地学前缘 ›› 2024, Vol. 31 ›› Issue (6): 436-449.DOI: 10.13745/j.esf.sf.2024.6.36

• 非主题来稿选登 • 上一篇    下一篇

湿地关键带碳循环与碳源碳汇转化机制及碳交换量化模式

周念清1,*(), 郭梦申1, 蔡奕1, 陆帅帅1, 刘晓群2, 赵文刚2   

  1. 1.同济大学 土木工程学院 水利工程系, 上海 200092
    2.湖南省水利水电科学研究院, 湖南 长沙 410007
  • 收稿日期:2024-02-07 修回日期:2024-04-02 出版日期:2024-11-25 发布日期:2024-11-25
  • 通信作者: 周念清
  • 基金资助:
    国家自然科学基金项目(42272291);国家自然科学基金项目(42077176);国家自然科学基金战略研究项目(42242202)

Mechanism of carbon cycle and source-sink conversion and quantitative carbon exchange model in critical zone of wetland

ZHOU Nianqing1,*(), GUO Mengshen1, CAI Yi1, LU Shuaishuai1, LIU Xiaoqun2, ZHAO Wengang2   

  1. 1. Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
    2. Hunan Institute of Water Resources and Hydropower Research, Changsha 410007, China
  • Received:2024-02-07 Revised:2024-04-02 Online:2024-11-25 Published:2024-11-25
  • Contact: ZHOU Nianqing

摘要:

湿地关键带“碳源”和“碳汇”的转化机制及其量化关系是研究湿地碳循环需要重点探讨和解决的科学问题。碳(C)是构成生命体的主要元素之一,在生态系统的物质循环和能量流动过程中发挥着极其重要的作用。湿地关键带作为地球关键带最活跃的组成部分,蕴含着大量的信息交换,需要通过信息提取、解译来研究碳循环及其迁移转化信息互馈机制。C在湿地生态系统中具有“源”和“汇”的功能,涉及大气、土壤、植被、水和微生物作用,湿地关键带碳循环对促进湿地生态环境保护至关重要。本文以湿地关键带C的生物地球化学循环特征为基础,分析了湿地关键带中C的赋存形态及C在植被—大气、根系—土壤和土壤—大气界面的迁移转化过程,阐释了影响湿地关键带碳循环及迁移转化的主控因子和耦合作用机制,进一步探讨了“减碳源”和“增碳汇”双向驱动下对实现“双碳”目标的积极作用。由此提出了未来的研究方向,应重点加强湿地关键带C的时空演化和生物地球化学循环影响机理分析,构建碳循环量化模式,精准测定“碳源”和“碳汇”转化过程中的通量变化,量化湿地关键带 “碳汇”盈余,评价湿地关键带对碳达峰和碳中和的贡献度。

关键词: 湿地关键带, 碳循环, 碳中和, 演进机制, 量化模式

Abstract:

The transformation mechanism and quantitative relationship between carbon source and sink conversion in critical zone of wetland are key scientific issues that need to be explored and addressed in the study of wetland carbon cycle. Carbon (C) is one of the main elements that constitute living organisms and plays an extremely important role in the material cycle and energy flow processes of ecosystems. As the most active part of the Earth’s critical zone, the critical zone of wetland contains a large amount of information interchange. It is necessary to study the mutual feedback mechanism of carbon cycle and its migration and transformation information through information extraction and interpretation. Carbon has the function of a “source” and “sink” in wetland ecosystems, which involves the effects of atmosphere, soil, vegetation, water and microorganisms. Carbon cycle in critical zone of wetland plays a crucial role in promoting wetland ecological environment protection. Based on the biogeochemical cycle characteristics of C in critical zone of wetland, this paper analyzed the occurrence patterns and the migration and transformation processes of C at vegetation, atmosphere, root, soil interfaces. The main control factors of migration and transformation and coupling mechanisms affecting carbon cycle were also explained in critical zone of wetland. Further exploration was conducted on the positive role of dual driving forces of “carbon reduction source” and “carbon increase sink” in achieving the goal of “carbon peak” and “carbon neutrality”. Finally, the future research directions were proposed, which should focus on strengthening the comprehensive analysis of the spatiotemporal evolution of C and the impact mechanism of biogeochemistry cycle in critical zone of wetland, constructing a quantitative carbon cycle model, accurately measuring the flux changes during the transformation process of “carbon source” and “carbon sink” to quantify the surplus of “carbon sink” in critical zone of wetland and evaluating its contribution to “carbon peak” and “carbon neutrality”.

Key words: critical zone of wetland, carbon cycle, carbon neutrality, evolution mechanism, quantitative mode

中图分类号: