地学前缘 ›› 2023, Vol. 30 ›› Issue (5): 510-525.DOI: 10.13745/j.esf.sf.2023.2.66
谢银财1,2(), 于奭1,2,*(
), 缪雄谊1,2, 李军3, 何师意1,2, 孙平安1,2
收稿日期:
2022-09-06
修回日期:
2022-10-31
出版日期:
2023-09-25
发布日期:
2023-10-20
通信作者:
*于 奭(1983—),男,研究员,主要从事岩溶环境方面研究工作。E-mail: yushihydrogeo@163.com
作者简介:
谢银财(1986—),男,助理研究员,主要从事岩溶环境与全球变化研究工作。E-mail: xieyincai1216@163.com
基金资助:
XIE Yincai1,2(), YU Shi1,2,*(
), MIAO Xiongyi1,2, LI Jun3, HE Shiyi1,2, SUN Ping’an1,2
Received:
2022-09-06
Revised:
2022-10-31
Online:
2023-09-25
Published:
2023-10-20
摘要:
摘要:为研究青藏高原流域岩石风化机制及其对CO2消耗通量和气候变化的影响,于2019年11月至2020年10月对拉萨河流域控制断面进行一个完整水文年每月2次的监测和采样,结合水化学及δ13CDIC和$\partial^{34}\mathrm{S}_{\mathrm{SO}_4}$,探讨了流域水化学特征及其主要影响因素,基于化学计量平衡与正演模型方法定量计算了河流水体主要物质来源,并对流域岩石风化速率与大气CO2消耗通量进行了估算。结果表明:拉萨河流域水体中Ca2+和HCO3-为主要的阳离子和阴离子,水化学类型为HCO3-Ca型,大气输入、人为输入、硅酸盐岩和碳酸盐岩风化端员对河水阳离子的年平均贡献率分别为6%、4%、21%和70%;河水化学计量学、δ13CDIC(-8.78‰~-1.35‰)和$\delta^{34} \mathrm{~S}_{\mathrm{SO}_{4}}$(-2.26‰~-1.10‰)变化均证明由煤系地层硫化物及矿床硫化物的氧化形成的硫酸(各占约50%)广泛参与了流域的化学侵蚀,硫酸对碳酸盐岩的风化作用旱季显著强于雨季。流域硅酸盐岩风化速率与大气CO2消耗通量的年平均值分别为5.20 t·km-2·a-1和118×103 mol·km-2·a-1;仅考虑碳酸风化作用时,流域碳酸盐岩风化速率与大气CO2消耗通量分别为22.5 t·km-2·a-1和202×103 mol·km-2·a-1;硫酸参与作用下,流域碳酸盐岩风化速率估算结果提高了31%(升至29.4 t·km-2·a-1),岩石(碳酸盐岩和硅酸盐岩)风化消耗大气CO2通量则降低了35%(降至207×103 mol·km-2·a-1)。硫酸参与流域碳酸盐岩的风化改变了区域碳循环,这是全球碳循环模型应该考虑的一个重要环节。
中图分类号:
谢银财, 于奭, 缪雄谊, 李军, 何师意, 孙平安. 青藏高原流域岩石风化机制及其CO2消耗通量:以拉萨河为例[J]. 地学前缘, 2023, 30(5): 510-525.
XIE Yincai, YU Shi, MIAO Xiongyi, LI Jun, HE Shiyi, SUN Ping’an. Chemical weathering and its associated CO2 consumption on the Tibetan Plateau: A case of the Lhasa River Basin[J]. Earth Science Frontiers, 2023, 30(5): 510-525.
