地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 246-254.DOI: 10.13745/j.esf.sf.2021.9.16
邢会林1,2,3(), 王建超1,3,*(
), 逄硕1,2,3, 王瑞泽1,3, 刘冬豫1,3, 马子涵1,3, 张愉玲1,3, 谭玉阳1,2,3
收稿日期:
2021-05-11
修回日期:
2021-08-21
出版日期:
2022-09-25
发布日期:
2022-08-24
通信作者:
王建超
作者简介:
邢会林(1965—),男,教授,博士生导师,主要从事超级计算地球科学理论、软件研发及其应用等研究工作。E-mail: h.xing@ouc.edu.cn
基金资助:
XING Huilin1,2,3(), WANG Jianchao1,3,*(
), PANG Shuo1,2,3, WANG Ruize1,3, LIU Dongyu1,3, MA Zihan1,3, ZHANG Yuling1,3, TAN Yuyang1,2,3
Received:
2021-05-11
Revised:
2021-08-21
Online:
2022-09-25
Published:
2022-08-24
Contact:
WANG Jianchao
摘要:
俯冲带是地球上构造活动最复杂、最强烈的区域,也是地球物质循环系统的重要组成部分,对俯冲带的深入研究有助于加深我们对地球系统科学的认识。通过系统地梳理分析国内外相关文献,大洋岩石圈通过在汇聚板块边界的俯冲将大量水带入到地幔中,并对俯冲带地震的发生、地幔的熔融、岩浆的产生、陆壳的形成乃至矿产资源富集都起到了重要的控制作用。弧前隆起区的岩石圈地幔在顺断层渗透的深海水作用下发生强烈水化作用并形成水化地幔,是水富集在岩石圈的主要方式之一。随着俯冲板片深度的增加,在一定的温压条件下,水化地幔(蛇纹岩)发生脱水相变,引发俯冲带中源地震。脱出的水则由于运移的差异,既可以产生板内的水压致裂,也会影响俯冲界面的耦合,进而导致慢滑移地震区的形成。由此可见,俯冲带地区深海-岩石圈流体交换及其在深部的效应是一个包含化学反应-温度-流体流动-应力变形/破坏的多物理场耦合的复杂动力学系统。然而,目前的相关研究工作主要侧重于对其中某个因素、现象或者某个特定条件下具体过程的探索性观测分析研究。因此,我们需要从地球系统科学的角度出发,将流体运移、化学反应与传统的固体地球研究相结合,着眼于多学科交叉的多场耦合动力学综合研究,对俯冲带地区深海-岩石圈流体交换及其效应进行多时空尺度定量化表征和分析。
中图分类号:
邢会林, 王建超, 逄硕, 王瑞泽, 刘冬豫, 马子涵, 张愉玲, 谭玉阳. 俯冲带深海-岩石圈流体交换及其效应[J]. 地学前缘, 2022, 29(5): 246-254.
XING Huilin, WANG Jianchao, PANG Shuo, WANG Ruize, LIU Dongyu, MA Zihan, ZHANG Yuling, TAN Yuyang. Deep sea-lithosphere fluid exchange in subduction zones and its effects: A critical review[J]. Earth Science Frontiers, 2022, 29(5): 246-254.
图1 多种地球物理手段探测的海沟前缘隆起区水化断层通道(a,b,d据文献[41]修改;c据文献[33]修改;e据文献[47]修改) a—海底多波束探测;b—多道地震反射剖面;c—叠后有限差分时间偏移剖面;d—P波速度结构;e—主动源电磁探测。
Fig.1 Hydration fault channels in the uplift area at the trench front detected by various geophysical methods. a,b,d modified after [41]; c modified after [33]; e modified after [47].
图2 大洋岩石圈地幔蛇纹岩脱水反应矿物相变示意图(据文献[55-56]修改)
Fig.2 Dehydration induced phase transition in serpentinized oceanic lithospheric mantle. Modified after [55-56].
