地学前缘 ›› 2024, Vol. 31 ›› Issue (6): 436-449.DOI: 10.13745/j.esf.sf.2024.6.36
周念清1,*(), 郭梦申1, 蔡奕1, 陆帅帅1, 刘晓群2, 赵文刚2
收稿日期:
2024-02-07
修回日期:
2024-04-02
出版日期:
2024-11-25
发布日期:
2024-11-25
通信作者:
周念清
基金资助:
ZHOU Nianqing1,*(), GUO Mengshen1, CAI Yi1, LU Shuaishuai1, LIU Xiaoqun2, ZHAO Wengang2
Received:
2024-02-07
Revised:
2024-04-02
Online:
2024-11-25
Published:
2024-11-25
Contact:
ZHOU Nianqing
摘要:
湿地关键带“碳源”和“碳汇”的转化机制及其量化关系是研究湿地碳循环需要重点探讨和解决的科学问题。碳(C)是构成生命体的主要元素之一,在生态系统的物质循环和能量流动过程中发挥着极其重要的作用。湿地关键带作为地球关键带最活跃的组成部分,蕴含着大量的信息交换,需要通过信息提取、解译来研究碳循环及其迁移转化信息互馈机制。C在湿地生态系统中具有“源”和“汇”的功能,涉及大气、土壤、植被、水和微生物作用,湿地关键带碳循环对促进湿地生态环境保护至关重要。本文以湿地关键带C的生物地球化学循环特征为基础,分析了湿地关键带中C的赋存形态及C在植被—大气、根系—土壤和土壤—大气界面的迁移转化过程,阐释了影响湿地关键带碳循环及迁移转化的主控因子和耦合作用机制,进一步探讨了“减碳源”和“增碳汇”双向驱动下对实现“双碳”目标的积极作用。由此提出了未来的研究方向,应重点加强湿地关键带C的时空演化和生物地球化学循环影响机理分析,构建碳循环量化模式,精准测定“碳源”和“碳汇”转化过程中的通量变化,量化湿地关键带 “碳汇”盈余,评价湿地关键带对碳达峰和碳中和的贡献度。
中图分类号:
周念清, 郭梦申, 蔡奕, 陆帅帅, 刘晓群, 赵文刚. 湿地关键带碳循环与碳源碳汇转化机制及碳交换量化模式[J]. 地学前缘, 2024, 31(6): 436-449.
ZHOU Nianqing, GUO Mengshen, CAI Yi, LU Shuaishuai, LIU Xiaoqun, ZHAO Wengang. Mechanism of carbon cycle and source-sink conversion and quantitative carbon exchange model in critical zone of wetland[J]. Earth Science Frontiers, 2024, 31(6): 436-449.
图1 地球关键带结构(a)及过程响应(b)示意图(a引自文献[23])
Fig.1 Schematic diagram of the structure and process response of Critical Zone of the Earth. Fig.a adapted from [23].
[1] | 陶波, 葛全胜, 李克让, 等. 陆地生态系统碳循环研究进展[J]. 地理研究, 2001, 20(5): 564-575. |
[2] | 耿元波, 董云社, 孟维奇. 陆地碳循环研究进展[J]. 地理科学进展, 2000, 19(4): 297-306. |
[3] |
陈雪倩, 张立飞. 碳的固定、运输、 转移和排放过程: 对地球深部碳循环的启示[J]. 地学前缘, 2023, 30(3): 313-339.
DOI |
[4] |
谢立军, 白中科, 杨博宇, 等. 碳中和背景下国内外陆地生态系统碳汇评估方法研究进展[J]. 地学前缘, 2023, 30(2): 447-462.
DOI |
[5] | MING A, ROWELL I, LEWIN S, et al. Key messages from the IPCC AR6 climate science report[M]. Cambridge, UK: Cambridge University Press, 2021. |
[6] | NORBY R. Inside the black box[J]. Nature, 1997, 388(6642): 522-523. |
[7] | KHALIL M A K. Non-CO2 greenhouse gases in the atmosphere[J]. Annual Review of Energy and the Environment, 1999, 24: 645-661. |
[8] |
牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460.
