地学前缘 ›› 2024, Vol. 31 ›› Issue (1): 500-510.DOI: 10.13745/j.esf.sf.2024.1.35
王家昊1(), 胡修棉1,*(
), 蒋璟鑫1, 马超2, 马鹏飞3
收稿日期:
2024-01-04
修回日期:
2024-01-19
出版日期:
2024-01-25
发布日期:
2024-01-25
通信作者:
*胡修棉(1974—),男,博士,教授,博士生导师,主要从事沉积大地构造、古环境方面的研究。E-mail: 作者简介:
王家昊(1998—),男,硕士研究生,主要从事沉积学大数据、碳循环方面的研究。E-mail: mg21290017@smail.nju.edu.cn
基金资助:
WANG Jiahao1(), HU Xiumian1,*(
), JIANG Jingxin1, MA Chao2, MA Pengfei3
Received:
2024-01-04
Revised:
2024-01-19
Online:
2024-01-25
Published:
2024-01-25
摘要:
新生代海洋碳酸盐补偿深度(CCD)的重建长期受到学术界的广泛关注。本研究以南海14个站位20个钻孔的综合大洋钻探计划(IODP)物质数据与年龄-深度模型,恢复了对应钻孔的古水深,计算了碳酸盐累积速率(CAR),基于线性回归的方法,重建了南海27 Ma以来CCD变化。研究结果显示:南海在海盆拉张形成期(27~18 Ma)出现了CCD超过2 000 m大幅度的下降;在随后的中中新世气候适宜期(MMCO)期间,南海CCD出现800 m 变浅。8 Ma以来南海CCD演化和赤道太平洋的演化呈现了不同的演化趋势:前者在3 500~4 000 m范围内波动,后者则从4 000 m持续下降到4 500 m左右。27 Ma之前,广泛的陆源输入和上升洋流发育导致南海出现浅的CCD。27~18 Ma时期的构造拉张导致的海盆加深,同时上升洋流减弱,被解释为该时期CCD下降的主要因素。MMCO期间气候驱动下的海平面波动导致了碳酸盐沉积核心区域的变化,是造成CCD波动的重要原因。8 Ma以来南海和太平洋CCD的差异演化是太平洋底水与南海底水的交换不畅的结果。
中图分类号:
王家昊, 胡修棉, 蒋璟鑫, 马超, 马鹏飞. 重建南海27 Ma以来高分辨率碳酸盐补偿深度[J]. 地学前缘, 2024, 31(1): 500-510.
WANG Jiahao, HU Xiumian, JIANG Jingxin, MA Chao, MA Pengfei. High-resolution reconstruction of carbonate compensation depth in the South China Sea since 27 Ma[J]. Earth Science Frontiers, 2024, 31(1): 500-510.
图1 研究所采用的南海海域的综合大洋钻探计划(IODP)和大洋钻探计划(ODP)站位分布与南海洋流路径 现代南海的表层、中层、深层洋流路径据文献[16]修改;白色路径为表层洋流,黄色路径为中层洋流,橙色路径为深层洋流;使用GMT6.0绘制并采用墨卡托投影。
Fig.1 Location and distribution of IODP and ODP (Ocean Drilling Program) sites in the study area and ocean current path in the modern South China Sea (Using GMT6.0 and Mercator projection). Current paths are modified from [16]. White: surface current; yellow: middle current; orange: deep current.