图4 微观结构下流体沿板块内部裂隙与离散断层运移示意图(据文献[70-71]修改)
Fig.4 Schematic of microscopic intraplate fluid migrations along fractures and discrete faults. Modified after [70-71].
图5 板内断层水化模式及应力传播示意图(据文献[75]修改)
Fig.5 Schematics of fault-mediated plate hydration (left) and stress propagation along faults (right). Modified after [74].
[1] | STERN R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38. |
[2] |
ISACKS B, OLIVER J, SYKES L R, Seismology and the new global tectonics[J]. Journal of Geophysical Research, 1968, 73(18), 5855-5899.
DOI URL |
[3] |
TATSUMI Y. The subduction factory: how it operates in the evolving Earth[J]. GSA Today, 2005, 15(7): 4-10.
DOI URL |
[4] | PEACOCK S M. Thermal and petrologic structure of subduction zones[M]// Subduction Top to Bottom. Washington D C: American Geophysical Union, 2013: 119-133. |
[5] | BEBOUT G E, SCHOLL D W, STERN R J, et al. Twenty years of subduction zone science: subduction top to bottom 2 (ST2B-2)[J]. GSA Today, 2018: 4-10. |
[6] |
FACCENDA M. Water in the slab: a trilogy[J]. Tectonophysics, 2014, 614: 1-30.
DOI URL |
[7] |
ZHENG Y F, CHEN R X, XU Z, et al. The transport of water in subduction zones[J]. Science China Earth Sciences, 2016, 59(4): 651-682.
DOI URL |
[8] |
GAO X, WANG K. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip[J]. Nature, 2017, 543(7645): 416-419.
DOI URL |
[9] |
CAPPA F, SCUDERI M M, COLLETTINI C, et al. Stabilization of fault slip by fluid injection in the laboratory and in situ[J]. Science Advances, 2019, 5(3): eaau4065.
DOI URL |
[10] |
COOPER G F, MACPHERSON C G, BLUNDY J D, et al. Variable water input controls evolution of the Lesser Antilles volcanic arc[J]. Nature, 2020, 582(7813): 525-529.
DOI URL |
[11] | HACKER B R, PEACOCK S M, ABERS G A, et al. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1): 11-1-11-16. |
[12] | VAN KEKEN P E, HACKER B R, SYRACUSE E M, et al. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide[J]. Journal of Geophysical Research Atmospheres, 2011, 116(B1): B01401. |
[13] |
WILSON C R, SPIEGELMAN M, VAN KEKEN P E, et al. Fluid flow in subduction zones: the role of solid rheology and compaction pressure[J]. Earth and Planetary Science Letters, 2014, 401: 261-274.
DOI URL |
[14] |
PLANK T, LANGMUIR C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325-394.
DOI URL |
[15] | VAN AVENDONK H J A, HOLBROOK W S, LIZARRALDE D, et al. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): 1-23. |
[16] |
CONTRERAS-REYES E, GREVÜEMEYER I, WATTS A B, et al. Deep seismic structure of the Tonga subduction zone: implications for mantle hydration, tectonic erosion, and arc magmatism[J]. Journal of Geophysical Research Atmospheres, 2011, 116(B10): B10103.
DOI URL |
[17] |
ALT J C, SCHWARZENBACH E M, FRÜH-GREEN G L, et al. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism[J]. Lithos, 2013, 178: 40-54.
DOI URL |
[18] |
GUILLOT S, SCHWARTZ S, REYNARD B, et al. Tectonic significance of serpentinites[J]. Tectonophysics, 2015, 646: 1-19.
DOI URL |
[19] |
WIENS D A, MCGUIRE J J, SHORE P J. Evidence for transformational faulting from a deep double seismic zone in Tonga[J]. Nature, 1993, 364(6440): 790-793.
DOI URL |
[20] |
BEKINS B A, MCCAFFREY A M, DREISS S J. Episodic and constant flow models for the origin of low-chloride waters in a modern accretionary complex[J]. Water Resources Research, 1995, 31(12): 3205-3215.
