用中涉及的一些核心技术和亟待解决的关键问题,以期为我国该项技术的发展和应用提供借鉴。
中图分类号:
陈天, 贾永刚, 刘涛, 刘晓磊, 单红仙, 孙中强. 海底沉积物孔隙压力原位长期观测技术回顾和展望[J]. 地学前缘, 2022, 29(5): 229-245.
CHEN Tian, JIA Yonggang, LIU Tao, LIU Xiaolei, SHAN Hongxian, SUN Zhongqiang. Long-term in situ observation of pore pressure in marine sediments: A review of technology development and future outlooks[J]. Earth Science Frontiers, 2022, 29(5): 229-245.
图3 美国地质调查局(USGS)SEASWAB试验孔隙压力探杆结构示意图(据文献[28]修改)
Fig.3 Diagram of piezometer probe structure of USGS in SEASWAB. Modified after [28]. a—NOAA Piezometer; b—NOAA Piezometer II; c—Lehigh Piezometer; d—TAMU-USGS Piezometer。
图4 GISP和PUPPI孔隙压力探杆的观测模式及其结构示意图(a据文献[32]修改;b据文献[4]修改,c据文献[33]修改)
Fig.4 Diagram of observation patterns of GISP and PUPPI piezometer probes and their structures (a modified after [32]; b modified after [4]; c modified after [33])
图5 挪威岩土工程研究所NGI孔隙压力观测系统示意图(a,b,c据文献[43]修改;d据文献[44]修改)
Fig.5 Diagram of NGI pore pressure observation system (a, b, c modified after [43]; d modified after [44])
图6 SAPPI孔隙压力探杆和P-lance孔隙压力探杆(a据文献[48]修改;b,c据文献[49]修改)
Fig.6 SAPPI piezometer probe and P-lance piezometer probe (a modified after [48], b and c modified after [49])
图8 SEEGeo和中国海洋大学孔隙压力探杆结构(a据文献[21]修改;b据文献[22]修改)
Fig.8 SEEGeo and piezometer probe structure of Ocean University of China (a modified after [21], b modified after [22])
设备名称 | 研发单位 | 总长度/m | 传感器 类型 | 测量 量程/kPa | 测量 精度/kPa | 工作 水深/m | 首次海试 | 数据来源 |
---|---|---|---|---|---|---|---|---|
NGI-Illinois压差式孔隙压力观测系统 (NGI-Illinois Differential Piezometer Probe System) | 挪威岩土工程研究所(NGI) 美国伊利诺伊大学(University of Illinois) | 4.9 | 压差式 | 34~294 | ±6.2 | 500 | 1967年6月 | 文献[ |
NOAA孔隙压力观测探杆 (NOAA Piezometer) | 美国国家海洋和大气管理局(NOAA) | 17.12 | 绝对压力 | 689.5 | ±3.5 | — | 1975年9月 | 文献[ |
第二代NOAA孔隙压力观测探杆 (NOAA Piezometer II) | 美国国家海洋和大气管理局(NOAA) | 19.8 | 绝对压力 | 689.5 | ±3.5 | — | 1977年3月 | 文献[ |
压差式 | 137.9 | ±0.7 | ||||||
Lehigh孔隙压力观测探杆 (Lehigh Piezometer) | 美国里海大学(Lehigh University) | 7.3 | 绝对压力 | 344.7 | ±2.0 | — | 1975年9月 | 文献[ |
TAMU-USGS孔隙压力观测探杆 (TAMU-USGS Piezometer) | 美国得克萨斯农工大学(Texas A&M University) 美国地质调查局(USGS) | 约12.5 | 绝对压力 | 689.5 | — | — | 1976年12月 | 文献[ |
GISP孔隙压力观测探杆 (Geotechnical Instrumented Seafloor Probe) | 美国桑迪亚国家实验室 (Sandia National Laboratories) | 10.5 | 绝对压力 | 6200.0 | — | 450 | 1981年8月 | 文献[ |
牛津大学压差式孔隙压力观测探杆 (Oxford Differential Piezometer) | 英国牛津大学(Oxford University) | 约2.0 | 压差式 | 17.5 | 0.03 | — | 1971年 | 文献[ |
PUPPI孔隙压力观测探杆 (Pop Up Pore Pressure Instrument) | 英国海洋科学研究所 (Institute of Oceanographic Sciences) | 6 | 压差式 | 60 | 0.015 | 6 000 | — | 文献[35-38] |
SAPPI孔隙压力观测探杆 (Satellite-linked Autonomous Pore Pressure Instrument) | 德国不来梅大学(University of Bremen) | 约4.7 | 压差式 | — | — | — | 2004年 | 文献[ |
P-lance孔隙压力观测探杆 | 德国不来梅大学(University of Bremen) | 约4 | 压差式 | — | 0.01 | — | — | 文献[49-50] |