DOI |
[9] | YANG X Y, WANG Z T, PAN G, et al. Advances in atmospheric observation techniques for greenhouse gases by satellite remote sensing[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 581. |
[10] | LO A Y. Carbon emissions trading in China[J]. Nature Climate Change, 2012, 2(11): 765-766. |
[11] | LIU Z, GUAN D B, WEI W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565): 335-338. |
[12] | FU B J, LIU Y X, LI Y, et al. The research priorities of resources and environmental sciences[J]. Geography and Sustainability, 2021, 2(2): 87-94. |
[13] | COUNCIL N R. Basic research opportunities in earth science[M]. Washington, D.C: National Academies Press, 2001. |
[14] |
安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
DOI |
[15] | 陈宜瑜, 吕宪国. 湿地功能与湿地科学的研究方向[J]. 湿地科学, 2003, 1(1): 7-11. |
[16] | PUJARIPARAS R, JAIN V, SINGH V, et al. Critical zone: an emerging research area for sustainability[J]. Current Science, 2020, 118(10): 1487-1488. |
[17] | XU X B, CHEN M K, YANG G S, et al. Wetland ecosystem services research: a critical review[J]. Global Ecology and Conservation, 2020, 22: e01027. |
[18] | O’RIORDAN T. Review of Water lands: a vision for the world’s wetlands and their people[J]. Environment: Science and Policy for Sustainable Development, 2022, 64(4): 31-32. |
[19] | SALIMI S, ALMUKTAR S A A A N, SCHOLZ M. Impact of climate change on wetland ecosystems: a critical review of experimental wetlands[J]. Journal of Environmental Management, 2021, 286: 112160. |
[20] | XIONG Y, MO S H, WU H P, et al. Influence of human activities and climate change on wetland landscape pattern: a review[J]. Science of the Total Environment, 2023, 879: 163112. |
[21] |
朱永官, 李刚, 张甘霖, 等. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 2015, 70(12): 1859-1869.
DOI |
[22] | BANWART S A, NIKOLAIDIS N P, ZHU Y G, et al. Soil functions: connecting earth’s critical zone[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 333-359. |
[23] | 杨顺华, 宋效东, 吴华勇, 等. 地球关键带研究评述: 现状与展望[J]. 土壤学报, 2024, 61(2): 308-318. |
[24] | BROOKS P D, CHOROVER J, FAN Y, et al. Hydrological partitioning in the critical zone: recent advances and opportunities for developing transferable understanding of water cycle dynamics[J]. Water Resources Research, 2015, 51(9): 6973-6987. |
[25] | GIARDINO J R, HOUSER C. Introduction to the critical zone[J]. Developments in Earth Surface Processes. Amsterdam: Elsevier, 2015, 19: 1-13. |
[26] | MINOR J, PEARL J K, BARNES M L, et al. Critical zone science in the anthropocene: opportunities for biogeographic and ecological theory and praxis to drive earth science integration[J]. Progress in Physical Geography: Earth and Environment, 2020, 44(1): 50-69. |
[27] | 吕佳南, 李常斌, 武磊, 等. 黑河和白河流域湿地变化及其归因分析[J]. 水资源保护, 2022, 38(3): 131-139, 146. |
[28] | 袁军, 史良树, 唐小平. 浅析中国湿地保护管理中的三种主流湿地定义[J]. 湿地科学, 2022, 20(5): 607-612. |
[29] | 刘赵文. 湿地生态系统的碳循环研究进展[J]. 安徽农学通报, 2017, 23(6): 121-124, 138. |
[30] | 张文菊, 童成立, 吴金水, 等. 典型湿地生态系统碳循环模拟与预测[J]. 环境科学, 2007, 28(9): 1905-1911. |
[31] | WU Y H, WU Z J, JIANG S M, et al. Elemental stoichiometry (C, N, P) of soil in the wetland critical zone of Dongting Lake, China: understanding soil C, N and P status at greater depth[J]. Sustainability, 2022, 14(14): 8337. |
[32] | LIU M, HOU L J, YANG Y, et al. The case for a critical zone science approach to research on estuarine and coastal wetlands in the anthropocene[J]. Estuaries and Coasts, 2021, 44(4): 911-920. |
[33] | MATTHEWS E, FUNG I. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources[J]. Global Biogeochemical Cycles, 1987, 1(1): 61-86. |
[34] | 郑姚闽, 牛振国, 宫鹏, 等. 湿地碳计量方法及中国湿地有机碳库初步估计[J]. 科学通报, 2013, 58(2): 170-180. |
[35] | MITRA S, WASSMANN R, VLEK P L. An appraisal of global wetland area and its organic carbon stock[J]. Current Science, 2005, 88(1): 25-35. |
[36] |
杨卫东, 曾联波, 李想. 碳汇效应及其影响因素研究进展[J]. 地球科学进展, 2023, 38(2): 151-167.