DOI URL |
[21] | JARRARD R D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(5): 8905. |
[22] | SAHLING H, MASSON D G, RANERO C R, et al. Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5): Q05S05. |
[23] |
ZHENG Y F, HERMANN J. Geochemistry of continental subduction-zone fluids[J]. Earth, Planets and Space, 2014, 66(1): 93.
DOI URL |
[24] |
HASEGAWA A, NAKAJIMA J. Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes[J]. Progress in Earth and Planetary Science, 2017, 4: 12
DOI URL |
[25] |
ULMER P, TROMMSDORFF V. Serpentine stability to mantle depths and subduction-related magmatism[J]. Science, 1995, 268(5212): 858-861.
DOI URL |
[26] |
STAUDIGEL H, DAVIES G R, HART S R, et al. Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418[J]. Earth and Planetary Science Letters, 1995, 130(1/2/3/4): 169-185.
DOI URL |
[27] |
DIXON J E, LEIST L, LANGMUIR C, et al. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt[J]. Nature, 2002, 420(6914): 385-389.
DOI URL |
[28] |
SMITH D. Mantle spread across the sea floor[J]. Nature Geoscience, 2013, 6(4): 247-248.
DOI URL |
[29] |
BONATTI E, HONNOREZ J. Sections of the earth's crust in the equatorial Atlantic[J]. Journal of Geophysical Research Atmospheres, 1976, 81(23): 4104-4116.
DOI URL |
[30] |
GREGG P M, LIN J, BEHN M D, et al. Spreading rate dependence of gravity anomalies along oceanic transform faults[J]. Nature, 2007, 448(7150): 183-187.
DOI URL |
[31] | SENO T, YAMANAKA Y. Double seismic zones, compressional deep trench-outer rise events, and superplumes[M]// Subduction Top to Bottom. Washington D C: American Geophysical Union, 2013: 347-355. |
[32] |
RANERO C R, SALLARES V. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench[J]. Geology, 2004, 32(7): 549-552.
DOI URL |
[33] |
RANERO C R, PHIPPS MORGAN J, MCINTOSH K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench[J]. Nature, 2003, 425(6956): 367-373.
DOI URL |
[34] |
FACCENDA M, GERYA T V, BURLINI L. Deep slab hydration induced by bending-related variations in tectonic pressure[J]. Nature Geoscience, 2009, 2(11): 790-793.
DOI URL |
[35] |
KOBAYASHI K, NAKANISHI M, TAMAKI K, et al. Outer slope faulting associated with the western Kuril and Japan trenches[J]. Geophysical Journal International, 1998, 134(2): 356-372.
DOI URL |
[36] | BILLEN M I, GURNIS M. Constraints on subducting plate strength within the Kermadec trench[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B5): B05407. |
[37] |
KIRBY S. Interslab earthquakes and phase changes in subducting lithosphere[J]. Reviews of Geophysics, 1995, 33(S1): 287-297.
DOI URL |
[38] |
GREVEMEYER I, RANERO C R, FLUEH E R, et al. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench[J]. Earth and Planetary Science Letters, 2007, 258(3/4): 528-542.
DOI URL |
[39] |
HUTCHINSON J, KAO H, SPENCE G, et al. Seismic characteristics of the Nootka fault zone: results from the seafloor earthquake array Japan-Canada cascadia experiment (SeaJade)[J]. Bulletin of the Seismological Society of America, 2019, 109(6): 2252-2276.
DOI URL |
[40] | CONTRERAS-REYES E, OSSES A. Lithospheric flexure modelling seaward of the Chile trench: implications for oceanic plate weakening in the Trench Outer Rise region[J]. Geophysical Journal International, 2010, 182(1): 97-112. |
[41] |
SHILLINGTON D J, BÉCEL A, NEDIMOVI M R, et al. Link between plate fabric, hydration and subduction zone seismicity in Alaska[J]. Nature Geoscience, 2015, 8(12): 961-964.
DOI URL |
[42] |
CAI C, WIENS D A, SHEN W, et al. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data[J]. Nature, 2018, 563(7731): 389-392.