图4 拉萨河流域河水Na+校正的元素比值分布图(摩尔分数比)
Fig.4 Geochemical discrimination plots for water samples from the Lhasa River Basin showing the control of rock weathering on river water chemistry
图6 拉萨河流域河水(Ca2++Mg2++K++Na+)当量浓度与$\mathrm{NO}_3^{-}$(a)和($\mathrm{NO}_3^{-}$+$\mathrm{SO}_4^{2-}$)(b)当量浓度的变化关系图
Fig.6 Relationships between (K++Na++Ca2++Mg2+) and $\mathrm{NO}_3^{-}$ (a) and ($\mathrm{NO}_3^{-}$+$\mathrm{SO}_4^{2-}$) (b) in river water in the Lhasa River Basin
图7 拉萨河流域河水[Ca2++Mg2+]/[$\mathrm{NO}_3^{-}$]与[$\mathrm{SO}_4^{2-}$]/[$\mathrm{NO}_3^{-}$]当量浓度比值关系
Fig.7 Equivalent ratios of [Ca2++Mg2+]/[$\mathrm{NO}_3^{-}$] vs. [$\mathrm{SO}_4^{2-}$]/[$\mathrm{NO}_3^{-}$] in waters draining the Lhasa River Basin
图8 拉萨河流域河水$\mathrm{SO}_4^{2-}$当量浓度与(Ca2++Mg2+)(a)和$\mathrm{NO}_3^{-}$(b)当量浓度的变化关系图
Fig.7 Relationships between $\mathrm{SO}_4^{2-}$ and (Ca2++Mg2+) (a) and $\mathrm{NO}_3^{-}$ (b) in river water in the Lhasa River Basin
![]() |
表2 拉萨河流域岩石风化速率与大气CO2消耗与其他河流的比较
Table 1 Comparison of chemical weathering rates and associated CO2fluxes between the Lhasa River Basin and other rivers under different climate types
![]() |
地区 | 河流名称 | 硫酸参与岩石风化 抵消大气CO2 消耗通量的比例/% | 数据 来源 |
---|---|---|---|
青藏高原 | 拉萨河(拉萨) | 35 | 本文 |
尼洋河(河口) | 28 | 文献[ | |
澜沧江(彬阳) | 82 | 文献[ | |
怒江(宝山) | 118 | ||
金沙江(石鼓) | 14 | 文献[ | |
岷江(高场) | 10 | ||
西南 | 赤水河(合江) | 45 | 文献[ |
乌江 | 13 | 文献[ | |
舞阳江 | 21 | ||
清水江 | 16 | ||
南盘江 | 13 | 文献[ | |
北盘江 | 20 | ||
长江(宜昌) | 13 | 文献[ | |
长江(大通) | 14 | ||
嘉陵江(北碚) | 12 | ||
汉江(仙桃) | 10 | ||
赣江(外洲) | 14 | ||
西江(蔗香) | 22 | 文献[ | |
东南 | 钱塘江(杭州) | 13 | 文献[ |
韩江(潮州) | 38 | 文献[ |
表3 不同流域硫酸参与岩石风化抵消大气CO2消耗通量的比例对照
Table 3 Contrast of the proportion of sulfuric acid participating in rock weathering to offset atmospheric CO2 consumption flux of the different river basins
地区 | 河流名称 | 硫酸参与岩石风化 抵消大气CO2 消耗通量的比例/% | 数据 来源 |
---|---|---|---|
青藏高原 | 拉萨河(拉萨) | 35 | 本文 |
尼洋河(河口) | 28 | 文献[ | |
澜沧江(彬阳) | 82 | 文献[ | |
怒江(宝山) | 118 | ||
金沙江(石鼓) | 14 | 文献[ | |
岷江(高场) | 10 | ||
西南 | 赤水河(合江) | 45 | 文献[ |
乌江 | 13 | 文献[ | |
舞阳江 | 21 | ||
清水江 | 16 | ||
南盘江 | 13 | 文献[ | |
北盘江 | 20 | ||
长江(宜昌) | 13 | 文献[ | |
长江(大通) | 14 | ||
嘉陵江(北碚) | 12 | ||
汉江(仙桃) | 10 | ||
赣江(外洲) | 14 | ||
西江(蔗香) | 22 | 文献[ | |
东南 | 钱塘江(杭州) | 13 | 文献[ |
韩江(潮州) | 38 | 文献[ |
[46] |
HUANG Q B, QIN X Q, LIU P Y, et al. Impact of sulfuric and nitric acids on carbonate dissolution, and the associated deficit of CO2 uptake in the upper-middle reaches of the Wujiang River, China[J]. Journal of Contaminant Hydrology, 2017, 203: 18-27.
DOI URL |
[47] | 蔺学东, 张镱锂, 姚治君, 等. 拉萨河流域近50年来径流变化趋势分析[J]. 地理科学进展, 2007, 26(3): 58-67, 128. |
[48] |
MOON S, CHAMBERLAIN C P, HILLEY G E. New estimates of silicate weathering rates and their uncertainties in global rivers[J]. Geochimica et Cosmochimica Acta, 2014, 134: 257-274.
DOI URL |
[49] |
LIU J K, HAN G L. Effects of chemical weathering and CO2 outgassing on δ13CDIC signals in a karst watershed[J]. Journal of Hydrology, 2020, 589: 125192.
DOI URL |
[50] |
CHETELAT B, LIU C Q, ZHAO Z Q, et al. Geochemistry of the dissolved load of the Changjiang Basin rivers: anthropogenic impacts and chemical weathering[J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4254-4277.