DOI |
[37] | 赵传冬, 刘国栋, 杨柯, 等. 黑龙江省扎龙湿地及其周边地区土壤碳储量估算与1986年以来的变化趋势研究[J]. 地学前缘, 2011, 18(6): 27-33. |
[38] |
林春英, 李希来, 孙海松, 等. 黄河源高寒湿地有机碳组分对不同退化程度的响应[J]. 草地学报, 2021, 29(7): 1540-1548.
DOI |
[39] | 苏小四, 师亚坤, 董维红, 等. 潜流带生物地球化学特征研究进展[J]. 地球科学与环境学报, 2019, 41(3): 337-351. |
[40] | YAO X C, SONG C C. Effect of different factors dominated by water level environment on wetland carbon emissions[J]. Environmental Science and Pollution Research, 2022, 29(49): 74150-74162. |
[41] | LELIEVELD J, CRUTZEN P J, DENTENER F J. Changing concentration, lifetime and climate forcing of atmospheric methane[J]. Tellus B, 1998, 50(2): 128-150. |
[42] | GEDNEY N, HUNTINGFORD C, COMYN-PLATT E, et al. Significant feedbacks of wetland methane release on climate change and the causes of their uncertainty[J]. Environmental Research Letters, 2019, 14(8): 084027. |
[43] | 吕宪国. 湿地科学研究进展及研究方向[J]. 中国科学院院刊, 2002, 17(3): 170-172. |
[44] | XU L, YU G R, HE N P, et al. Carbon storage in China’s terrestrial ecosystems: a synthesis[J]. Scientific Reports, 2018, 8: 2806. |
[45] |
XIAO D R, DENG L, KIM D G, et al. Carbon budgets of wetland ecosystems in China[J]. Global Change Biology, 2019, 25(6): 2061-2076.
DOI PMID |
[46] |
吴泽燕, 章程, 蒋忠诚, 等. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
DOI |
[47] | 闵思贤, 周念清, 蔡奕, 等. 湿地生态系统碳循环与碳中和盈亏模式探讨[J]. 地球科学前沿, 2021, 11(11): 1387-1399. |
[48] | 高扬, 于贵瑞. 区域C-N-H2O耦合循环过程及其驱动机制[J]. 中国科学: 地球科学, 2020, 50(9): 1195-1205. |
[49] | GAO L, BRYAN B A. Finding pathways to national-scale land-sector sustainability[J]. Nature, 2017, 544(7649): 217-222. |
[50] | BAUER J E, CAI W J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478): 61-70. |
[51] | LIU Q, YUAN Y F, LIU Y F, et al. Research progress: the application of biochar in the remediation of salt-affected soils[J]. Advances in Earth Science, 2022, 37(10): 1005. |
[52] | LI J G, WANG W C, PU L J, et al. Coastal reclamation and saltmarsh carbon budget: advances and prospects[J]. Advances in Earth Science, 2017, 32(6): 599. |
[53] | 朱永官, 沈仁芳, 贺纪正, 等. 中国土壤微生物组: 进展与展望[J]. 中国科学院院刊, 2017, 32(6): 554-565, 542. |
[54] | 于贵瑞, 高扬, 王秋凤, 等. 陆地生态系统碳氮水循环的关键耦合过程及其生物调控机制探讨[J]. 中国生态农业学报, 2013, 21(1): 1-13. |
[55] | HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951): 901-908. |
[56] | JOINER J, YOSHIDA Y, VASILKOV A P, et al. The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange[J]. Remote Sensing of Environment, 2014, 152: 375-391. |
[57] | FOYER C H, VALADIER M H, MIGGE A, et al. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize Leaves[J]. Plant Physiology, 1998, 117(1): 283-292. |
[58] | 林尚荣, 李静, 柳钦火. 陆地总初级生产力遥感估算精度分析[J]. 遥感学报, 2018, 22(2): 234-252. |
[59] |
谢开云, 王玉祥, 万江春, 等. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素[J]. 草业学报, 2020, 29(3): 157-170.