DOI URL |
[43] |
WAN K Y, LIN J, XIA S H, et al. Deep seismic structure across the southernmost Mariana trench: implications for arc rifting and plate hydration[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(5): 4710-4727.
DOI URL |
[44] |
GREVEMEYER I, RANERO C R, IVANDIC M. Structure of oceanic crust and serpentinization at subduction trenches[J]. Geosphere, 2018, 14(2): 395-418.
DOI URL |
[45] |
WORZEWSKI T, JEGEN M, KOPP H, et al. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone[J]. Nature Geoscience, 2011, 4(2): 108-111.
DOI URL |
[46] |
KEY K, CONSTABLE S, MATSUNO T, et al. Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench[J]. Earth and Planetary Science Letters, 2012, 351/352: 45-53.
DOI URL |
[47] |
NAIF S, KEY K, CONSTABLE S, et al. Water-rich bending faults at the Middle America Trench[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8): 2582-2597.
DOI URL |
[48] | RANERO C R, VILLASEÑOR A, PHIPPS MORGAN J, et al. Relationship between bend-faulting at trenches and intermediate-depth seismicity[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(12): Q12002. |
[49] | FUJIE G, KODAIRA S, SATO T, et al. Along-trench variation in water contents within the incoming Pacific plate offshore northeastern Japan[C]. Chicago: AGU Fall Meeting Abstracts, 2012: T11A-2525. |
[50] |
NALIBOFF J B, BILLEN M I, GERYA T, et al. Dynamics of outer-rise faulting in oceanic-continental subduction systems[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2310-2327.
DOI URL |
[51] | ZHENG Y F. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10(4): 1223-54. |
[52] |
REYNARD B. Serpentine in active subduction zones[J]. Lithos, 2013, 178: 171-185.
DOI URL |
[53] |
RALEIGH C B, PATERSON M S. Experimental deformation of serpentinite and its tectonic implications[J]. Journal of Geophysical Research, 1965, 70(16): 3965-3985.
DOI URL |
[54] | HASEGAWA A. Seismicity, Subduction Zone[M]// GUPTAH K. Encyclopedia of Solid Earth Geophysics. Dordrecht: Springer Netherlands, 2011: 1305-1315. |
[55] |
SCAMBELLURI M, FIEBIG J, MALASPINA N, et al. Serpentinite subduction: implications for fluid processes and trace-element recycling[J]. International Geology Review, 2004, 46(7): 595-613.
DOI URL |
[56] | 吴凯, 袁洪林, 吕楠, 等. 蛇纹石化和俯冲带蛇纹岩变质脱水过程中流体活动性元素的行为[J]. 岩石学报, 2020, 36(1): 141-153. |
[57] |
POLI S, SCHMIDT M W. Petrology of subducted slabs[J]. Annual Review of Earth and Planetary Sciences, 2002, 30: 207-235.
DOI URL |
[58] |
GREEN H W, HOUSTON H. The mechanics of deep earthquakes[J]. Annual Review of Earth and Planetary Sciences, 1995, 23(1): 169-213.
DOI URL |
[59] |
DOBSON D P, MEREDITH P G, BOON S A. Simulation of subduction zone seismicity by dehydration of serpentine[J]. Science, 2002, 298(5597): 1407-10.
DOI URL |
[60] |
SAWAI M, KATAYAMA I, HAMADA A, et al. Dehydration kinetics of antigorite using in situ high-temperature infrared microspectroscopy[J]. Physics and Chemistry of Minerals, 2013, 40(4): 319-330.
DOI URL |
[61] |
CHERNAK L J, HIRTH G. Deformation of antigorite serpentinite at high temperature and pressure[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 23-33.
DOI URL |
[62] | AMIGUET E, REYNARD B, CARACAS R, et al. Creep of phyllosilicates at the onset of plate tectonics[J]. Earth and Planetary Science Letters, 2012, 345/346/347/348: 142-150. |
[63] |
BARCHECK C G, WIENS D A, VAN KEKEN P E, et al. The relationship of intermediate- and deep-focus seismicity to the hydration and dehydration of subducting slabs[J]. Earth and Planetary Science Letters, 2012, 349/350: 153-160.