年代区间 | 年代区间内的 中心年代/Ma | CCD/m | 误差(±)/m |
---|---|---|---|
0.5~1 | 0.75 | 4 154 | 263 |
>1~1.5 | 1.25 | 399 | 215 |
>1.5~2 | 1.75 | 4 046 | 229 |
>2~2.5 | 2.25 | 4 107 | 256 |
>2.5~3 | 2.75 | 3 806 | 152 |
>3~3.5 | 3.25 | 3 693 | 202 |
>3.5~4 | 3.75 | 3 844 | 211 |
>4~4.5 | 4.25 | 3 981 | 429 |
>4.5~5 | 4.75 | 3 111 | 146 |
>5~5.5 | 5.25 | 3 350 | 83 |
>5.5~6 | 5.75 | 4 052 | 204 |
>6~6.5 | 6.25 | 3 612 | 261 |
>6.5~7 | 6.75 | 3 703 | 291 |
>7~7.5 | 7.25 | 3 778 | 489 |
>7.5~8 | 7.75 | 4 127 | 269 |
>8~8.5 | 8.25 | 3 828 | 214 |
>8.5~9 | 8.75 | 3 824 | 158 |
>9~9.5 | 9.25 | 4 046 | 40 |
>9.5~10 | 9.75 | 3 930 | 131 |
>10~10.5 | 10.25 | 4 118 | 251 |
>10.5~11 | 10.75 | 3 688 | 321 |
>11~11.5 | 11.25 | 4 116 | 137 |
>11.5~12 | 11.75 | 3 913 | 49 |
>12~12.5 | 12.25 | 3 899 | 77 |
>12.5~13 | 12.75 | 4 013 | 36 |
>13~13.5 | 13.25 | 3 558 | 464 |
>13.5~14 | 13.75 | 3 584 | 282 |
>14~14.5 | 14.25 | 3 549 | 277 |
>14.5~15 | 14.75 | 3 557 | 763 |
>15~15.5 | 15.25 | 2 823 | 252 |
>15.5~16 | 15.75 | 3 585 | 130 |
>16~16.5 | 16.25 | 2 860 | 262 |
>16.5~17 | 16.75 | 3 547 | 169 |
>17~17.5 | 17.25 | 3 569 | 153 |
>17.5~18.5 | 18 | 3 355 | 293 |
>18.5~19.5 | 19 | 3 699 | 416 |
>19.5~20.5 | 20 | 3 269 | 467 |
>20.5~21.5 | 21 | 3 001 | 480 |
>21.5~22.5 | 22 | 3 073 | 535 |
>22.5~23.5 | 23 | 2 202 | 504 |
>23.5~24.5 | 24 | 1 925 | 378 |
>24.5~25.5 | 25 | 1 545 | 164 |
>25.5~26.5 | 26 | 1 477 | 130 |
>26.5~27.5 | 27 | 1 015 | 103 |
表1 27 Ma以来不同年代对应南海CCD计算结果及误差
Table 1 Calculation results on CCDs in the South China Sea of different ages since 27 Ma
年代区间 | 年代区间内的 中心年代/Ma | CCD/m | 误差(±)/m |
---|---|---|---|
0.5~1 | 0.75 | 4 154 | 263 |
>1~1.5 | 1.25 | 399 | 215 |
>1.5~2 | 1.75 | 4 046 | 229 |
>2~2.5 | 2.25 | 4 107 | 256 |
>2.5~3 | 2.75 | 3 806 | 152 |
>3~3.5 | 3.25 | 3 693 | 202 |
>3.5~4 | 3.75 | 3 844 | 211 |
>4~4.5 | 4.25 | 3 981 | 429 |
>4.5~5 | 4.75 | 3 111 | 146 |
>5~5.5 | 5.25 | 3 350 | 83 |
>5.5~6 | 5.75 | 4 052 | 204 |
>6~6.5 | 6.25 | 3 612 | 261 |
>6.5~7 | 6.75 | 3 703 | 291 |
>7~7.5 | 7.25 | 3 778 | 489 |
>7.5~8 | 7.75 | 4 127 | 269 |
>8~8.5 | 8.25 | 3 828 | 214 |
>8.5~9 | 8.75 | 3 824 | 158 |
>9~9.5 | 9.25 | 4 046 | 40 |
>9.5~10 | 9.75 | 3 930 | 131 |
>10~10.5 | 10.25 | 4 118 | 251 |
>10.5~11 | 10.75 | 3 688 | 321 |
>11~11.5 | 11.25 | 4 116 | 137 |
>11.5~12 | 11.75 | 3 913 | 49 |
>12~12.5 | 12.25 | 3 899 | 77 |
>12.5~13 | 12.75 | 4 013 | 36 |
>13~13.5 | 13.25 | 3 558 | 464 |
>13.5~14 | 13.75 | 3 584 | 282 |
>14~14.5 | 14.25 | 3 549 | 277 |
>14.5~15 | 14.75 | 3 557 | 763 |
>15~15.5 | 15.25 | 2 823 | 252 |
>15.5~16 | 15.75 | 3 585 | 130 |
>16~16.5 | 16.25 | 2 860 | 262 |
>16.5~17 | 16.75 | 3 547 | 169 |
>17~17.5 | 17.25 | 3 569 | 153 |
>17.5~18.5 | 18 | 3 355 | 293 |
>18.5~19.5 | 19 | 3 699 | 416 |
>19.5~20.5 | 20 | 3 269 | 467 |
>20.5~21.5 | 21 | 3 001 | 480 |
>21.5~22.5 | 22 | 3 073 | 535 |
>22.5~23.5 | 23 | 2 202 | 504 |
>23.5~24.5 | 24 | 1 925 | 378 |
>24.5~25.5 | 25 | 1 545 | 164 |
>25.5~26.5 | 26 | 1 477 | 130 |
>26.5~27.5 | 27 | 1 015 | 103 |
图2 南海CCD演化曲线与赤道太平洋CCD演化曲线 黑色曲线:南海CCD演化曲线;灰色误差带捕捉了在回归分析时的不确定性;绿色曲线和红色曲线:赤道太平洋CCD演化曲线,分别引自文献[5]和[11];南海海盆持续扩张时期、中中新世气候适宜期(MMCO)、中中新世气候转折期(MMCT)和巴士海槛生长时期分别引自于文献[22,28⇓-30]。
Fig.2 Evolution of CCDs in the South China Sea (black curve) and the equatorial Pacific Ocean (green, red curves). Grey error band captures the uncertainty in regression analysis; green curve was adapted from [5], red curve from [11]. The continuous expansion periods of the South China Sea Basin, MMCO, MMCT and the growth period of the Bashi sill were adapted from [22,28⇓-30].