DOI |
[60] | 袁明, 王小菁, 钱前, 等. 2010年中国植物科学若干领域重要研究进展[J]. 植物学报, 2011, 46(3): 233-275. |
[61] |
GUO D L, LI H, MITCHELL R J, et al. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods[J]. New Phytologist, 2008, 177(2): 443-456.
DOI PMID |
[62] | ZHU H, INDUPRIYA M, GADI V K, et al. Assessment of the coupled effects of vegetation leaf and root characteristics on soil suction: an integrated numerical modeling and probabilistic approach[J]. Acta Geotechnica, 2020, 15(5): 1331-1339. |
[63] | ZHANG G L, BAI J H, WANG W, et al. Plant invasion reshapes the latitudinal pattern of soil microbial necromass and its contribution to soil organic carbon in coastal wetlands[J]. Catena, 2023, 222: 106859. |
[64] | CHONG K, WANG T, QIAN Q, et al. Research advances on plant science in China in 2014[J]. Chinese Bulletin of Botany, 2015, 50(4): 412. |
[65] | XIE L Y, YE D D, ZHANG H, et al. Review of influence factors on greenhouse gases emission from upland soils and relevant adjustment practices[J]. Chinese Journal of Agrometeorology, 2011, 32(4): 481. |
[66] | WANG Z G, ZHANG Y Z, GOVERS G, et al. Temperature effect on erosion-induced disturbances to soil organic carbon cycling[J]. Nature Climate Change, 2023, 13(2): 174-181. |
[67] | VAN GROENIGEN K J, GORISSEN A, SIX J, et al. Decomposition of 14C-labeled roots in a pasture soil exposed to 10 years of elevated CO2[J]. Soil Biology and Biochemistry, 2005, 37(3): 497-506. |
[68] | PURRE A H, ILOMETS M. Vegetation composition and carbon dioxide fluxes on rewetted milled peatlands: comparison with undisturbed bogs[J]. Wetlands, 2021, 41(8): 120. |
[69] | ZHAO Q M, ZHANG T, YANG S M, et al. Moisture-dependent response of soil carbon mineralization to temperature increases in a karst wetland on the Yunnan-Guizhou Plateau[J]. Environmental Science and Pollution Research, 2023, 30(16): 47769-47779. |
[70] | TAO B X, WANG Y P, YU Y, et al. Interactive effects of nitrogen forms and temperature on soil organic carbon decomposition in thecoastal wetland of the Yellow River Delta, China[J]. Catena, 2018, 165: 408-413. |
[71] | 窦韦强, 安毅, 秦莉, 等. 土壤pH对汞迁移转化的影响研究进展[J]. 农业资源与环境学报, 2019, 36(1): 1-8. |
[72] | KANG E Z, LI Y, ZHANG X D, et al. Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland[J]. Science of the Total Environment, 2021, 774: 145780. |
[73] | ZHANG X Y, LIANG X, HE C Q. Effects of filamentous macroalgae on the methane emission from urban river: a review[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1291-1299. |
[74] |
RIVETT M O, BUSS S R, MORGAN P, et al. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232.
DOI PMID |
[75] | 李玲玲, 薛滨, 姚书春. 湖泊沉积物甲烷的产生和氧化研究的意义及应用[J]. 矿物岩石地球化学通报, 2016, 35(4): 634-645, 607. |
[76] | ZHAO Q Q, BAI J H, WANG X, et al. Soil organic carbon content and stock in wetlands with different hydrologic conditions in the Yellow River Delta, China[J]. Ecohydrology and Hydrobiology, 2020, 20(4): 537-547. |
[77] | WU J F, YAO H X. Simulating dissolved organic carbon during dryness/wetness periods based on hydrological characteristics under multiple timescales[J]. Journal of Hydrology, 2022, 614: 128534. |
[78] | 宋长春. 湿地生态系统碳循环研究进展[J]. 地理科学, 2003, 23(5): 622-628. |
[79] |
LI L, GENG Y P, LAN Z C, et al. Phenotypic plasticity of aquatic plants in heterogeneous environments: a review[J]. Biodiversity Science, 2016, 24(2): 216-227.