Piezometer系列孔隙压力观测探杆 | 法国海洋开发研究院 (French Research Institute for Exploitation of the Sea) | 最大15 | 压差式 | ±200 | ±0.5 | 6 000 | — | 文献[ |
复杂深海工程地质原位长期观测设备SEEGeo (In-situ Surveying Equipment of Engineering Geology in Complex Deep Sea) | 中国海洋大学 | 4 | 压差式 | 100 | 0.1 | 1 500 | 2016年 | 文献[ |
浅海海底沉积物孔隙压力监测探杆 | 自然资源部第一海洋研究所 | 4.2 | 绝对压力 | — | — | — | — | 文献[ |
表1 国内外主要海底沉积物孔隙压力原位长期观测设备总结
Table 1 Summary of main in situ long-term observation equipment for pore pressure in seafloor sediments domestic and overseas
设备名称 | 研发单位 | 总长度/m | 传感器 类型 | 测量 量程/kPa | 测量 精度/kPa | 工作 水深/m | 首次海试 | 数据来源 |
---|---|---|---|---|---|---|---|---|
NGI-Illinois压差式孔隙压力观测系统 (NGI-Illinois Differential Piezometer Probe System) | 挪威岩土工程研究所(NGI) 美国伊利诺伊大学(University of Illinois) | 4.9 | 压差式 | 34~294 | ±6.2 | 500 | 1967年6月 | 文献[ |
NOAA孔隙压力观测探杆 (NOAA Piezometer) | 美国国家海洋和大气管理局(NOAA) | 17.12 | 绝对压力 | 689.5 | ±3.5 | — | 1975年9月 | 文献[ |
第二代NOAA孔隙压力观测探杆 (NOAA Piezometer II) | 美国国家海洋和大气管理局(NOAA) | 19.8 | 绝对压力 | 689.5 | ±3.5 | — | 1977年3月 | 文献[ |
压差式 | 137.9 | ±0.7 | ||||||
Lehigh孔隙压力观测探杆 (Lehigh Piezometer) | 美国里海大学(Lehigh University) | 7.3 | 绝对压力 | 344.7 | ±2.0 | — | 1975年9月 | 文献[ |
TAMU-USGS孔隙压力观测探杆 (TAMU-USGS Piezometer) | 美国得克萨斯农工大学(Texas A&M University) 美国地质调查局(USGS) | 约12.5 | 绝对压力 | 689.5 | — | — | 1976年12月 | 文献[ |
GISP孔隙压力观测探杆 (Geotechnical Instrumented Seafloor Probe) | 美国桑迪亚国家实验室 (Sandia National Laboratories) | 10.5 | 绝对压力 | 6200.0 | — | 450 | 1981年8月 | 文献[ |
牛津大学压差式孔隙压力观测探杆 (Oxford Differential Piezometer) | 英国牛津大学(Oxford University) | 约2.0 | 压差式 | 17.5 | 0.03 | — | 1971年 | 文献[ |
PUPPI孔隙压力观测探杆 (Pop Up Pore Pressure Instrument) | 英国海洋科学研究所 (Institute of Oceanographic Sciences) | 6 | 压差式 | 60 | 0.015 | 6 000 | — | 文献[35-38] |
SAPPI孔隙压力观测探杆 (Satellite-linked Autonomous Pore Pressure Instrument) | 德国不来梅大学(University of Bremen) | 约4.7 | 压差式 | — | — | — | 2004年 | 文献[ |
P-lance孔隙压力观测探杆 | 德国不来梅大学(University of Bremen) | 约4 | 压差式 | — | 0.01 | — | — | 文献[49-50] |
Piezometer系列孔隙压力观测探杆 | 法国海洋开发研究院 (French Research Institute for Exploitation of the Sea) | 最大15 | 压差式 | ±200 | ±0.5 | 6 000 | — | 文献[ |
复杂深海工程地质原位长期观测设备SEEGeo (In-situ Surveying Equipment of Engineering Geology in Complex Deep Sea) | 中国海洋大学 | 4 | 压差式 | 100 | 0.1 | 1 500 | 2016年 | 文献[ |
浅海海底沉积物孔隙压力监测探杆 | 自然资源部第一海洋研究所 | 4.2 | 绝对压力 | — | — | — | — | 文献[ |
[1] | BENNETT R H. Hydrodynamic stresses driving pore pressure changes in sandy coastal sediments[R]. Fort Belvoir, VA: Defense Technical Information Center, 1997. |
[2] | SULTAN N, GARZIGLIA S, BOMPAIS X, et al. Transient groundwater flow through a coastal confined aquifer and its impact on nearshore submarine slope instability[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(9): 1-18. |
[3] |
SULTAN N, PLAZA-FAVEROLA A, VADAKKEPULIYAMBATTA S, et al. Impact of tides and sea-level on deep-sea Arctic methane emissions[J]. Nature Communications, 2020, 11(1): 5087.