图3 南海CCD曲线与大洋钻探沉积物CaCO3质量分数、每克样品中钙质超微化石个数、Sc/Sr值、底栖有孔虫δ18O和δ13C值、南海相对海平面变化、CAR值以及浮游有孔虫碎片含量 U1501站位沉积物中CaCO3含量(质量分数)、每克样品中钙质超微化石个数、Sc/Sr值(引自文献[21]); 1148站位底栖有孔虫δ18O数据和δ13C数据以及世界大洋平均底栖有孔虫δ13C数据(来自文献[11,16,25,35,41]); 18.5 Ma以来南海相对海平面演化曲线(引自文献[42]); 1148站位沉积物中CaCO3含量(质量分数)、碳酸钙累积速率(CAR)、浮游有孔虫碎片含量(引自文献[30])。
Fig.3 Responses to CCD change in the South China Sea over the years. From top: CCD; CaCO3 (mass fraction); calcareous nannofossils abundance; Sc/Sr ratio (after [21]); δ18O (after [16]) and δ13C (after [34]) values of benthic foraminifera; relative sea-level (after [43]); CAR value; planktic foraminifera content in sediment
图4 30 Ma以来,构造、气候等因素控制下南海CCD的响应和演化模型示意图
Fig.4 Evolutionary stages of CCD in the South China Sea since 30 Ma under the control of structural and climatic factors
[1] | BRAMLETTE M N. Pelagic sediments[J]. Oceanography, 1961, 67: 345-366. |
[2] | LYLE M. Neogene carbonate burial in the Pacific Ocean[J]. Paleoceanography, 2003, 18(3): 2002PA000777. |
[3] |
DUTKIEWICZ A, MÜLLER R D. The carbonate compensation depth in the South Atlantic Ocean since the Late Cretaceous[J]. Geology, 2021, 49(7): 873-878.
DOI URL |
[4] |
PENMAN D E, TURNER S K, SEXTON P F, et al. An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene-Eocene Thermal Maximum[J]. Nature Geoscience, 2016, 9(8): 575-580.
DOI |
[5] |
PÄLIKE H, LYLE M W, NISHI H, et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth[J]. Nature, 2012, 488(7413): 609-614.
DOI |
[6] |
DERRY L A. Carbonate weathering, CO2 redistribution, and Neogene CCD and pCO2 evolution[J]. Earth and Planetary Science Letters, 2022, 597: 117801.
DOI URL |
[7] | HSU K J, WEISSERT H J. South Atlantic paleoceanography[M]. Cambridge: Cambridge University Press, 1985:1-350. |
[8] | BERGER W H. Deep sea carbonates: dissolution facies and age-depth constancy[J]. Nature, 1972, 236(5347): 392-395. |
[9] |
VAN ANDEL T H, THIEDE J, SCLATER J G, et al. Depositional history of the South Atlantic Ocean during the last 125 million years[J]. The Journal of Geology, 1977, 85(6): 651-698.
DOI URL |
[10] |
MELGUEN M, LE PICHON X, SIBUET J C. Paleoenvironnement de l’Atlantique sud[J]. Bulletin de la Société Géologique de France, 1978, S7-XX(4): 471-489.
DOI URL |
[11] |
CAMPBELL S M, MOUCHA R, DERRY L A, et al. Effects of dynamic topography on the Cenozoic carbonate compensation depth[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(4): 1025-1034.
DOI URL |
[12] |
SCHROEDER K, CHIGGIATO J, JOSEY S A, et al. Rapid response to climate change in a marginal sea[J]. Scientific Reports, 2017, 7(1): 4065.
DOI PMID |
[13] | 李粹中. 南海深水碳酸盐沉积作用[J]. 沉积学报, 1989, 7(2): 35-43. |
[14] |
MIAO Q, THUNELL R C, ANDERSON D M. Glacial-Holocene carbonate dissolution and sea surface temperatures in the south China and Sulu seas[J]. Paleoceanography, 1994, 9(2): 269-290.
DOI URL |
[15] | 张江勇, 周洋, 陈芳, 等. 南海北部表层沉积物碳酸钙含量及主要钙质微体化石丰度分布[J]. 第四纪研究, 2015, 35(6): 1366-1382. |
[16] | 翦知湣, 田军. 南海海盆演变与深部海流[J]. 科技导报, 2020, 38(18): 52-56. |
[17] |
MÜLLER R D, CANNON J, WILLIAMS S, et al. PyBacktrack 1.0: a tool for reconstructing paleobathymetry on oceanic and continental crust[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(6): 1898-1909.
DOI URL |
[18] | 汪品先. 南海深部过程的探索[J]. 科技导报, 2020, 38(18): 6-20. |
[19] | 吴哲, 张丽丽, 朱伟林, 等. 南海北部白垩纪—渐新世早期沉积环境演变及构造控制[J]. 古地理学报, 2022, 24(1): 73-84. |
[20] | 朱作飞, 闫义, 赵奇. 古南海俯冲过程:婆罗洲晚白垩世—渐新世地层沉积记录[J]. 大地构造与成矿学, 2022, 46(3): 552-568. |
[21] |
MA R, LIU C, LI Q, et al. Calcareous nannofossil changes in response to the spreading of the South China Sea basin during Eocene-Oligocene[J]. Journal of Asian Earth Sciences, 2019, 184: 103963.
DOI URL |
[22] |
BARCKHAUSEN U, ENGELS M, FRANKE D, et al. Evolution of the South China Sea: revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2014, 58: 599-611.
DOI URL |
[23] | 王桂华, 田纪伟. 南海深层水的来龙去脉[J]. 科技导报, 2020, 38(18): 21-25. |
[24] | VAN ANDEL T H, HEATH G R, MOORE T C. Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: a regional synthesis of Deep Sea Drilling Project data[J]. GSA Memoir, 1975, 143: 1-134. |
[25] | CONGRESS I O, SEARS M. Oceanography: invited lectures presented at the International Oceanographic Congress held in New York, 31 August-12 September 1959[M]. Washington: American Association for the Advancement of Science, 1961: 1-676. |
[26] | TAYLOR B, DENNIS H, 齐慧琴, 等. 南海盆地的构造演化[J]. 海洋地质译丛, 1981(1): 1-17. |
[27] |
WESSEL P, LUIS J F, UIEDA L, et al. The generic mapping tools version 6[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 5556-5564.
DOI |
[28] |
FRIGOLA A, PRANGE M, SCHULZ M. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)[J]. Geoscientific Model Development, 2018, 11(4): 1607-1626.
DOI URL |
[29] |
MILLER K G, MOUNTAIN G S, BROWNING J V, et al. Cenozoic global sea level, sequences, and the New Jersey Transect: results from coastal plain and continental slope drilling[J]. Reviews of Geophysics, 1998, 36(4): 569-601.
DOI URL |
[30] |
LI Q, WANG P, ZHAO Q, et al. A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea[J]. Marine Geology, 2006, 230(3): 217-235.
DOI URL |
[31] | LI Q, JIAN Z, LI B. Oligocene-Miocene planktonic foraminifer biostratigraphy, Site 1148, northern South China Sea[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2004, 184: 1-26. |
[32] |
WOODRUFF F, SAVIN S. Mid-Miocene isotope stratigraphy in the deep sea: high-resolution correlations, paleoclimatic cycles, and sediment preservation[J]. Paleoceanography, 1991, 6(6): 755-806.
DOI URL |
[33] | 陈荣华, 徐建, 孟翊, 等. 南海东北部表层沉积中微体化石与碳酸盐溶跃面和补偿深度[J]. 海洋学报, 2003(2): 48-56. |
[34] |
HARRIS K E, DEGRANDPRE M D, HALES B. Aragonite saturation state dynamics in a coastal upwelling zone[J]. Geophysical Research Letters, 2013, 40(11): 2720-2725.
DOI URL |
[35] |
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
DOI PMID |
[36] | MILLER K G, BROWNING J V, SCHMELZ W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20): eaaz134. |
[37] | STEINTHORSDOTTIR M, COXALL H K, DE BOER A M, et al. The miocene: the future of the past[J]. Paleoceanography and Paleoclimatology, 2021, 36(4): e2020PA004037. |
[38] | STEINTHORSDOTTIR M, JARDINE P E, REMBER W C. Near-future pCO2 during the hot miocene climatic optimum[J]. Paleoceanography and Paleoclimatology, 2021, 36(1): e2020-PA003900. |
[39] | YOU Y, HUBER M, MÜLLER R D, et al. Simulation of the middle miocene climate optimum[JL]. Geophysical Research Letters, 2009, 36(4): L04702. |
[40] | SANGIORGI F, QUAIJTAAL W, DONDERS T H, et al. Middle miocene temperature and productivity evolution at a Northeast Atlantic Shelf Site (IODP U1318, Porcupine Basin): global and regional changes[J]. Paleoceanography and Paleoclimatology, 2021, 36(7): e2020PA004059. |
[41] |
CHEN W H, HUANG C Y, LIN Y J, et al. Depleted deep South China Sea δ13C paleoceanographic events in response to tectonic evolution in Taiwan-Luzon Strait since Middle Miocene[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 195-225.
DOI URL |
[42] | 张桂林. 18.5 Ma 以来南海海平面变化特征[D]. 成都: 成都理工大学, 2019. |
[43] | ROTH J M, DROXLER A W. The caribbean carbonate crash at the middle to late miocene transition: linkage to the establishment of the modern global ocean conveyor[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2000, 165: 249-273. |
[44] | TIAN J, ZHAO Q, WANG P, et al. Astronomically modulated Neogene sediment records from the South China Sea[J]. Paleoceanography, 2008, 23(3): PA3210. |
[1] | 胡晗, 张立飞, 彭卫刚, 兰春元, 刘志成. 西南天山超高压泥质片岩中石墨的形成:对俯冲带碳迁移、储存的启示[J]. 地学前缘, 2024, 31(6): 282-303. |
[2] | 周念清, 郭梦申, 蔡奕, 陆帅帅, 刘晓群, 赵文刚. 湿地关键带碳循环与碳源碳汇转化机制及碳交换量化模式[J]. 地学前缘, 2024, 31(6): 436-449. |
[3] | 曹建华, 杨慧, 黄芬, 张春来, 张连凯, 朱同彬, 周孟霞, 袁道先. 岩溶碳汇原理、过程与计量[J]. 地学前缘, 2024, 31(5): 358-376. |
[4] | 王野, 陈旸, 陈骏. 岩石有机碳风化及其控制因素[J]. 地学前缘, 2024, 31(2): 402-409. |
[5] | 谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕. 小小地质微生物演绎跨圈层的相互作用[J]. 地学前缘, 2024, 31(1): 446-454. |
[6] | 李曙光, 汪洋, 刘盛遨. 大地幔楔的两个深部碳循环圈:差异及宜居效应[J]. 地学前缘, 2024, 31(1): 15-27. |
[7] | 谢银财, 于奭, 缪雄谊, 李军, 何师意, 孙平安. 青藏高原流域岩石风化机制及其CO2消耗通量:以拉萨河为例[J]. 地学前缘, 2023, 30(5): 510-525. |
[8] | 陈雪倩, 张立飞. 碳的固定、运输、转移和排放过程:对地球深部碳循环的启示[J]. 地学前缘, 2023, 30(3): 313-339. |
[9] | 王欣楚, 刘丛强, 李思亮, 徐胜, 丁虎, 庞智勇, 帅燕华. 甲烷团簇同位素研究进展及其在表层地球系统碳循环研究中的应用[J]. 地学前缘, 2023, 30(2): 463-478. |
[10] | 李栋, 赵敏, 刘再华, 陈波. 普定岩溶水-碳循环模拟试验场水体双碳同位素特征(δ13C-Δ14C)与碳足迹[J]. 地学前缘, 2022, 29(3): 155-166. |
[11] | 赵斐宇,姜素华,李三忠,曹伟,汪刚,张慧璇,高嵩. 中国东部无机CO2气藏与(古)太平洋板块俯冲关联[J]. 地学前缘, 2017, 24(4): 370-384. |
[12] | 李曙光. 深部碳循环的Mg同位素示踪[J]. 地学前缘, 2015, 22(5): 143-159. |
[13] | 张功成,王璞珺,吴景富,刘世翔,谢晓军. 边缘海构造旋回:南海演化的新模式[J]. 地学前缘, 2015, 22(3): 27-37. |
[14] | 蔡进功, 徐金鲤, 冯晓萍, 邓兵. 长江口表层沉积物孢粉相特征及其在碳循环中的意义[J]. 地学前缘, 2011, 18(6): 143-149. |
[15] | 张舟,张宏福. 金刚石与深部碳循环[J]. 地学前缘, 2011, 18(3): 268-283. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||