DOI URL |
[51] |
GROSBOIS C, NÉGREL P, FOUILLAC C, et al. Dissolved load of the Loire River: chemical and isotopic characterization[J]. Chemical Geology, 2000, 170(1/2/3/4): 179-201.
DOI URL |
[52] |
MOQUET J S, CRAVE A, VIERS J, et al. Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon Basins[J]. Chemical Geology, 2011, 287(1/2): 1-26.
DOI URL |
[53] | 章典, 师长兴, 假拉. 西藏降水化学分析[J]. 干旱区研究, 2005, 22(4): 471-474. |
[54] | 刘旭, 张东, 高爽, 等. 青藏高原小流域化学风化过程及其CO2消耗通量: 以尼洋河为例[J]. 生态学杂志, 2018, 37(3): 688-696. |
[1] |
GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
DOI URL |
[2] |
LI S L, CALMELS D, HAN G, et al. Sulfuric acid as an agent of carbonate weathering constrained by δ13CDIC: examples from Southwest China[J]. Earth and Planetary Science Letters, 2008, 270(3/4): 189-199.
DOI URL |
[3] |
XIE Y C, HUANG F, YANG H, et al. Role of anthropogenic sulfuric and nitric acids in carbonate weathering and associated carbon sink budget in a Karst Catchment (Guohua), southwestern China[J]. Journal of Hydrology, 2021, 599: 126287.
DOI URL |
[4] |
SCHOPKA H H, DERRY L A, ARCILLA C A. Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 978-1002.
DOI URL |
[5] |
FRANCE-LANORD C, DERRY L A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion[J]. Nature, 1997, 390(6655): 65-67.
DOI |
[6] |
LIU Z H, DREYBRODT W, WANG H J. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3/4): 162-172.
DOI URL |
[7] |
LIU Z H, MACPHERSON G L, GROVES C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49.
DOI URL |
[8] | 陶正华, 赵志琦, 张东, 等. 西南三江(金沙江、澜沧江和怒江)流域化学风化过程[J]. 生态学杂志, 2015, 34(8): 2297-2308. |
[9] | 张连凯, 覃小群, 刘朋雨, 等. 硫酸参与的长江流域岩石化学风化与大气CO2消耗[J]. 地质学报, 2016, 90(8): 1933-1944. |
[55] |
HAN G L, LIU C Q. Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China[J]. Chemical Geology, 2004, 204(1/2): 1-21.
DOI URL |
[56] |
ANDERSON S P, DREVER J I, FROST C D, et al. Chemical weathering in the foreland of a retreating glacier[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1173-1189.
DOI URL |
[57] |
FAN B L, ZHAO Z Q, TAO F X, et al. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River Basin: a comparison among the upstream, midstream and downstream[J]. Journal of Asian Earth Sciences, 2014, 96: 17-26.
DOI URL |
[58] | 徐森, 李思亮, 钟君, 等. 赤水河流域水化学特征与岩石风化机制[J]. 生态学杂志, 2018, 37(3): 667-678. |
[59] | 覃小群, 蒋忠诚, 张连凯, 等. 珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应[J]. 地质通报, 2015, 34(9): 1749-1757. |
[60] |
LIU W J, SHI C, XU Z F, et al. Water geochemistry of the Qiantangjiang River, East China: chemical weathering and CO2 consumption in a basin affected by severe acid deposition[J]. Journal of Asian Earth Sciences, 2016, 127: 246-256.
DOI URL |
[61] | 余冲, 徐志方, 刘文景, 等. 韩江流域河水地球化学特征与硅酸盐岩风化: 风化过程硫酸作用[J]. 地球与环境, 2017, 45(4): 390-398. |
[62] |
LIU B J, LIU C Q, ZHANG G, et al. Chemical weathering under mid- to cool temperate and monsoon-controlled climate: a study on water geochemistry of the Songhuajiang River system, Northeast China[J]. Applied Geochemistry, 2013, 31: 265-278.
DOI URL |
[10] |
LI H W, WANG S J, BAI X Y, et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink[J]. Science of the Total Environment, 2018, 643: 157-170.
DOI URL |
[11] |
LI H W, WANG S J, BAI X Y, et al. Spatiotemporal evolution of carbon sequestration of limestone weathering in China[J]. Science China Earth Sciences, 2019, 62(6): 974-991.
DOI |
[12] | 刘丛强, 蒋颖魁, 陶发祥, 等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4): 404-414. |
[13] |
LERMAN A, WU L L, MACKENZIE F T. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance[J]. Marine Chemistry, 2007, 106(1/2): 326-350.