DOI URL |
[4] |
SCHULTHEISS P J. Pore pressures in marine sediments: an overview of measurement techniques and some geological and engineering applications[J]. Marine Geophysical Researches, 1990, 12(1/2): 153-168.
DOI URL |
[5] |
STROUT J M, TJELTA T I. In situ pore pressures: what is their significance and how can they be reliably measured?[J]. Marine and Petroleum Geology, 2005, 22(1/2): 275-285.
DOI URL |
[6] | SCHULTHEISS P J. In-situ pore-pressure measurements for a detailed geotechnical assessment of marine sediments: state of the art[M]// DEMARSK, CHANEYR.Geotechnical engineering of ocean waste disposal. West Conshohocken, PA: ASTM International, 1990: 190-205. |
[7] |
VANNESTE M, SULTAN N, GARZIGLIA S, et al. Seafloor instabilities and sediment deformation processes: the need for integrated, multi-disciplinary investigations[J]. Marine Geology, 2014, 352: 183-214.
DOI URL |
[8] |
SULTAN N, LAFUERZA S. In situ equilibrium pore-water pressures derived from partial piezoprobe dissipation tests in marine sediments[J]. Canadian Geotechnical Journal, 2013, 50(12): 1294-1305.
DOI URL |
[9] | ROHANI M J, AZAM A R, LUNNE T, et al. Foundation integrity: shallow gas mitigation using the XPP monitoring tool: an offshore Malaysia case history[C]// Proceedings of the Annual Offshore Technology Conference Asia 2014. Malaysia: Offshore Technology Conference (OTC), 2014: 1527-1534. |
[10] | 刘涛, 崔逢, 张美鑫. 深海海床孔隙水压力原位观测技术研究进展[J]. 水利学报, 2015, 46(增刊1): 111-116. |
[11] | ELSWORTH D, LEE D S, LONG H, et al. Penetration-induced pore pressure magnitudes-methods to determine transport parameters from terrestrial and marine penetrometer testing[J]. Elsevier Geo-Engineering Book Series, 2004, 2: 477-482. |
[12] |
WHITTLE A J, SUTABUTR T, GERMAINE J T, et al. Prediction and interpretation of pore pressure dissipation for a tapered piezoprobe[J]. Géotechnique, 2001, 51(7): 601-617.
DOI URL |
[13] |
RICHARDS A F, ØTEN K, KELLER G H, et al. Differential piezometer probe for an in situ measurement of sea-floor[J]. Géotechnique, 1975, 25(2): 229-238.
DOI URL |
[14] |
BENNETT R H. Pore-water pressure measurements: Mississippi delta submarine sediments[J]. Marine Geotechnology, 1977, 2(1/2/3/4): 177-189.
DOI URL |
[15] |
HIRST T J, RICHARDS A F. Excess pore pressure in Mississippi delta front sediments: initial report[J]. Marine Geotechnology, 1976, 1(4): 337-344.
DOI URL |
[16] | SULTAN N, MARSSET B, KER S, et al. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B8): B08101. |
[17] |
SULTAN N, VOISSET M, MARSSET B, et al. Potential role of compressional structures in generating submarine slope failures in the Niger Delta[J]. Marine Geology, 2007, 237(3/4): 169-190.