DOI URL |
[64] |
MCKENZIE D. The generation and compaction of partially molten rock[J]. Journal of Petrology, 1984, 25(3): 713-765.
DOI URL |
[65] |
JUNG H, GREEN II H W, DOBRZHINETSKAYA L F. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change[J]. Nature, 2004, 428(6982): 545-549.
DOI URL |
[66] |
PROCTOR B, HIRTH G. Role of pore fluid pressure on transient strength changes and fabric development during serpentine dehydration at mantle conditions: implications for subduction-zone seismicity[J]. Earth and Planetary Science Letters, 2015, 421: 1-12.
DOI URL |
[67] |
HEALY D, REDDY S M, TIMMS N E, et al. Trench-parallel fast axes of seismic anisotropy due to fluid-filled cracks in subducting slabs[J]. Earth and Planetary Science Letters, 2009, 283(1/2/3/4): 75-86.
DOI URL |
[68] |
DAVIES J H. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism[J]. Nature, 1999, 398(6723): 142-145.
DOI URL |
[69] |
OKAMOTO A, SHIMIZU H, FUKUDA J I, et al. Reaction-induced grain boundary cracking and anisotropic fluid flow during prograde devolatilization reactions within subduction zones[J]. Contributions to Mineralogy and Petrology, 2017, 172(9): 1-23.
DOI URL |
[70] |
KONRAD-SCHMOLKE M, O'BRIEN P J, ZACK T. Fluid migration above a subducted slab-constraints on amount, pathways and major element mobility from partially overprinted eclogite-facies rocks (sesia zone, western Alps)[J]. Journal of Petrology, 2011, 52(3): 457-486.
DOI URL |
[71] |
ZHENG J P, XIONG Q, ZHAO Y, et al. Subduction-zone peridotites and their records of crust-mantle interaction[J]. Science China Earth Sciences, 2019, 62(7): 1033-1052.
DOI URL |
[72] |
FULTON P M, BRODSKY E E. In situ observations of earthquake-driven fluid pulses within the Japan Trench plate boundary fault zone[J]. Geology, 2016, 44(10): 851-854.
DOI URL |
[73] |
TUNG S, MASTERLARK T, DOVOVAN T. Transient poroelastic stress coupling between the 2015 M7.8 Gorkha, Nepal earthquake and its M7.3 aftershock[J]. Tectonophysics, 2018, 733: 119-131.
DOI URL |
[74] |
BEINLICH A, JOHN T, VRIJMOED J C, et al. Instantaneous rock transformations in the deep crust driven by reactive fluid flow[J]. Nature Geoscience. 2020, 13(4): 307-311.
DOI URL |
[75] | KISER E, ISHII M, LANGMUIR C H, et al. Insights into the mechanism of intermediate-depth earthquakes from source properties as imaged by back projection of multiple seismic phases[J]. Journal of Geophysical Research Atmospheres, 2011, 116(B6): B06310. |
[76] |
HESSE M A, SCHIEMENZ A R, LIANG Y, et al. Compaction-dissolution waves in an upwelling mantle column[J]. Geophysical Journal International, 2011, 187(3): 1057-1075.
DOI URL |
[77] | LIANG Y, SCHIEMENZ A, HESSE M A, et al. Waves, channels, and the preservation of chemical heterogeneities during melt migration in the mantle[J]. Geophysical Research Letters, 2011, 38(20): L20308. |
[78] |
WASSMANN S, STÖCKHERT B. Rheology of the plate interface-Dissolution precipitation creep in high pressure metamorphic rocks[J]. Tectonophysics, 2013, 608: 1-29.
DOI URL |
[79] |
BÜRGMANN R. The geophysics, geology and mechanics of slow fault slip[J]. Earth and Planetary Science Letters, 2018, 495: 112-134.
DOI URL |
[80] | FASOLA S L, BRUDZINSKI M R, HOLTKAMP S G, et al. Earthquake swarms and slow slip on a sliver fault in the Mexican subduction zone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(15): 7198-7206. |
[81] |
SAFFER D M, TOBIN H J. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 157-186.