DOI URL |
[14] |
LIU J K, HAN G L. Major ions and 34SSO4in Jiulongjiang River water: investigating the relationships between natural chemical weathering and human perturbations[J]. Science of the Total Environment, 2020, 724: 138208.
DOI URL |
[15] |
ZHANG Y Z, JIANG Y J, YUAN D X, et al. Source and flux of anthropogenically enhanced dissolved inorganic carbon: a comparative study of urban and forest Karst Catchments in Southwest China[J]. Science of the Total Environment, 2020, 725: 138255.
DOI URL |
[16] |
RAYMO M E, RUDDIMAN W F, FROELICH P N. Influence of Late Cenozoic mountain building on ocean geochemical cycles[J]. Geology, 1988, 16(7): 649.
DOI URL |
[17] |
RAYMO M E, RUDDIMAN W F. Tectonic forcing of Late Cenozoic climate[J]. Nature, 1992, 359(6391): 117-122.
DOI |
[18] |
LI S L, CHETELAT B, YUE F J, et al. Chemical weathering processes in the Yalong River draining the eastern Tibetan Plateau, China[J]. Journal of Asian Earth Sciences, 2014, 88: 74-84.
DOI URL |
[19] |
WU W H, XU S, YANG J, et al. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau[J]. Chemical Geology, 2008, 249(3/4): 307-320.
DOI URL |
[20] |
YU Z L, YAN N, WU G J, et al. Chemical weathering in the upstream and midstream reaches of the Yarlung Tsangpo Basin, southern Tibetan Plateau[J]. Chemical Geology, 2021, 559: 119906.
DOI URL |
[21] | 吴卫华, 杨杰东, 徐士进. 青藏高原化学风化和对大气CO2的消耗通量[J]. 地质论评, 2007, 53(4): 515-528. |
[22] | 张清华, 孙平安, 何师意, 等. 西藏拉萨河流域河水主要离子化学特征及来源[J]. 环境科学, 2018, 39(3): 1065-1075. |
[23] | 吴滔, 袁鹏, 戴露, 等. 西藏拉萨河径流预测方法研究[J]. 水利科技与经济, 2005, 11(2): 77-79, 113 |
[24] |
QIN H H, GAO B, HE L, et al. Hydrogeo chemical characteristics and controlling factors of the Lhasa River under the influence of anthropogenic activities[J]. Water, 2019, 11(5): 948.
DOI URL |
[25] | 刘昭. 雅鲁藏布江拉萨-林芝段天然水水化学及同位素特征研究[D]. 成都: 成都理工大学, 2011: 17. |
[26] | 龚晨. 西藏拉萨河流域水化学时空变化及影响因素研究[D]. 天津: 天津大学, 2015: 15. |
[27] | 布多, 许祖银, 吴坚扎西, 等. 拉萨河流域选矿厂分布及其对环境的影响[J]. 西藏大学学报(社会科学版), 2009, 24(2): 33-38. |
[28] | 何柳. 拉萨河流域水文地球化学特征及其风化指示[D]. 抚州: 东华理工大学, 2019: 9-41. |
[29] | 罗丰才. 1∶20万曲水幅区域地质调查报告: 地质部分[R]. 拉萨: 西藏自治区地质矿产局, 1993: 10-40. |
[30] | 杜洋, 云影, 彭定志. 拉萨河流域不同汇流方式的TOPMODEL应用比较研究[J]. 北京师范大学学报(自然科学版), 2009, 45(5/6): 658-661. |
[31] | MEYBECK M. Pathways of major elements from land to oceans through rivers[C]// River inputs to ocean systems. New York: United Nations Press, 1981: 18-30. |
[32] | MEYBECK M. Global occurrence of major elements in rivers[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2003: 207-223. |
[33] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI PMID |
[34] |
MEYBECK M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401-428.
DOI URL |
[35] | SUCHET P A, PROBST J L. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2)[J]. Tellus, 1995, 47 (1/2): 273-280. |
[36] |
XU Z F, LIU C Q. Water geochemistry of the Xijiang Basin Rivers, South China: chemical weathering and CO2 consumption[J]. Applied Geochemistry, 2010, 25(10): 1603-1614.
DOI URL |
[37] | 谢银财, 朱同彬, 杨慧, 等. 硫酸对典型岩溶流域碳酸盐岩溶蚀及碳循环意义: 以广西平果岩溶流域为例[J]. 第四纪研究, 2017, 37(6): 1271-1282. |
[38] |
SAVOIE D L, PROSPERO J M. Comparison of oceanic and continental sources of non-sea-salt sulphate over the Pacific Ocean[J]. Nature, 1989, 339(6227): 685-687.
DOI |
[39] | 史继清, 杨志刚, 边巴次仁, 等. 2008—2015年西藏酸雨变化特征及气象影响因子分析[J]. 高原山地气象研究, 2017, 37(3): 64-70. |
[40] |
CERLING T E, SOLOMON D K, QUADE J, et al. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3403-3405.
DOI URL |
[41] | CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. Boca Raton, FL: CRC Press/Lewis Publishers, 1997: 111-169. |
[42] |
TELMER K, VEIZER J. Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives[J]. Chemical Geology, 1999, 159(1/2/3/4): 61-86.
DOI URL |
[43] |
DEINES P. Carbon isotope effects in carbonate systems[J]. Geochimica et Cosmochimica Acta, 2004, 68(12): 2659-2679.
DOI URL |
[44] |
ZHANG J, QUAY P D, WILBUR D O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta, 1995, 59(1): 107-114.
DOI URL |
[45] |
JIANG Y J. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: evidence from major elements and δ13CDIC in Nandong, Southwest China[J]. Journal of Contaminant Hydrology, 2013, 152: 1-11.
DOI URL |
[1] | 胡晗, 张立飞, 彭卫刚, 兰春元, 刘志成. 西南天山超高压泥质片岩中石墨的形成:对俯冲带碳迁移、储存的启示[J]. 地学前缘, 2024, 31(6): 282-303. |
[2] | 周念清, 郭梦申, 蔡奕, 陆帅帅, 刘晓群, 赵文刚. 湿地关键带碳循环与碳源碳汇转化机制及碳交换量化模式[J]. 地学前缘, 2024, 31(6): 436-449. |
[3] | 曹建华, 杨慧, 黄芬, 张春来, 张连凯, 朱同彬, 周孟霞, 袁道先. 岩溶碳汇原理、过程与计量[J]. 地学前缘, 2024, 31(5): 358-376. |
[4] | 王野, 陈旸, 陈骏. 岩石有机碳风化及其控制因素[J]. 地学前缘, 2024, 31(2): 402-409. |
[5] | 李曙光, 汪洋, 刘盛遨. 大地幔楔的两个深部碳循环圈:差异及宜居效应[J]. 地学前缘, 2024, 31(1): 15-27. |
[6] | 谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕. 小小地质微生物演绎跨圈层的相互作用[J]. 地学前缘, 2024, 31(1): 446-454. |
[7] | 王家昊, 胡修棉, 蒋璟鑫, 马超, 马鹏飞. 重建南海27 Ma以来高分辨率碳酸盐补偿深度[J]. 地学前缘, 2024, 31(1): 500-510. |
[8] | 陈雪倩, 张立飞. 碳的固定、运输、转移和排放过程:对地球深部碳循环的启示[J]. 地学前缘, 2023, 30(3): 313-339. |
[9] | 王欣楚, 刘丛强, 李思亮, 徐胜, 丁虎, 庞智勇, 帅燕华. 甲烷团簇同位素研究进展及其在表层地球系统碳循环研究中的应用[J]. 地学前缘, 2023, 30(2): 463-478. |
[10] | 欧阳恺皋, 蒋小伟, 马策, 闫宏彬, 任建光, 樊尧, 张润平, 付前方, 李旭, 万力. 岩体表层凝结水的形成与转化规律:对岩石风化水分来源的指示意义[J]. 地学前缘, 2023, 30(2): 506-513. |
[11] | 李栋, 赵敏, 刘再华, 陈波. 普定岩溶水-碳循环模拟试验场水体双碳同位素特征(δ13C-Δ14C)与碳足迹[J]. 地学前缘, 2022, 29(3): 155-166. |
[12] | 孙占学, 马文洁, 刘亚洁, 刘金辉, 周义朋. 地浸采铀矿山地下水环境修复研究进展[J]. 地学前缘, 2021, 28(5): 215-225. |
[13] | 毛韦达,胡翔. La0.5 Sr0.5 Co0.8 Mn0.2 O3-δ 钙钛矿对过一硫酸盐降解水中四溴双酚A影响实验研究[J]. 地学前缘, 2019, 26(3): 255-262. |
[14] | 张劼,雷怀彦,杨鸣,陈勇,孔媛,卢毅. 南海北部陆坡沉积物中P-S-Fe的相互作用及其对划分硫酸盐甲烷转换带的指示意义[J]. 地学前缘, 2018, 25(3): 285-293. |
[15] | 赵斐宇,姜素华,李三忠,曹伟,汪刚,张慧璇,高嵩. 中国东部无机CO2气藏与(古)太平洋板块俯冲关联[J]. 地学前缘, 2017, 24(4): 370-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||