DOI URL |
[18] | SULTAN N, RIBOULOT V, KER S, et al. Pore pressure monitoring of active fault-fluid-hydrate system in deep water, Nigeria[C]// Proceedings of the Annual Offshore Technology Conference 2012. Houston: Offshore Technology Conference (OTC), 2012: OTC23260. |
[19] | 刘涛, 柴万里, 郭磊. 基于FBG的深海沉积物孔压观测设备研究[J]. 中国海洋大学学报(自然科学版), 2017, 47(10): 126-133. |
[20] | OSTERMEIER R M, PELLETIER J H, WINKER C D, et al. Trends in shallow sediment pore pressures-deepwater gulf of Mexico[C]// Proceedings of the Drilling Conference. Amsterdam: Society of Petroleum Engineers (SPE), 2001: 177-188. |
[21] |
LIU T, LI S P, KOU H L, et al. Excess pore pressure observation in marine sediment based on Fiber Bragg Grating pressure sensor[J]. Marine Georesources and Geotechnology, 2019, 37(7): 775-782.
DOI URL |
[22] | LIU T, WEI G L, KOU H L, et al. Pore pressure observation: pressure response of probe penetration and tides[J]. Acta Oceanologica Sinica, 2019, 38(7): 107-113. |
[23] |
BENNETT R H, BRYANT W R, DUNLAP W A, et al. Initial results and progress of the Mississippi delta sediment pore water pressure experiment[J]. Marine Geotechnology, 1976, 1(4): 327-335.
DOI URL |
[24] | BENNETT R H, LI H, VALENT P J, et al. In-situ undrained shear strengths and permeabilities derived from piezometer measurements[M]// DEMARSK, CHANEYR. Strength testing of marine sediments:laboratory and in-situ measurements. West Conshohocken, PA: ASTM International, 1985: 83-100. |
[25] | BENNETT R H, LI H, RICHARDSON M D, et al. Geoacoustic and geological characterization of surficial marine sediments by in situ probe and remote sensing techniques[M]// Geyer R A. CRC Handbook of Geophysical Exploration at Sea. Boca Raton, Florida: CRC Press, 2019: 295-350. |
[26] | LI H, WANG M C, BENNETT R H. Significance of pore pressure in marine sediments: measurements and derived properties[M]// GEYER R A. CRC Handbook of Geophysical Exploration at Sea. Boca Raton, Florida: CRC Press, 1992: 339-381. |
[27] |
BENNETT R H, FARIS J R. Ambient and dynamic pore pressures in fine-grained submarine sediments: Mississippi Delta[J]. Applied Ocean Research, 1979, 1(3): 115-123.
DOI URL |
[28] | DUNLAP W A, BRYANT W R, BENNETT R A, et al. Pore pressure measurements in underconsolidated sediments[C]// Proceedings of the Annual Offshore Technology Conference 1978. Houston: Offshore Technology Conference (OTC), 1978: 1049-1056. |
[29] | BENNETT R H, BURNS J T, CLARKE T L, et al. Piezometer probes for assessing effective stress and stability in submarine sediments[M]//FEILD M E. Marine slides and other mass movements. New York: Springer US, 1982: 129-161. |
[30] | BENNETT R H, BURNS J T, LIPKIN J, et al. Piezometer- probe technology for geotechnical investigations in coastal and deep-ocean environments[R]. Melbourne: Naval Ocean Research and Development Activity and Sandia National Labs, 1983. |
[31] |
HIRST T J, RICHARDS A F. In situ pore-pressure measurement in Mississippi delta front sediments[J]. Marine Geotechnology, 1977, 2(1/2/3/4): 191-204.
DOI URL |
[32] | PRINDLE R W, LOPEZ A A. Pore pressures in marine sediments 1981 test of the geotechnically instrumented seafloor probe (GISP)[C]// Proceedings of the Annual Offshore Technology Conference 1983. Houston: Offshore Technology Conference (OTC), 1983: 173-180. |
[33] | SCHULTHEISS P J, MCPHAIL S D, PACKWOOD A R, et al. An instrument to measure differential pore pressures in deep ocean sediments: Pop-Up-Pore Pressure Instrument (PUPPI)[R]. Wormley: Institute of Oceanographic Sciences, 1985. |
[34] | SILLS G C, THOMAS S D. Pore pressures in soils containing gas[M]// MAIO C D, HUECKELT, LORETB. Chemo-mechanical coupling in clays:from nano-scale to engineering applications. London; New York: Routledge, 2002: 211-222. |
[35] | PACKWOOD A R. Pop-Up Pore Pressure Instrument PUPPI II development. Penetration calculations and hydrodynamics[R]. Wormley: Institute of Oceanographic Sciences, 1983. |
[36] |
BLOUIN A, IMBERT P, SULTAN N, et al. Evolution model for the absheron mud volcano: from in situ observations to numerical modeling[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(3): 766-794.
DOI URL |
[37] |
URGELES R, CANALS M, ROBERTS J, et al. Fluid flow from pore pressure measurements off La Palma, Canary Islands[J]. Journal of Volcanology and Geothermal Research, 2000, 101(3/4): 253-271.
DOI URL |
[38] | MCPHAIL S D, SCHULTHEISS P J. PUPPI: a free-fall seabed piezometer for geotechnical studies[C]// Proceedings of an International Conference. Brighton: Springer, 1986: 249-258. |
[39] |
SCHULTHEISS P J, MCPHAIL S D. Direct indication of pore-water advection from pore pressure measurements in Madeira Abyssal Plain sediments[J]. Nature, 1986, 320(6060): 348-350.
DOI URL |
[40] |
SCHULTHEISS P J, NOEL M. Evidence of pore-water advection in the Madeira Abyssal Plain from pore-pressure and temperature measurements[J]. Geological Society, London, Special Publications, 1987, 31(1): 113-129.
DOI URL |
[41] | HURLEY M T, SCHULTHEISS P J. Sea-bed shear moduli from measurements of tidally induced pore pressures[M]// HOVEMJ M, RICHARDSONM D, STOLLR D. Shear waves in marine sediments. Dordrecht: Springer Netherlands, 1991: 411-418. |
[42] | FANG W W, LANGSETH M G, SCHULTHEISS P J. Analysis and application of in situ pore pressure measurements in marine sediments[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B5): 7921-7938. |
[43] | STROUT J M, TJELTA T I. Excess pore pressure measurement and monitoring for offshore instability problems[C]// Proceedings of the Annual Offshore Technology Conference 2007. Houston: Offshore Technology Conference (OTC), 2007: OTC19706. |
[44] | TJELTA T, SVANØ G, STROUT J M, et al. Gas seepage and pressure buildup at a north sea platform location:gas origin, transport mechanisms, and potential hazards[C]//Proceedings of the Annual Offshore Technology Conference 2007. Houston: Offshore Technology Conference (OTC), 2007: OTC18706. |
[45] | SPARREVIK P, STROUT J. Novel monitoring solutions solving geotechnical problems and offshore installation challenges[M]// VAUGHAN M. Frontiers in offshore geotechnics III. Boca Raton, Florida: CRC Press, 2015: 319-324. |
[46] |
FLEMINGS P B, LONG H, DUGAN B, et al. Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico[J]. Earth and Planetary Science Letters, 2008, 269(3/4): 309-325.
DOI URL |
[47] | SAWYER A H, FLEMINGS P, ELSWORTH D, et al. Response of submarine hydrologic monitoring instruments to formation pressure changes: theory and application to Nankai advanced CORKs[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B1): B01102. |
[48] | KAUL N, VILLINGER H, KRUSE M. Satellite-linked autonomous pore pressure instrument (SAPPI): a step toward a deep-sea observatory for intermediate time spans with automated data transmission into the laboratory[J]. Sea Technology, 2004, 45(8): 54-58. |
[49] |
MENAPACE W, VÖLKER D, SAHLING H, et al. Long-term in situ observations at the Athina mud volcano, eastern Mediterranean: taking the pulse of mud volcanism[J]. Tectonophysics, 2017, 721: 12-27.
DOI URL |
[50] | SAHLING H, LOHER M, MENAPACE W, et al. R/V POSEIDON cruise POS498, recovery of observatories at Athina Mud Volcano, Izmir (Turkey)-Catania (Italy), 18 April-1 May, 2016[R]. Bremen: MARUM-Center for Marine Environmental Sciences, 2016. |
[51] | LUCA G, LUIS G, PAOLO F, et al. MARM2009: marine geological study of the north Anatolian fault beneath the sea of MARMARA[R]. Bologna: ISMAR, 2009. |
[52] |
STEGMANN S, SULTAN N, KOPF A, et al. Hydrogeology and its effect on slope stability along the coastal aquifer of Nice, France[J]. Marine Geology, 2011, 280(1/2/3/4): 168-181.
DOI URL |
[53] | HAFLIDASON H, MORGAN E, L'HEUREUX J S, et al. Finneidfjord: a field laboratory for integrated submarine slope stability assessments and characterization of landslide-prone sediments: a review[C]//Proceedings of the Annual Offshore Technology Conference 2013. Houston: Offshore Technology Conference (OTC), 2013: OTC23967. |
[54] |
SULTAN N, CATTANEO A, SIBUET J C, et al. Deep Sea in situ excess pore pressure and sediment deformation off NW Sumatra and its relation with the December 26, 2004 Great Sumatra-Andaman Earthquake[J]. International Journal of Earth Sciences, 2009, 98(4): 823-837.