DOI |
[80] | 韩东亮, 朱新萍, 胡毅, 等. 不同水分条件下巴音布鲁克天鹅湖高寒湿地土壤有机碳特征[J]. 湿地科学, 2017, 15(4): 509-515. |
[81] | 高灯州, 曾从盛, 章文龙, 等. 水淹频率增加对闽江口湿地土壤有机碳及其活性组分的影响[J]. 环境科学学报, 2016, 36(3): 974-980. |
[82] | DONG H X, ZHANG S, LIN J J, et al. Responses of soil microbial biomass carbon and dissolved organic carbon to drying-rewetting cycles: a meta-analysis[J]. Catena, 2021, 207: 105610. |
[83] | 赵光影, 郭冬楠, 江姗, 等. 冻融作用对小兴安岭典型湿地土壤活性有机碳的影响[J]. 生态学报, 2017, 37(16): 5411-5417. |
[84] | MU C C, ZHANG B W, HAN L D, et al. Short-term effects of fire disturbance on greenhouse gases emission from Betula platyphylla-forested wetland in Xiaoxing’an Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2011, 22(4): 857-865. |
[85] | KREPLIN H N, SANTOS FERREIRA C S, DESTOUNI G, et al. Arctic wetland system dynamics under climate warming[J]. Wiley Interdisciplinary Reviews: Water, 2021, 8(4): e1526. |
[86] | POIANI K A, JOHNSON W C, KITTEL T G F. Sensitivity of a prairie wetland to increased temperature and seasonal precipitation CHANGES[J]. JAWRA Journal of the American Water Resources Association, 1995, 31(2): 283-294. |
[87] | FENG J G, LIANG J F, LI Q W, et al. Effect of hydrological connectivity on soil carbon storage in the Yellow River Delta wetlands of China[J]. Chinese Geographical Science, 2021, 31(2): 197-208. |
[88] | 张广帅, 于秀波, 刘宇, 等. 鄱阳湖碟形湖泊植物分解和水位变化对水体碳、 氮浓度的叠加效应[J]. 湖泊科学, 2018, 30(3): 668-679. |
[89] | 白军红, 刘玥, 赵庆庆, 等. 水盐变化对滨海湿地土壤有机碳累积与碳排放的影响综述[J]. 北京师范大学学报(自然科学版), 2022, 58(3): 447-457. |
[90] | HAN G X, CHU X J, XING Q H, et al. Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(8): 1506-1520. |
[91] | SHI Y, MA Q X, KUZYAKOV Y, et al. Nitrite-dependent anaerobic oxidation decreases methane emissions from peatlands[J]. Soil Biology and Biochemistry, 2022, 169: 108658. |
[92] | LIU J R, PENG J, XIA H Q, et al. High soil available phosphorus favors carbon metabolism in cotton leaves in pot trials[J]. Journal of Plant Growth Regulation, 2021, 40(3): 974-985. |
[93] | DE GRAAFF M A, VANGROENIGEN K J, SIX J, et al. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis[J]. Global Change Biology, 2006, 12(11): 2077-2091. |
[94] | 刘德燕, 宋长春. 磷输入对湿地土壤有机碳矿化及可溶性碳组分的影响[J]. 中国环境科学, 2008, 28(9): 769-774. |
[95] | 周念清, 赵姗, 沈新平. 天然湿地演替带氮循环研究进展[J]. 科学通报, 2014, 59(18): 1688-1699. |
[96] | 周念清, 吴延浩, 蔡奕, 等. 湿地关键带中磷与氮、 碳循环联动耦合机制[J]. 地球科学与环境学报, 2022, 44(1): 91-101. |
[97] | 刘德燕, 宋长春, 王丽, 等. 外源氮输入对湿地土壤有机碳矿化及可溶性有机碳的影响[J]. 环境科学, 2008, 29(12): 3525-3530. |
[98] | 孙玮, 李一平, 朱立琴, 等. 进水氮素组成对表面流人工湿地脱氮及N2O排放的影响[J]. 中国环境科学, 2023, 43(8): 4013-4023. |
[99] | LIU Y Y, XU F J, DING L P, et al. Microplastics reduce nitrogen uptake in peanut plants by damaging root cells and impairing soil nitrogen cycling[J]. Journal of Hazardous Materials, 2023, 443: 130384. |
[100] | WALCROFT A S, WHITEHEAD D, SILVESTER W B, et al. The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D. Don[J]. Plant, Cell and Environment, 1997, 20(11): 1338-1348. |
[101] | RACHMADI A T, KITAJIMA M, PEPPER I L, et al. Enteric and indicator virus removal by surface flow wetlands[J]. Science of the Total Environment, 2016, 542(PA): 976-982. |
[102] | 林春英, 李希来, 张玉欣, 等. 黄河源区高寒沼泽湿地土壤微生物群落结构对不同退化的响应[J]. 环境科学, 2021, 42(8): 3971-3984. |
[103] | DOU B K, WANG Y D, XUE D M, et al. Research advancement in the processes and mechanisms of transporting methane by emerged herbaceous plants and hygrophytes[J]. Chinese Journal of Plant Ecology, 2017, 41(11): 1208-1218. |
[104] | SUN W, DING Y L, ZHANG L J, et al. A review of study on nitrite-dependent anaerobic methane oxidation process and its application[J]. Ecology and Environmental Sciences, 2019, 28(5): 1064. |
[105] |
DE DEYN G B, CORNELISSEN J H C, BARDGETT R D. Plant functional traits and soil carbon sequestration in contrasting biomes[J]. Ecology Letters, 2008, 11(5): 516-531.
DOI PMID |
[106] |
DANG C, MORRISSEY E M, NEUBAUER S C, et al. Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands[J]. Global Change Biology, 2019, 25(2): 549-561.
DOI PMID |
[107] | WANG Q D, SONG J M, CAO L, et al. Distribution and storage of soil organic carbon in a coastal wetland under the pressure of human activities[J]. Journal of Soils and Sediments, 2017, 17(1): 11-22. |
[108] | 宋长春, 宋艳宇, 王宪伟, 等. 气候变化下湿地生态系统碳、 氮循环研究进展[J]. 湿地科学, 2018, 16(3): 424-431. |
[109] | SICA Y V, QUINTANA R D, RADELOFF V C, et al. Wetland loss due to land use change in the Lower Paraná River Delta, Argentina[J]. Science of the Total Environment, 2016, 568: 967-978. |
[110] | SCHMIDT K S, SKIDMORE A K. Spectral discrimination of vegetation types in a coastal wetland[J]. Remote Sensing of Environment, 2003, 85(1): 92-108. |
[111] | CHENG Y R, ZHA Y, TONG C, et al. Plant population dynamics in a degraded coastal wetland and implications for the carbon cycle[J]. Wetlands, 2020, 40(5): 1617-1625. |
[112] | 沈瑞昌, 兰志春, 方长明, 等. “堑秋湖” 围堤改变鄱阳湖洲滩湿地土壤碳循环过程[J]. 湖泊科学, 2018, 30(5): 1260-1270. |
[113] | MCCAULEY L A, ANTEAU M J, VAN DER BURG M P, et al. Land use and wetland drainage affect water levels and dynamics of remaining wetlands[J]. Ecosphere, 2015, 6(6): 1-22. |
[114] | MASSON-DELMOTTE V, ZHAI P, PÖRTNER H-O, et al. Global warming of 1.5 C: IPCC special report on impacts of global warming of 1.5 C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty[M]. Cambridge, UK: Cambridge University Press, 2022. |
[115] | WEI Y M, CHEN K Y, KANG J N, et al. Policy and management of carbon peaking and carbon neutrality: a literature review[J]. Engineering, 2022, 14: 52-63. |
[116] |
邓一荣, 汪永红, 赵岩杰, 等. 碳中和背景下二氧化碳封存研究进展与展望[J]. 地学前缘, 2023, 30(4): 429-439.