DOI URL |
[82] |
DESCHAMPS F, GODARD M, GUILLOT S, et al. Geochemistry of subduction zone serpentinites: a review[J]. Lithos, 2013, 178: 96-127.
DOI URL |
[83] |
HUGHES K L H, MASTERLARK T, MOONEY W D. Poroelastic stress-triggering of the 2005 M8.7 Nias earthquake by the 2004 M9.2 Sumatra-Andaman earthquake[J]. Earth and Planetary Science Letters, 2010, 293(3/4): 289-299.
DOI URL |
[1] | 胡晗, 张立飞, 彭卫刚, 兰春元, 刘志成. 西南天山超高压泥质片岩中石墨的形成:对俯冲带碳迁移、储存的启示[J]. 地学前缘, 2024, 31(6): 282-303. |
[2] | 李卓骐, 许成, 韦春婉. 地球深部脱碳过程研究评述[J]. 地学前缘, 2024, 31(6): 304-319. |
[3] | 兰春元, 张立飞, 陶仁彪, 胡晗, 张丽娟, 王超. 基于DEW模型的地球深部流体组成与水岩相互作用计算方法综述[J]. 地学前缘, 2024, 31(1): 64-76. |
[4] | 王根厚, 李典, 梁晓. 南羌塘印支期增生造山带组成、结构及演化[J]. 地学前缘, 2023, 30(3): 242-261. |
[5] | 孟繁聪, 白盛锦, Alexander B. MAKEYEV, Ksenia V. KULIKOVA. 俄罗斯极地乌拉尔硬玉岩成因矿物学研究[J]. 地学前缘, 2020, 27(5): 88-98. |
[6] | 牛耀龄,沈芳宇,陈艳虹,龚红梅. 俯冲带形成机制的可检验假说和检验方案[J]. 地学前缘, 2018, 25(6): 51-66. |
[7] | 李三忠,索艳慧,刘博,刘永江,李玺瑶,赵淑娟,朱俊江,王光增,张国伟. 微板块构造理论:全球洋内与陆缘微地块研究的启示(附对该文的审稿意见)[J]. 地学前缘, 2018, 25(5): 323-356. |
[8] | 杨高学,李永军,佟丽莉,李甘雨,吴乐. 西准噶尔海山俯冲的地质效应:来自泥盆纪—石炭纪火山岩地球化学证据[J]. 地学前缘, 2017, 24(6): 60-67. |
[9] | 朱俊江,李三忠,孙宗勋,李先鹏,李健. 南海东部马尼拉俯冲带的地壳结构和俯冲过程[J]. 地学前缘, 2017, 24(4): 341-351. |
[10] | 刘鑫,李三忠,赵淑娟,郭玲莉,王永明,李玺瑶,王鹏程,孙文军,曹现志,戴黎明,于胜尧,张臻,臧艺博,孔祥超,张勇,郑祺亮. 马里亚纳俯冲系统的构造特征[J]. 地学前缘, 2017, 24(4): 329-340. |
[11] | 王力峰,陆敬安,梁金强,尚久靖,王静丽. 南海东北部陆坡水合物钻探区BSR推导流体运移速率研究[J]. 地学前缘, 2017, 24(4): 78-88. |
[12] | 杨高学,李永军. 西准噶尔洋中海山及其俯冲带处地质效应[J]. 地学前缘, 2015, 22(6): 233-240. |
[13] | 万红琼, 孙贺, 刘海洋, 肖益林. 俯冲带Li同位素地球化学: 回顾与展望[J]. 地学前缘, 2015, 22(5): 29-43. |
[14] | 周永章, 郑义, 曾长育, 梁锦. 关于钦杭成矿带的若干认识[J]. 地学前缘, 2015, 22(2): 1-6. |
[15] | 干微,金振民,吴耀,赵素涛. 深源地震机理的回顾:现状与问题[J]. 地学前缘, 2012, 19(4): 15-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||