DOI URL |
[55] |
RIBOULOT V, CATTANEO A, SULTAN N, et al. Sea-level change and free gas occurrence influencing a submarine landslide and pockmark formation and distribution in deepwater Nigeria[J]. Earth and Planetary Science Letters, 2013, 375: 78-91.
DOI URL |
[56] | FISHER A, LANGSETH M, BAKER P, et al. The devil's in the details: hydrogeology of middle valley active venting areas[J]. Eos, Transactions American Geophysical Union, 1997, 78(16): 165. |
[57] | SULTAN N, RIBOULOT V, KER S, et al. Dynamics of fault-fluid-hydrate system around a shale-cored anticline in deepwater Nigeria[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B12): B12110. |
[58] | STEGMANN S, SULTAN N, GARZIGLIA S, et al. A long-term monitoring array for landslide precursors: a case study at the Ligurian slope (western Mediterranean Sea)[C]//Proceedings of the Annual Offshore Technology Conference 2012. Houston: Offshore Technology Conference (OTC), 2012: OTC23271. |
[59] |
SULTAN N, BOHRMANN G, RUFFINE L, et al. Pockmark formation and evolution in deep water Nigeria: rapid hydrate growth versus slow hydrate dissolution[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(4): 2679-2694.
DOI URL |
[60] | 文明征, 陈天, 胡云壮, 等. 波流作用下海底边界层沉积物再悬浮与影响因素研究[J]. 海洋学报, 2020, 42(3): 97-106. |
[61] | 杜星. 黄河口海底粉土波致孔压精细观测及液化评判方法[D]. 青岛: 国家海洋局第一海洋研究所, 2016: 1-75. |
[62] | 宋玉鹏, 孙永福, 杜星, 等. 波浪作用下海底粉土孔隙水压力响应过程监测研究[J]. 海洋地质与第四纪地质, 2018, 38(2): 208-214. |
[1] | 孙东, 杨涛, 曹楠, 覃亮, 胡骁, 魏萌, 蒙明辉, 张伟. 泸定MS 6.8地震同震地质灾害特点及防控建议[J]. 地学前缘, 2023, 30(3): 476-493. |
[2] | 孙志文, 贾永刚, 权永峥, 郭秀军, 刘涛, 孟庆生, 孙中强, 李凯, 范智涵, 陈天, 唐浩儒. 复杂深海工程地质原位长期监测系统研发与应用[J]. 地学前缘, 2022, 29(5): 216-228. |
[3] | 杨梓阳, 任登龙, 贺志鹏, 李学刚, 宋金明, 袁华茂, 段丽琴, 李宁, 张倩. 基于磷脂脂肪酸的热带西太平洋沉积物生源要素矿化过程探析[J]. 地学前缘, 2022, 29(4): 93-102. |
[4] | 孙启良, 解习农, 吴时国. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘, 2021, 28(2): 258-270. |
[5] | 罗鸿东,李瑞冬,张勃,曹博. 基于信息量法的地质灾害气象风险预警模型:以甘肃省陇南地区为例[J]. 地学前缘, 2019, 26(6): 289-297. |
[6] | 殷志强, 陈红旗, 褚宏亮, 徐永强, 赵无忌. 2008年以来中国5次典型地震事件诱发地质灾害主控因素分析[J]. 地学前缘, 2013, 20(6): 289-302. |
[7] | 王宁涛,彭轲,黎清华,赵信文,黎义勇,何军. 基于RS和GIS的地质灾害易发性定量评价: 以湖北省五峰县为例[J]. 地学前缘, 2012, 19(6): 221-229. |
[8] | 陈波, 梁汉东. 地震活动与矿井顶板事故影响关系统计分析[J]. 地学前缘, 2010, 17(1): 238-245. |
[9] | 韩金良 吴树仁 何淑军 孙炜锋 张春山 王涛 杨金中 石菊松. 5.12汶川8级地震次生地质灾害的基本特征及其形成机制浅析[J]. 地学前缘, 2009, 16(3): 306-326. |
[10] | 王兰生; 王小群; 许向宁; 崔杰;. 岷江上游近两万年前发生了什么事件? [J]. 地学前缘, 2007, 14(6): 189-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||