DOI |
[117] | ZHANG C H, JU W M, CHEN J M, et al. China’s forest biomass carbon sink based on seven inventories from 1973 to 2008[J]. Climatic Change, 2013, 118(3): 933-948. |
[118] | MACREADIE P I, NIELSEN D A, KELLEWAY J J, et al. Can we manage coastal ecosystems to sequester more blue carbon?[J]. Frontiers in Ecology and the Environment, 2017, 15(4): 206-213. |
[119] | LI T, ZHANG W, ZHANG Q, et al. Impacts of climate and reclamation on temporal variations in CH4 emissions from different wetlands in China: from 1950 to 2010[J]. Biogeosciences, 2015, 12(23): 6853-6868. |
[120] | FRIEDLINGSTEIN P, O’SULLIVAN M, JONES M W, et al. Global carbon budget 2020[J]. Earth System Science Data Discussions, 2020, 12(4): 3269-3340. |
[1] | 胡晗, 张立飞, 彭卫刚, 兰春元, 刘志成. 西南天山超高压泥质片岩中石墨的形成:对俯冲带碳迁移、储存的启示[J]. 地学前缘, 2024, 31(6): 282-303. |
[2] | 曹建华, 杨慧, 黄芬, 张春来, 张连凯, 朱同彬, 周孟霞, 袁道先. 岩溶碳汇原理、过程与计量[J]. 地学前缘, 2024, 31(5): 358-376. |
[3] | 王野, 陈旸, 陈骏. 岩石有机碳风化及其控制因素[J]. 地学前缘, 2024, 31(2): 402-409. |
[4] | 谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕. 小小地质微生物演绎跨圈层的相互作用[J]. 地学前缘, 2024, 31(1): 446-454. |
[5] | 孙焕泉, 毛翔, 吴陈冰洁, 国殿斌, 王海涛, 孙少川, 张英, 罗璐. 地热资源勘探开发技术与发展方向[J]. 地学前缘, 2024, 31(1): 400-411. |
[6] | 李曙光, 汪洋, 刘盛遨. 大地幔楔的两个深部碳循环圈:差异及宜居效应[J]. 地学前缘, 2024, 31(1): 15-27. |
[7] | 王家昊, 胡修棉, 蒋璟鑫, 马超, 马鹏飞. 重建南海27 Ma以来高分辨率碳酸盐补偿深度[J]. 地学前缘, 2024, 31(1): 500-510. |
[8] | 谢银财, 于奭, 缪雄谊, 李军, 何师意, 孙平安. 青藏高原流域岩石风化机制及其CO2消耗通量:以拉萨河为例[J]. 地学前缘, 2023, 30(5): 510-525. |
[9] | 邓一荣, 汪永红, 赵岩杰, 谷培科, 肖瑾, 周健, 李朝晖, 于志强, 彭平安. 碳中和背景下二氧化碳封存研究进展与展望[J]. 地学前缘, 2023, 30(4): 429-439. |
[10] | 于奭, 蒲俊兵, 刘凡, 杨慧. 岩溶碳汇效应对植被的响应研究进展[J]. 地学前缘, 2023, 30(4): 418-428. |
[11] | 陈雪倩, 张立飞. 碳的固定、运输、转移和排放过程:对地球深部碳循环的启示[J]. 地学前缘, 2023, 30(3): 313-339. |
[12] | 王欣楚, 刘丛强, 李思亮, 徐胜, 丁虎, 庞智勇, 帅燕华. 甲烷团簇同位素研究进展及其在表层地球系统碳循环研究中的应用[J]. 地学前缘, 2023, 30(2): 463-478. |
[13] | 李栋, 赵敏, 刘再华, 陈波. 普定岩溶水-碳循环模拟试验场水体双碳同位素特征(δ13C-Δ14C)与碳足迹[J]. 地学前缘, 2022, 29(3): 155-166. |
[14] | 赵斐宇,姜素华,李三忠,曹伟,汪刚,张慧璇,高嵩. 中国东部无机CO2气藏与(古)太平洋板块俯冲关联[J]. 地学前缘, 2017, 24(4): 370-384. |
[15] | 李曙光. 深部碳循环的Mg同位素示踪[J]. 地学前缘, 2015, 22(5): 143-159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||